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Optimal In/Out TCAM Encodings of Ranges
Ori Rottenstreich, Isaac Keslassy, Avinatan Hassidim, Haim Kaplan and Ely Porat

Abstract—Hardware-based packet classification has become an
essential component in many networking devices. It often relies on
TCAMs (ternary content-addressable memories), which compare
the packet header against a set of rules. TCAMs are not well
suited to encode range rules. Range rules are often encoded by
multiple TCAM entries and little is known about the smallest
number of entries that one needs for a specific range.

In this work, we introduce the In/Out TCAM, a new architecture
that combines a regular TCAM together with a modified TCAM.
This custom architecture enables independent encoding of each
rule in a set of rules. We provide the following theoretical results
for the new architecture: (i) We give an upper bound on the
worst case expansion of range rules in one and two dimensions.
(ii) For extremal ranges, which are 89% of the ranges that occur
in practice we provide an efficient algorithm that computes an
optimal encoding. (iii) We present a closed-form formula for the
average expansion of an extremal range.

Index Terms—TCAM, Packet Classification, Optimal Range
Encoding.

I. INTRODUCTION

A. Background

Packet classification is the key function behind many network
applications, such as routing, filtering, security, accounting,
monitoring, load-balancing, policy enforcement, differentiated
services, virtual routers, and virtual private networks [1]–[4].
For each incoming packet, a packet classifier compares the
packet header fields against a list of rules, e.g. from access
control lists (ACLs), returns the first rule that matches the
header fields, and applies a corresponding action to the packet.
Typically, a tuple of five fields from the packet header is used,
namely the source IP address, destination IP address, source
port number, destination port number, and protocol type.

Today, hardware-based TCAMs (ternary content-addressable
associative memories) are the standard devices for high-speed
packet classification [5], [6]. They match the concatenation
of the five-tuple from the packet header into a fixed-width
ternary array composed of 0s, 1s, and ∗s (don’t care bits). For
each packet, a TCAM device checks all the rules in parallel,
and therefore reaches higher rates than other software-based or
hardware-based classification algorithms [1]–[3], [7], [8].

There are two types of rules: simple rules that specify a fixed
value (or a specific prefix range as defined formally below) for
each field of the header, and range rules. Typically, a range
rule applies when the source port and/or the destination port
need to be in specific intervals. TCAMs are not well-suited for
the representation of range rules. Encoding range rules often
requires several TCAM entries (the number of entries is called
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the range expansion), and therefore although most rules are
simple rules, most TCAM entries are used to encode range
rules [9]. In addition, there is an evidence that the percentage
of range rules is increasing [10].

As most range rules cannot be encoded with a single TCAM
entry, the common approach to encode a range rules in a
TCAM is by a set of disjoint prefix ranges. This requirement
of using several TCAM entries, becomes more critical for rules
with ranges defined over two fields. In some cases, this simple
encoding requires (2 · 16 − 2)2 = 900 entries to encode two
16-bit ranges restricting the values of the source port and the
destination port [11]. In contrast, advanced coding techniques
that can encode a range by first eliminating its complement
have worst-case expansion which is linear in the number of
bits required to specify the range [12]. However, a conventional
TCAM do not allow to encode a classifier with several rules
by simply concatenating their advanced encodings.

Nevertheless, understanding how to encode a single rule with
a small expansion is a fundamental question that was studied
intensively. To date, there is no polynomial-time algorithm that
computes an optimal encoding (encoding that minimizes the
number of TCAM entries) for any range rule. Instead, past work
suggested to compute restricted encoding: either an encoding
using only prefix ranges [13], [14] or an encoding that encodes
the range itself and not its complement [15] (i.e. using only in
entries in the terminology below). Other papers used heuristic
approaches [1]–[3], [16]–[24].

B. Our Contributions

In this paper we study the fundamental complexity of encod-
ing a range rule, using entries each marked in or out. A header
is in the range if and only if it matches at least one entry and
the first entry it matches is an in entry. We give lower and
upper bound on the size of the optimal encoding of any range
and we also develop practical algorithms for encoding a given
range with a guarantee on its expansion.

Our first contribution in this paper is a new In/Out TCAM
architecture. The new architecture combines a regular TCAM
and a modified TCAM. Simple rules are encoded in the regular
TCAM using only in entries. Complex rules are encoded in the
modified TCAM, using both in and out entries. The In/Out
TCAM architecture allows independent encoding of each rule
without considering their mutual interactions. This architecture
reduces the expansion of complex rules, albeit with an added
implementation cost, since the In/Out TCAM architecture relies
on additional logic and is not a simple off-the-shelf TCAM.

Our second contribution is a theoretical result motivated by
the In/Out TCAM architecture. Consider a set {0, 1, · · · , 2W −
1} of 2W points, also represented as a binary tree with 2W

leaves. Extremal ranges are ranges that cover the first or last
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TABLE I
SUMMARY OF OUR NEW RESULTS (IN BOXED BOLD) IN COMPARISON WITH PREVIOUS RESULTS: (A) (LAST ROW) WE GIVE AN OPTIMAL ALGORITHM FOR
THE ENCODING OF ONE-DIMENSIONAL (GENERALIZED) EXTREMAL RULES (RANGES OF THE FORM [0, y]). THIS IS THE FIRST OPTIMAL RESULT WHEN THE

DEGREES OF FREEDOM OF THE ALGORITHM ARE NOT LIMITED. (B) (LAST ROW) WE GIVE A TIGHT BOUND OF W ON THE EXPANSION OF GENERAL ONE
DIMENSIONAL RULES WHEN THE DEGREES OF FREEDOM OF THE ALGORITHM ARE NOT LIMITED. IN ADDITION, FOR TWO-DIMENSIONAL RULES, WE GIVE

A TIGHT BOUND OF W + 1 FOR EXTREMAL RULES (ASSUMING EVEN W FOR SIMPLICITY), AND A TIGHT BOUND OF 2W FOR GENERAL RULES.

(A) Optimal algorithm for any range

Constraints References Extremal Ranges General Ranges
No out entries Prefix code Gray code One Dimension Two Dimensions One Dimension Two Dimensions

x x - [11]
√

-
√

-
x - x - - - -
x - - - - - -
- x - [13], [14]

√ √ √ √

- - -
√

- - -

(B) Bounds on worst-case expansion over all ranges

Constraints References Extremal Ranges General Ranges
No out entries Prefix code Gray code One Dimension Two Dimensions One Dimension Two Dimensions

Upper Lower Upper Lower Upper Lower Upper Lower
Bound Bound Bound Bound Bound Bound Bound Bound

x x - [11] W W W 2 - 2W − 2 2W − 2 (2W − 2)2 -
x - x [9] - - - - 2W − 4 W (2W − 4)2 -
x - - [15] W - W 2 - 2W − 4 2W − 4 (2W − 4)2 -

- x - [12], [13]
⌈
W+1

2

⌉ ⌈
W+1

2

⌉
W + 1 W + 1 W W 2W 2W

- - - [12]
⌈
W+1

2

⌉ ⌈
W+1

2

⌉
W + 1 W + 1 W W 2W 2W

leaves of the tree, i.e. ranges of the form [0, y] or [y, 2W − 1].
Generalized extremal ranges are ranges that are extremal for
the minimal subtree containing their endpoints in this tree. (We
later provide a more formal definition.) For instance, within
a tree with 64 leaves (W = 6), [5, 7] is extremal for the
subtree that represents [4, 7], and therefore is a generalized
extremal range. Our second contribution is a simple linear-
time algorithm that finds an optimal encoding for any given
generalized extremal range. The main insight that allows us
to obtain this result is a proof that there is an optimal TCAM
encoding for generalized extremal ranges that uses only TCAM
entries, each representing a prefix range. We can then use a
simple dynamic programming algorithm to find the smallest
TCAM encoding that uses only TCAM entries that represent
prefix ranges, as the algorithm of [13].

This result is particularly appealing because the set of gener-
alized extremal ranges is significant in practice. To estimate the
potential impact of our results we considered a union of 120
real-life classification databases from [1], [9], [10], containing
214,941 rules. We find that 97.2% of these rules are generalized
extremal rules (i.e. 208,850 rules). Even after excluding the
exact-match rules, which are trivial to encode, 89.4% of the
non-exact-match rules are generalized extremal range rules
(51,065 rules out of 57,146).

Our discovery of an optimal algorithm for extremal ranges
also allows us to analyze the expected length of the optimal
encoding over all extremal ranges. We derive a closed-form
formula for this expected expansion, and show that asymptoti-
cally (when W is large) it is 2/3 of the worst case.

Our third contribution is that we prove tight bounds on
the worst-case expansion of any one-dimensional and two-

dimensional range rule (illustrated in the boxed bold values in
the last two rows of Table I(B)). Specifically, we give a simple
algorithm that encodes any range by at most W entries and
we prove that there is a range that cannot be encoded by less
than W entries. Our lower bound of W improves substantially
on a best previously-known lower-bound of ⌈(W + 1)/2⌉ and
answers a question left open in [25]. We also present an
algorithm that is optimal in the worst case for general two-
dimensional range rules. Such rules include two ranges, one
for the source port and the other for the destination port. If W
is the length of each of the two fields, our algorithm encodes
any two-dimensional range with at most 2W entries. We also
prove that there exists a two-dimensional range whose encoding
requires 2W TCAM entries.

As we mentioned our study focuses on the encoding of a
single range rule. Encodings of individual range rules with only
in entries can be concatenated to get an encoding of a sequence
of rules. This, unfortunately, is not true for encodings with both
in and out entries. To combine these encodings of individual
rules we suggest the In/Out TCAM architecture described in
Section III.

C. Related Work

As further illustrated in Table I, several previous papers have
tried to find bounds on the worst-case expansion of a single
range rule. It is well-known that each range defined over a
field of W bits can be encoded by at most 2W − 2 prefix
TCAM entries (as defined formally below) for W ≥ 2. In
this encoding all entries capture only inputs which are in the
range (i.e. they are all in entries in our terminology) [11]. For
example, assume that W = 4, and we want to encode the single
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range R = [1, 14] ⊆
[
0, 2W − 1

]
so that packets in this range

are matched by at least one entry while others are not matched.
Then we need 2W−2 = 6 TCAM entries, not counting the last
default entry: (0001 → in, 001* → in, 01** → in, 10** →
in, 110* → in, 1110 → in, **** → out).

Using a non-prefix TCAM encoding, the upper bound of
2W − 2 was improved to 2W − 4 [26]. To show that, the
disjunctive normal form representation of a range function
was studied. Usually, a header value is represented by the
binary code that keeps its base-2 value as a sequence of bits.
Alternatively, the header value can be described in a Gray code
in which any two adjacent values differ by a single bit. A
Gray code can be used instead of a binary code to get the
same improvement in the worst case expansion from 2W − 2
to 2W − 4 [9].

The encoding which we mentioned above use only in entries.
When both in and out entries are allowed the order of the entries
is significant since the decision whether a packet is in the range
is determined by the first matching entry. In [12] (a previous
work written by some of the authors of the current paper) it
is shown that when both in and out entries are allowed the
maximum expansion is W . For instance, the range R = [1, 14]
could be encoded using 3 ≤ W entries: (0000 → out, 1111 →
out, **** → in).

Some rules specify a range both for the source IP and for
the destination IP. This motivates considering rules that are the
product of d ranges defined on d different fields of W bits each.
It is easy to see that they can be simply encoded using up to
(2W − 2)d prefix TCAM entries each matching some part of
the range. This gives a bound of 900 TCAM entries for a pair
of (d = 2) port ranges of 16 bits each [1].

There are not many known lower bounds on the number of
TCAM entries required to encode a range. If the encoding is
restricted to use only in entries, then there is a range for which
the encoding has to contain at least W entries [9]. Furthermore,
for the binary code, it was shown in [15] that there is a range
whose encoding requires at least 2W − 4 in TCAM entries.

When both in and out entries are used, [12] presented a
lower bound of

⌈
W+1

2

⌉
on the worst-case expansion of extremal

ranges given in binary codes, even when the entries are not
restricted to be prefix. For general ranges, a lower bound of W
was given only when the entries are restricted to be prefix [12].

Algorithms for finding an optimal prefix encoding for a given
range are presented in [13], [14].

There is an extensive literature on efficient approaches
of how to encode ranges in TCAMs [1]–[3], [16]–[18]. In
particular, several schemes such as [19]–[24], [27]–[29] try
to minimize the size of the encoding of a set of rules by
exploiting the interactions between the rules. For instance,
techniques to reduce the number of fields in a representation
of a classifier were described in [29]. Besides TCAMs, coding
schemes for the compression of forwarding tables have been
descibed in [30]–[32].

II. MODEL AND NOTATIONS

A. Terminology
We first formally define the terminology used in this paper.

Unless mentioned otherwise, we assume a binary code rep-

resentation. For simplicity, as long as there is no confusion,
we also do not distinguish between a W -bit binary string (in
{0, 1}W ) and its value (in [0, 2W − 1]). We denote by xy
the concatenation of the strings x and y, and by (x)k the
concatenation of k copies of the string x. We number the bits
of a string from left to right, i.e. from the most significant to
the least significant.

Definition 1 (Range, prefix range). A range R of width W is
defined by two bit strings r1 and r2 of W bits each, such that
r1 ≤ r2. The range R is the set of all bit strings x of W bits
such that x ∈ [r1, r2]. A bit string x of W bits is said to match
the range (or be in the range) R if x ∈ [r1, r2].

In particular, a range R is a prefix range, with a prefix
r′ ∈ {0, 1}k of length k ∈ [0,W ] if r1 = r′(0)W−k, and r2 =
r′(1)W−k. It is a single point or an exact match if r1 = r2.

We define the sets of extremal ranges and generalized ex-
tremal ranges, which are subsets of all ranges.

Definition 2 (Extremal range, Generalized extremal range). A
range R = [r1, r2] ⊆ [0, 2W − 1] of W -bit binary strings is
called an extremal range when r1 = 0 or r2 = 2W − 1.

In addition, let R′ = [r′(0)W−k, r′(1)W−k] be the minimal-
size prefix range that contains R, i.e. satisfies R ⊆ R′. We
say that the range R is a generalized extremal range if r1 =
r′(0)W−k or r2 = r′(1)W−k.

Example 1. As mentioned above, let W = 6 and consider
the range R = [r1, r2] = [5, 7] = {000101, . . . , 000111}.
The range R is contained in the prefix range R′ = [4, 7] =
[r′(0)W−2, r′(1)W−2] for r′ = 0001. Since r2 = 7 =
r′(1)W−2, we say that the range R = [r1, r2] is a generalized
extremal range. Since r1 ̸= 0 and r2 ̸= 2W −1 = 63, the range
R is not an extremal range.

Definition 3 (TCAM entry, prefix TCAM entry). A TCAM
entry S of width W is a ternary string S = s1 . . . sW ∈
{0, 1, ∗}W , where {0, 1} are bit values and ∗ stands for don’t-
care. A W -bit string b = b1 . . . bW matches S, denoted as
b ∈ S, if and only if for all i ∈ [1,W ], si ∈ {bi, ∗}. We use
S to denote also the set of strings that it matches, when no
confusion will arise.

A TCAM entry S = s1 . . . sW ∈ {0, 1, ∗}W is a prefix TCAM
entry if sj = ∗ for some j ∈ [1,W ] implies that sj′ = ∗ for
any j′ ∈ [j,W ].

Note that prefix TCAM entries of width W are in one-to-one
correspondence with prefix ranges of width W . A range with
a prefix r corresponds to the prefix TCAM entry r(∗)W−k.

We assume that each TCAM entry S is associated with an
indication a that is either in or out. We denote a pair consisting
of an entry S and an indication a by S → a. Depending on
the context, we shall refer by a TCAM entry either to S or to
the pair S → a.

To simplify our presentation we assume at first that the packet
header consists of a single field of width W . We focus on a
single classification rule defined by a general range over this
field and a corresponding action that should be applied on bit
strings in the range. We call such a rule a range rule. Later
we also discuss headers with two fields of width W each, in
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which case the width of the header and of the TCAM entries
would be 2W .

Definition 4 (TCAM Encoding of a range). A TCAM encoding
ϕ of a range R of width W is a sequence of TCAM entries
(S1 → a1, . . . , Sn → an) where each ai is either in or out.
This sequence satisfies that for each header x ∈ {0, 1}W such
that x ∈ R, the first TCAM entry Sj matching x is associated
with aj = in; and for each x ̸∈ R, either the first TCAM entry
Sj matching x is associated with aj = out, or no TCAM entry
matches x. (we assume a default indication of out). The number
of rules, n, is called the size of ϕ and denoted by |ϕ|.

A prefix TCAM encoding ϕ of a range R is a TCAM
encoding of R in which all entries are prefix TCAM entries.

B. Optimal Range Encoding Schemes

For each range R we denote by OPT (R) a smallest TCAM
encoding of R, and by OPTp(R) a smallest prefix TCAM
encoding of R. We also denote opt(R) = |OPT (R)| and
optp(R) = |OPTp(R)|. We refer to opt(R) as the range
expansion of R, or just the expansion of R for short. Likewise
we refer to optp(R) as the prefix range expansion of R, or just
the prefix expansion of R for short.

We define r(W ) to be the maximum expansion of a range
in {0, 1}W , that is r(W ) = maxR opt(R). Similarly we define
re(W ) to be the maximum expansion of an extremal range,
that is re(W ) = max{opt(R) | R = [0, y]∨R = [y, 2W − 1]}.
Analogously, we define the maximum expansion with prefix
TCAM entries to be rp(W ) = maxR optp(R), and for extremal
ranges rep(W ) = max{optp(R) | R = [0, y]∨R = [y, 2W−1]}.

Our main goal is to find an algorithm that encodes a range
R with opt(R) rules and to understand the expected value of
opt(R) over all ranges. Another goal is to find r(W ), re(W ),
rp(W ), and rep(W ).

III. THE IN/OUT TCAM ARCHITECTURE

In this section, we describe the new In/Out TCAM archi-
tecture. The architecture enables independent encoding of each
rule in a classifier without considering the possible dependen-
cies between the rules. It also reduces the expansion of hard-to-
encode rules by encoding them with a modified TCAM, using
both in and out entries.

As Fig. 1 illustrates, the architecture combines a regular
TCAM and a modified TCAM. The regular TCAM encodes
the simple rules. The modified TCAM encodes the hard-to-
encode rules (e.g., the two-dimensional or the non-extremal
one-dimensional rules) with a guaranteed improved expansion.

Each incoming header is sent to both TCAMs. Each TCAM
outputs the index of the first rule (among those that it encodes)
that the header matches. The outputs of the two TCAMs get into
a conversion module that spits out the corresponding action.
This conversion module has to choose the rule to apply from
its two inputs and convert it into an action (as an ordinary
conversion module does). It can choose the applicable rule
among its inputs by picking the one with the smaller index
assuming these indices had been converted to global indices in
some list containing all rules.

(a) Regular TCAM architecture. A priority encoder (PE) is used to select the
first matching entry. Then, an action is selected based on the entry index.

(b) Suggested In/Out TCAM architecture. It includes a regular TCAM and a
modified TCAM. In the modified TCAM, each range is encoded separately,
and the regular PE is replaced by a hierarchical PE that is used to select the
first matching range. Finally, the action is selected based on the indices sent
by the two TCAMs.

Fig. 1. Comparison of a regular TCAM architecture with the suggested TCAM
architecture. Components that also appear in the regular TCAM are presented
in gray.

In order to output the first rule that the header matches the
modified TCAM uses a two level logic. The first level gets as
input the match/unmatch bit of each TCAM entry and it outputs
a match/unmatch bit for each rule encoded by the modified
TCAM. The second level is just a regular priority encoder that
outputs the first among the rules (encoded by the modified
TCAM) that the header matches.

The logic of the first level can be implemented as follows.
The entries of the modified TCAM are partitioned into groups
G1, . . . , Gm where group Gi includes all the entries encoding
rule i, i = 1, . . . ,m and m is the number of rules encoded
by the modified TCAM. For each group Gi we have a priority
encoder PEi that gets the match/unmatch bits of the entries of
Gi and outputs the index gi of the first matching entry among
Gi. We then use this index to access a table Si. This table
stores a 0 at a position of an out entry and a 1 at a position of
an in entry. The output of the first level logic for rule i is the
bit Si[gi]. It follows that the header matches rule i if and only
if its first matching entry in Gi is an in entry.

The size of the additional logic is small – it uses a small
constant number of gates for each entry in the modified TCAM
– since the size of PEi is linear in the size of the group
Gi which it encodes. This adds a small constant factor to the
size and the delay of the priority encoder attached to a regular
TCAM.

The additional logic used by the modified TCAM is not
an off-the-shelf component. Furthermore, the structure of this
additional logic depends on the number and the expansions of
the specific rules which are encoded by the modified TCAM.
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The additional logic is simple and always consists of a group of
priority encoders PEi and associated tables Si, but the number
of inputs of each PEi and the size of Si depends on the
expansion of rule i. Furthermore, the contents of Si depends
on the classification of the entries of Gi as in or out. We
can implement the additional logic using some programmable
device (such devices are common and cheap today) that we
reprogram each time we change the rules which our modified
TCAM encodes.

We can simplify the structure of the additional logic at the
expense of wasting some space of the modified TCAM, if we
allocate the same fixed number of entries, say L to each rule.
I.e. we make |Gi| = L for all i. This allows us to use the
same implementation of the additional logic as long as we do
not change L (even if we do change the rules themselves).
This implementation should be designed such that it can get
the contents of the tables Si (which are now of size L each)
as input.

This new architecture is especially interesting because the
fraction of complex classification rules is increasing, and is
expected to increase dramatically with the introduction of
virtualization and the related flexible flow matching in SDN
(Software-Defined Networking) [10], [33]. Therefore, this new
architecture may help solve future scaling bottlenecks, since it
provides tight guarantees on the worst-case number of entries
needed for each rule.

The suggested architecture can also improve the worst-case
power consumption of the conventional TCAM, known to be
roughly proportional to the number of TCAM entries [17]. By
encoding the two-dimensional rules in the modified TCAM,
we can significantly reduce the number of entries (e.g., by
improving for W = 16 the maximum expansion from (2W −
2)2 = 900 to 2W = 32). Although the In/Out TCAM
architecture includes two TCAMs, a regular one and a modified
one with a more complicated logic, we believe that the gain
from reducing the number of entries is more significant and
the new architecture will require less power.

IV. EXTREMAL 1-D RANGES

In this section, we consider the expansion of one-dimensional
extremal ranges over the set of prefix encoding schemes and
over the set of all encoding schemes.

For y ∈ [0, 2W−1], an extremal range may be a left-extremal
range of the form RLE = [0, y], or a right-extremal range of
the form RRE = [y, 2W − 1].

Given a TCAM encoding scheme ϕ that encodes a left-
extremal range R = [0, y] with |ϕ| TCAM entries, we can
obtain a TCAM encoding scheme ϕ′ that encodes the right-
extremal range R′ = [2W − 1 − y, 2W − 1] in exactly |ϕ|
TCAM entries. To do so, invert each of the bit values 0 and 1
(and ignore the don’t-cares) in all the |ϕ| entries. So the range
expansion of a right-extremal range is the same as the range
expansion of a corresponding left-extremal range and it suffices
to consider only left-extremal ranges.

Note that while we deal with extremal ranges, the results be-
low also apply to generalized extremal ranges. This is because
each generalized extremal range is simply an extremal range in

a smaller range (smaller W ) defined by its subtree. (we simply
ignore the fixed sequence of most significant bits in the binary
representations of all the values in the range.) Therefore, for
simplicity, we consider extremal ranges.

A. Prefix Encoding Vs. General Encoding of Extremal Ranges

The next theorem compares, for any extremal range R, the
size of the smallest TCAM encoding of R and the size of the
smallest prefix TCAM encoding of R. It shows that they are
actually identical.

Theorem 1. For any extremal range R = [0, y] (where y ∈
[0, 2W − 1]), the prefix range expansion of R is exactly the
range expansion of R, i.e.

optp(R) = opt(R). (1)

Proof. We consider an arbitrary extremal range R = [0, y] =
{(0)W , . . . , y1 . . . yW } and want to show that optp(R) =
opt(R).

We trivially have that optp(R) ≥ opt(R) and we only have to
prove that optp(R) ≤ opt(R). Consider all minimal encoding
schemes of R. Among them, consider the schemes with the
smallest number of non-prefix entries, and in this subset, the
schemes with the smallest number of ∗s in their non-prefix
entries. Let ϕ = (S1 → a1, . . . , Sn → an) be such a minimal
encoding scheme. We show that we can encode R in a prefix
encoding scheme with at most |ϕ| entries.

If all the TCAM entries of ϕ are prefix TCAM entries we are
done. So we assume that ϕ has at least one non-prefix TCAM
entries.

Among the non-prefix TCAM entries of ϕ, we look at the
index of the left-most * in each entry. We then consider the
entry with the smallest index of its left-most *. If there are
several non-prefix entries with the same index of their left-most
*, we consider the last one. We denote this entry by S → a
such that S = (s1, . . . , sW ) ∈ {0, 1, ∗}W and distinguish two
different cases depending on whether the indication a is in or
out. Let k be the index of this TCAM entry that is (S → a) =
(Sk → ak) and let j ∈ [1,W ] be the minimal index such that
sj = ∗.

We first consider the case where a = in. The case a = out
is similar, and we discuss it shortly at the end of the proof.
We compare the first (leftmost) j − 1 symbols of y, the right
endpoint of our range R = [0, y], and S. By the definition of
j, we have that ∀i ∈ [1, (j − 1)], si ∈ {0, 1} and therefore
y1 . . . yj−1 and s1 . . . sj−1 are both binary strings. The proof
now splits into several cases:

(i) We have s1 . . . sj−1 > y1 . . . yj−1. In this case, the entry
Sk → in, positively matches strings which are not in the range,
and therefore these strings must match preceding out entries. It
follows that we can remove the entry Sk → in and get a smaller
encoding of R. This is a contradiction to the minimality of ϕ.

(ii) We have s1 . . . sj−1 < y1 . . . yj−1. In this case, one can
replace Sk → in with s1 . . . sj−1(∗)W−j+1 → in, to get an
encoding of R with a smaller number of non-prefix entries
which contradicts the definition of ϕ.

(iii) We have s1 . . . sj−1 = y1 . . . yj−1 and yj = 0. In this
case, one can replace Sk → in with s1 . . . sj−10sj+1 . . . sW →
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in to get an encoding of R in which we have one less * in
non-prefix entries in contradiction to the definition of ϕ.

(iv) We have s1 . . . sj−1 = y1 . . . yj−1, yj = 1, and there ex-
ists an entry Sℓ → aℓ that begins with s1 . . . sj−10. If aℓ = out
then by deleting the entry Sℓ → aℓ we get a smaller encoding of
R. If aℓ is in, change the encoding as follows: Remove the entry
Sℓ → aℓ, change Sk → ak to s1 . . . sj−11sj+1 . . . sW → ak,
and add the entry s1 . . . sj−10(∗)W−j → in as a first entry. This
either gives an encoding of R with fewer non-prefix entries or
an encoding of R with fewer *s in non-prefix entries which
contradicts the definition of ϕ.

(v) Finally, we have s1 . . . sj−1 = y1 . . . yj−1, yj = 1,
and there is no entry in the encoding that begins with
s1 . . . sj−10. Let B denote the set of 2W−j strings that begin
with s1 . . . sj−10. Lets assume first that there is an entry in
Sk+1 → ak+1, . . . , Sn → an which is matched by at least one
of the strings in B. Let Sℓ → a be the first such entry. Since
there is no entry that begins with s1 . . . sj−10, it must be that
the index of the leftmost ∗ in Sℓ is at most j. Since the entry
Sk → ak is the non-prefix entry with the leftmost ∗, and the
last non-prefix entry among all the non-prefix entries with ∗
in position j, it follows that Sℓ is a prefix entry, of the form
s1 . . . sr(∗)W−r with r < j. This means that for every string in
B, and in particular for the strings in B that are first matched
by Sk, the first matching entry in Sk+1 → ak+1, . . . , Sn → an
is Sℓ → aℓ.

If aℓ = in then we can change Sk → in to be
s1 . . . sj−11sj+1 . . . sW → in and get an encoding of R with
one less * in non-prefix entries - all the strings in B that
were positively matched by Sk → in are positively matched
by Sℓ → in instead.

If aℓ = out or if there is no entry in Sk+1 → ak+1, . . . , Sn →
an that is matched by a string in B then S1 → a1, . . . , Sk → ak
positively match all the strings in B. Since there is no entry
(anywhere) that begins with s1 . . . sj−10, it must be the case
that every string x that begins with s1 . . . sj−11 is also matched
by one of the first k entries. Therefore, if x ̸∈ R, then when
reaching the kth entry x is already negatively encoded. This
means that we can change Sk to be s1 . . . sj−1(∗)W−j+1 → in
while still encoding R. This decreases the number of non-prefix
entries in the encoding and contradicts the definition of ϕ.

The case a = ak = out is similar: If we replace the
indications in and out and change the default indication (for
strings that are not matched by any rule) from out to in then
we get a minimal encoding of the complement of R with the
smallest number of non-prefix rules and the smallest number of
∗s in these rules. The kth rule which is the non-prefix rule with
the leftmost * (and the last among those if there is more than
one) is now an in rule. We then apply an argument analogous
to the above and get a contradiction. Note that we can slightly
modify case (v) so that it still applies despite the fact that we
change the default indication from out to in.

B. Optimal Encoding Scheme For Any Given Extremal Range
In this section we present an algorithm that computes, for

any given extremal range R, an optimal encoding of R. By
Theorem 1, it is sufficient to find the optimal encoding with
prefix TCAM entries.

Let T be a subtree of the binary tree (with 2W leaves) de-
scribing the entire space [0, 2W −1]. The subtree T corresponds
to all binary strings starting with a particular prefix x(T ). That
is, the subtree T consists of all the strings matching the TCAM
entry c(T ) = x(T )(∗)W−|x(T )|. Given a range R ⊆ [0, 2W−1],
and a subtree T , we call a prefix TCAM encoding of R∩T , such
that all of its entries start with x(T ), a prefix TCAM encoding
of R ∩ T within T .

For a subtree T we define INT (R∩T ) to be a shortest prefix
TCAM encoding of R ∩ T within T in which the last entry is
of the form c(T ) → in, and let nT

IN (R ∩ T ) be the number of
entries in INT (R ∩ T ). (If the shortest such encoding is not
unique then INT (R ∩ T ) is an arbitrary one of them.)

Similarly, let OUTT (R ∩ T ) be a shortest prefix TCAM
encoding of R ∩ T within T in which the last entry is
c(T ) → out, and let nT

OUT (R ∩ T ) be the number of entries
in OUTT (R ∩ T ). In the following we typically omit the
superscript T which will be clear from the context.

Example 2. If a subtree T satisfies T ⊆ R then R∩T = T can
be encoded by IN(R ∩ T ) = (c(T ) → in) in nIN (R ∩ T ) =
1 entries or by OUT (R ∩ T ) = (c(T ) → in, c(T ) → out) in
nOUT (R∩T ) = 2 entries. If T ⊆ Rc then R∩T can be encoded
by IN(R∩T ) = (c(T ) → out, c(T ) → in) in nIN (R∩T ) = 2
entries or by OUT (R∩T ) = (c(T ) → out) in nOUT (R∩T ) =
1 entries.

If the subtree T is a leaf and thereby contains a single
string, then either T ⊆ R or T ⊆ Rc. Thus IN(R ∩ T ),
nIN (R∩T ), OUT (R∩T ), and nOUT (R∩T ) can be computed
as in Example 2. In preparation for our dynamic programming
algorithm we state the following propositions whose straight-
forward proofs can be found in [34]. The first proposition shows
how we can compute IN(R∩T ), nIN (R∩T ), OUT (R∩T ),
and nOUT (R ∩ T ) for |T | ≥ 2 based on the corresponding
value for the left and the right subtrees of T denoted by ℓ(T )
and r(T ), respectively.

Proposition 1. Let T be a subtree such that |T | ≥ 2. Let ℓ(T )
and r(T ) be the left and the right subtrees of T , respectively.
Then,

nT
IN (R ∩ T ) = min{nℓ(T )

IN (R ∩ ℓ(T )) + n
r(T )
IN (R ∩ r(T ))− 1,

n
ℓ(T )
OUT (R ∩ ℓ(T )) + n

r(T )
OUT (R ∩ r(T ))},

nT
OUT (R ∩ T ) = min{nℓ(T )

IN (R ∩ ℓ(T )) + n
r(T )
IN (R ∩ r(T )),

n
ℓ(T )
OUT (R ∩ ℓ(T )) + n

r(T )
OUT (R ∩ r(T ))− 1}.

The following proposition relates the values of optp(R) and
nOUT (R ∩ T ) for the complete tree T describing the entire
space [0, 2W − 1].

Proposition 2. Let T be the complete binary tree of the range
[0, 2W −1] (i.e. c(T ) = (∗)W ). The prefix range expansion of a
range R is nOUT (R∩T )−1, i.e. optp(R) = nOUT (R∩T )−1.

Our third proposition is the following

Proposition 3. For any subtree T , nOUT (R ∩ T ) ≤ nIN (R ∩
T )+ 1 and nIN (R∩T ) ≤ nOUT (R∩T )+ 1. That is we have
|nIN (R ∩ T )− nOUT (R ∩ T )| ≤ 1.
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(a) Illustration of the algorithm (b) A Deterministic Finite Automaton (DFA) (c) The corresponding Markov Chain

Fig. 2. Illustration of the algorithm results for the extremal range R = [0, 22] from Example 3. The values (nIN (R ∩ Ti), nOUT (R ∩ Ti)) of each tree
Ti ∈ {T0, . . . , TW } are illustrated. The parameter nIN (R ∩ Ti) is the number of entries in the smallest encoding of R ∩ Ti with entries that start with x(T )
and with a last entry of the form c(Ti) → in. Likewise, nOUT (R ∩ Ti) is the size of the smallest encoding with entries that start with x(T ) and with a last
entry of the form c(Ti) → out. The smallest encoding of R has opt(R) = nOUT (R ∩ T5) − 1 = 4 − 1 = 3 entries. (b) presents a Deterministic Finite
Automaton (DFA), as discussed in Section IV-C. It has three states representing the three possible values of (nIN (R ∩ T )− nOUT (R ∩ T )) ∈ {−1, 0, 1} in
a subtree T . (c) shows the corresponding Markov Chain of the DFA with the same 3 states.

Based on Proposition 1, we describe a simplified version of a
dynamic-programming algorithm presented in [13] to compute
an optimal encoding of any extremal range. Our algorithm
is faster and simpler since we only consider the W + 1
subtrees Ti = y1 . . . yW−i(∗)i (for i ∈ [0,W ]). (We note
that the algorithm in [13] is more general and can deal with
several ranges that are not necessarily extremal and defined
on one or two dimensions.) In each step of the algorithm we
compute nIN (R∩T ) and nOUT (R∩T ) from nIN (R∩ ℓ(T )),
nIN (R∩r(T )), nOUT (R∩ ℓ(T )), and nOUT (R∩r(T )) where
either nIN (R∩ ℓ(T )) and nOUT (R∩ ℓ(T )) or nIN (R∩ r(T ))
and nOUT (R∩ r(T )) are obtained immediately as in Example
2.

We recall that by Theorem 1 the encoding which we compute
is optimal among all encoding schemes rather than just among
prefix schemes.

Algorithm 1. Consider an arbitrary extremal range R =
[0, y] = {(0)W , . . . , y1 . . . yW }. To optimally encode it, we first
compute IN(R∩T ), OUT (R∩T ), nIN (R∩T ), nOUT (R∩T )
for the W +1 different subtrees T0, T1, . . . , TW where c(Tj) =
y1 . . . yW−j(∗)j . Each subtree is rooted at a different level of
the complete binary tree of the range [0, 2W −1], T0 is a single
leaf and TW is the entire complete binary tree. By Proposition
2 an optimal encoding of R is given by the nOUT (R∩TW )−1
first entries of OUT (R ∩ TW ).

Since T0 ⊆ R = [0, y] = {(0)W , . . . , y1 . . . yW }, we have
that IN(R ∩ T0) = (c(T0) → in) and nIN (R ∩ T0) = 1.
Similarly, OUT (R ∩ T0) = (c(T0) → in, c(T0) → out) and
nOUT (R ∩ T0) = 2, as described in Example 2.

Now we assume that we have already computed IN(R ∩
Ti−1), nIN (R∩Ti−1), OUT (R∩Ti−1), and nOUT (R∩Ti−1)
and show how to compute IN(R∩Ti), nIN (R∩Ti), OUT (R∩
Ti), and nOUT (R ∩ Ti).

If yW−i+1 = 0 then ℓ(Ti) = Ti−1 and r(Ti) ⊆ Rc.
We can obtain OUT (R ∩ Ti) from OUT (R ∩ Ti−1) by

replacing its last entry c(Ti−1) → out with c(Ti) → out so
nOUT (Ti) = nOUT (Ti−1).1

To compute IN(R∩ Ti) and nIN (R∩ Ti) we first note that
since r(Ti) ⊆ Rc (as in Example 2) we have that IN(R ∩

1It is easy to see that OUT (R∩ Ti) is not shorter than OUT (R ∩ Ti−1).

r(Ti)) = (c(r(Ti)) → out, c(r(Ti)) → in), nIN (R∩r(Ti)) = 2
and OUT (R ∩ r(Ti)) = (c(RTi) → out) , nOUT (R ∩ r(Ti)) =
1. Thus from Proposition 1 follows that

nIN (R ∩ Ti)

= min{nIN (R ∩ ℓ(Ti)) + nIN (R ∩ r(Ti))− 1,

nOUT (R ∩ ℓ(Ti)) + nOUT (R ∩ r(Ti))} (2)
= min{nIN (R ∩ ℓ(Ti)) + 1, nOUT (R ∩ ℓ(Ti)) + 1}.

We now split into two subcases according to the values of
nIN (R∩ ℓ(Ti)) and nOUT (R∩ ℓ(Ti)). By Proposition 3, these
are the only subcases possible.

Subcase 1: If nIN (R ∩ ℓ(Ti)) + 1 = nOUT (R ∩ ℓ(Ti)) or
nIN (R ∩ ℓ(Ti)) = nOUT (R ∩ ℓ(Ti)) then by Equation (2) we
get that nIN (R ∩ Ti) = min{nIN (R ∩ ℓ(Ti)) + 1, nOUT (R ∩
ℓ(Ti)) + 1} = nIN (R ∩ ℓ(Ti)) + 1.

We can get IN(R ∩ Ti) by replacing the last entry
c(ℓ(Ti)) → in of IN(R ∩ ℓ(Ti)) by the two entries
(c(r(Ti)) → out, c(Ti) → in).

Subcase 2: If nIN (R ∩ ℓ(Ti)) = nOUT (R ∩ ℓ(Ti)) + 1 then
by Equation (2) we get that nIN (R ∩ Ti) = min{nIN (R ∩
ℓ(Ti)) + 1, nOUT (R ∩ ℓ(Ti)) + 1} = nOUT (R ∩ ℓ(Ti)) + 1 =
nIN (R ∩ ℓ(Ti)). To get IN(R ∩ Ti), we replace the last
entry c(ℓ(Ti)) → out of OUT (R ∩ ℓ(Ti)) by the two entries
(c(Ti) → out, c(Ti) → in).

If yW−i+1 = 1 then ℓ(Ti) ⊆ R and r(Ti) = Ti−1. The
analysis is symmetric to the case yW−i+1 = 0 and goes as
follows.

We can obtain IN(R∩Ti) from IN(R∩Ti−1) by replacing
its last entry c(Ti−1) → in by c(Ti) → in so nIN (R ∩ Ti) =
nIN (R ∩ Ti−1).

As in Example 2, IN(R ∩ ℓ(Ti)) = (c(ℓ(Ti)) → in),
nIN (R ∩ ℓ(Ti)) = 1, OUT (R ∩ ℓ(Ti)) =
(c(ℓ(Ti)) → in, c(ℓ(Ti)) → out), and nOUT (R ∩ ℓ(Ti)) = 2.
Thus from Proposition 1 follows that

nOUT (R ∩ Ti)

= min{nIN (R ∩ ℓ(Ti)) + nIN (R ∩ r(Ti)), (3)
nOUT (R ∩ ℓ(Ti)) + nOUT (R ∩ r(Ti))− 1}

= min{nIN (R ∩ r(Ti)) + 1, nOUT (R ∩ r(Ti)) + 1}.
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We compute OUT (Ti) and nOUT (Ti) based on the values
nIN (RTi), and nOUT (RTi) by the appropriate of the following
subcases.

Subcase 1: If nIN (R ∩ r(Ti)) = nOUT (R ∩ r(Ti)) + 1 or
nIN (R ∩ r(Ti)) = nOUT (R ∩ r(Ti)) then by Equation (3)
nOUT (R∩Ti) = min{nIN (R∩r(Ti))+1, nOUT (R∩r(Ti))+
1} = nOUT (R ∩ r(Ti)) + 1. We can get OUT (R ∩ Ti), we
replace the last entry c(r(Ti)) → out of OUT (R ∩ r(Ti)) by
the two entries (c(ℓ(Ti)) → in, c(Ti) → out).

Subcase 2: If nIN (R ∩ r(Ti)) + 1 = nOUT (R ∩ r(Ti))
then by Equation (3) nOUT (R ∩ Ti) = min{nIN (R ∩
r(Ti)) + 1, nOUT (R ∩ r(Ti)) + 1} = nIN (R ∩ r(Ti)) + 1 =
nOUT (R ∩ r(Ti)). To get OUT (R ∩ Ti), we replace the last
entry c(r(Ti)) → in of IN(R ∩ r(Ti)) by the two entries
(c(Ti) → in, c(Ti) → out).

Example 3. Fig. 2(a) illustrates the results of the algorithm
for the range R = [0, 22] = {(0)W , . . . , y1 . . . yW } for W = 5
and y1 . . . yW = 10110. First, for T0 = {y1 . . . yW }, we clearly
have nIN (R ∩ T0) = 1 and nOUT (R ∩ T0) = 2. Similarly, for
i ∈ [1,W ], the values nIN (R ∩ Ti) and nOUT (R ∩ Ti) of the
subtree Ti where c(Ti) = y1 . . . yW−i(∗)i are also presented.
By Proposition 2, opt(R) = optp(R) = nOUT (R∩ TW )− 1 =
4− 1 = 3 and R can be encoded as (10111 → out, 11*** →
out, ***** → in).

C. The Range Expansion of a Given Extremal Range
We derive from our algorithm a simple deterministic finite

automata (DFA) that computes the optimal range expansion of
a given extremal range R = [0, y] = {(0)W , . . . , y1 . . . yW }.
This automata will be useful for analyzing the expected range
expansion over all extremal ranges.

The DFA, shown in Fig. 2(b), consists of three states
Q = {A,B,C}. These three states represent the three possible
values of nIN (R ∩ T ) − nOUT (R ∩ T ) ∈ {−1, 0, 1} for
a subtree T , in a way that we make precise in Proposition
4. The state A = (a, a + 1) represents a subtree T with
nIN (R ∩ T ) + 1 = nOUT (R ∩ T ), the state B = (b, b)
represents a subtree T with nIN (R ∩ T ) = nOUT (R ∩ T ),
and the state C = (c + 1, c) represents a subtree T with
nIN (R ∩ T ) = nOUT (R ∩ T ) + 1.

The input to the DFA is the binary string y1 . . . yW in a right
to left order. The starting state is A and the transition function
δ : Q×Σ → Q is defined such that δ(A, 0) = B, δ(A, 1) = A,
δ(B, 0) = C, δ(B, 1) = A, δ(C, 0) = C, and δ(C, 1) = B.
(Since we are not interested in the language this DFA accepts
we do not define accepting states.)

We want to show how to derive the expansion of R =
{(0)W , . . . , y1 . . . yW } from the computation of this DFA on
yW . . . y1. To do so, we define the state qi ∈ Q, for i ∈ [0,W ],
to be the state of the DFA after reading the first i input bits
yW , . . . , yW−i+1 and use the following proposition.

Proposition 4. Let Ti be the subtree corresponding to the
set y1 . . . yW−i(∗)i. The state qi corresponds to the values
of nIN (R ∩ Ti) and nOUT (R ∩ Ti) as follows. If qi =
A = (a, a + 1) then nIN (R ∩ Ti) + 1 = nOUT (R ∩ Ti). If
qi = B = (b, b) then nIN (R ∩ Ti) = nOUT (R ∩ Ti) and if
qi = C = (c+ 1, c) then nIN (R ∩ Ti) = nOUT (R ∩ Ti) + 1.

Proof. The proof is by induction on i. For i = 0, q0 =
A = (a, a + 1) and indeed (nIN (T0), nOUT (T0)) = (1, 2)
as explained in Example 2.

The induction step follows from the previous description
of the recursive formulas for nIN (Ti), and nOUT (Ti). For
example, assume that qi = A = (a, a + 1) that is by
induction we have that nIN (Ti) + 1 = nOUT (Ti). If the
(i + 1)th symbol, yW−i, processed by the DFA, is 0 then
nIN (Ti+1) = nIN (Ti) + 1 = nOUT (Ti) = nOUT (Ti+1)
and indeed we have δ(A, 0) = B = (b, b) so qi+1 = B as
required. If yW−i = 1, then nIN (Ti+1) + 1 = nIN (Ti) + 1 =
nOUT (Ti) = nOUT (Ti+1) and since δ(A, 1) = A we have
that qi+1 = A = (a, a + 1) as required. Similarly, we can
show the correctness of the induction step for the four other
transitions.

The next theorem explains how we can obtain the expansion
of the range R = [0, y] = {(0)W , . . . , y1 . . . yW } from the
transitions of the DFA while processing yW , . . . , y1.

Theorem 2. Let ny be the number of transitions of the
form δ(B, 1) = A or δ(C, 1) = B that the DFA makes
while processing yW , . . . , y1. Then, the range expansion of the
extremal range R = [0, y] = {(0)W , . . . , y1 . . . yW } satisfies
opt(R) = ny + 1.

Proof. For i ∈ [0,W ], let Ti be the subtree corresponding to
y1 . . . yW−i(∗)i as before. Furthermore, let ni be the number
of transitions of the form δ(B, 1) = A or δ(C, 1) = B that the
DFA makes while processing yW . . . yW−i+1. We show below
by induction on i that nOUT (Ti) = ni+2, for i ∈ [0,W ]. Then
from Proposition 2 we get that optp(R) = nOUT (TW ) − 1 =
nW + 2 − 1 = nW + 1 = ny + 1. Finally, by Theorem 1,
opt(R) = optp(R) = ny + 1 and the theorem follows.

Now the induction showing that nOUT (Ti) = ni + 2 goes
as follows. First, nOUT (T0) = 2 as discussed before and n0 =
0 since the DFA has not yet processed any symbol. For the
induction step, we observe that by the definition of ni, ni+1 =
ni + 1 if the (i + 1)th transition is of the form δ(B, 1) =
A or δ(C, 1) = B and ni+1 = ni otherwise. By the proof
of Proposition 4, nOUT (Ti+1) = nOUT (Ti) + 1 only if qi =
B, and yW−i = 1 or qi = C, and yW−i = 1. Thus since
nOUT (Ti) = ni + 2 by the induction hypothesis, we get that
nOUT (Ti+1) = ni+1 + 2.

D. Average Range Expansion For Extremal Ranges

We now use the DFA of Section IV-C to derive a closed-form
formula for the average expansion of an extremal range [0, y]
where y is drawn uniformly at random from [0, 2W − 1].2 This
average is defined formally as follows

G(W ) = Ey: 0≤y≤2W−1

(
opt([0, y])

)
=

1

2W
·

∑
y: 0≤y≤2W−1

opt([0, y]). (4)

2In real-life classifiers when there are ranges that appear more often than
others this theoretical analysis is not applicable.
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Theorem 3. The average extremal range expansion function
G(W ) satisfies

G(W ) =
4

9
+

W

3
+

4

9
·
(1
2

)W

if W is odd, and

G(W ) =
4

9
+

W

3
+

5

9
·
(1
2

)W

if W is even. (5)

Proof. To calculate G(W ), we derive a Markov chain from the
DFA of Section IV-C. This Markov chain is shown in Fig. 2(c).
It has the same states as the DFA with the same interpretation.
At each state it flips a coin and takes the transition that
corresponds to an input of 1 with probability 1/2, and the
transition that corresponds to an input of 0 with probability 1/2.
This simulates the DFA on an extremal range drawn uniformly
at random.

The transition probabilities are represented in a 3 × 3 tran-
sition matrix P . The first row and column correspond to state
A, the second to state B, and the third to state C. The (i, j)th

element of P describes the transition probability from the state
corresponding to row i to the state corresponding to column j.

P =

0.5 0.5 0
0.5 0 0.5
0 0.5 0.5

 . (6)

Let ri = (Pr(qi = A),Pr(qi = B),Pr(qi = C)). Then
clearly r0 = (1, 0, 0) and by the properties of Markov chains
ri = r0 · P i.

By Theorem 2, G(W ) can be calculated based on the average
number of transitions of the form δ(B, 1) = A or δ(C, 1) = B
that the DFA performs on y ∈ [0, 2W − 1].

Let ny be a random variable that equals to the number of
these specific transitions while processing y. We present ny as
the sum of W indicator random variables {Iy,i | i ∈ [1,W ]},
such that the function Iy,i indicates whether the ith transition
is one of the two specific transitions. Then we can compute
G(W ), as follows.

G(W ) = Ey: 0≤y≤2W−1

(
opt([0, y])

)
(7)

= Ey: 0≤y≤2W−1

(
ny + 1

)
= 1 + Ey: 0≤y≤2W−1

(
ny

)
= 1 +

W∑
i=1

Ey: 0≤y≤2W−1

(
Iy,i

)
= 1 +

W∑
i=1

(
Pr(qi−1 = B, yW−i+1 = 1)

+ Pr(qi−1 = C, yW−i+1 = 1)
)

= 1 +
1

2
·
W−1∑
i=0

(
Pr(qi = B) + Pr(qi = C)

)
= 1 +

1

2
·
W−1∑
i=0

(
1− Pr(qi = A)

)
= 1 +

1

2
·
W−1∑
i=0

(
1− ri(1)

)
= 1 +

1

2
·
W−1∑
i=0

(
1−

(
(1, 0, 0) · P i

)
(1)

)
= 1 +

1

2
·
W−1∑
i=0

(
1− (P i)(1,1)

)
.

The matrix P satisfies (P 2i−1)(1,1) = (P 2i)(1,1) =
1
3 + 2

3 ·
( 12 )

2i. Thus the function G(W ) satisfies G(W ) = G(W −2)+
1
2

(
(1 − (PW−2)(1,1)) + (1 − (PW−1)(1,1))

)
= G(W − 2) +

1− (PW−1)(1,1) = G(W − 2)+ 2
3 −

4
3 · (

1
2 )

W if W is odd and
G(W ) = 1

2 (G(W − 1)+G(W +1)) if W is even. By solving
these recurrence relations we get the formula that appear in the
theorem.

To our knowledge, this is the first formula in the literature
for the average encoding size of a non-trivial range set.

By [12], the worst case expansion for an extremal range is
re(W ) = rep(W ) =

⌈
W+1

2

⌉
. Thus clearly G(W ) ≤

⌈
W+1

2

⌉
.

Theorem 3 and its corollary below show that the average
encoding length is only about 2/3 of the worst case.

Corollary 4. The average extremal range expansion function
G(W ) satisfies

lim
W→∞

G(W )

W
=

1

3
. (8)

V. ANALYTICAL TOOLS FOR RANGE EXPANSION LOWER
BOUNDS

To prove lower bounds on the TCAM worst-case expansion,
we first define the hull of a set of (binary) strings in the same
way as in our previous work [12].

Definition 5 (Hull). The hull of n strings {a1, . . . , an}, where
ai = ai1 . . . a

i
W , is the smallest cuboid containing a1, . . . , an.

We denote it by H(a1, . . . , an). Formally,

H(a1, . . . , an) = {x = x1 . . . xW ∈ {0, 1}W |
∀j ∈ [1,W ], xj ∈ {a1j , . . . , anj }}. (9)

The hull H(a1, . . . , an) corresponds to the TCAM entry
s(H) = s1 . . . sn where sj = a1j if a1j = a2j = . . . = anj ,
and sj = ∗ otherwise. The entry s(H) is the entry with the
minimal number of *s that all the strings a1, . . . , an match.
Each string in the hull is matched by this TCAM entry and vice
versa. This is captured precisely in the following proposition,
also from [12].

Proposition 5. Let a1, . . . , an be n strings. Then a1, . . . , an

match the same TCAM entry s if and only if all the strings in
the hull H(a1, . . . , an) match this TCAM entry.

We now want to introduce a novel general analytical tool that
can help us analyze the minimum number of TCAM entries
needed to encode a range. Intuitively, a conflicting set of pairs
of size n is composed of n pairs of points. Each pair consists of
one point in the range and one outside the range. We show that
the pairs are pairwise conflicting such that we cannot encode
together two points within the range or alternatively two points
outside the range from two different pairs. We then deduce that
these n pairs cannot be encoded with less than n TCAM entries.
This analytical tool is first presented here and is stronger than
previous tools designed for a similar purpose. It will enable
us to obtain the improved lower bounds on the worst-case
expansion presented later in Section VI. Recall that we work
over the set of strings of length W , and the width of a TCAM
entry is W .
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(a) (b)

Fig. 3. Two encoding schemes of the range R = [5, 22] =
{00101, . . . , 10110} from Example 4. Fig. 3(a) presents the encoding of R
itself as a union of several prefix ranges. The six plus signs represent the six
TCAM entries in this encoding. Fig. 3(b) demonstrates the alternative encoding
of R in which we first negatively encode (with out entries) the complement of
R and then add an additional in entry that matches R itself. Again, the five
signs represent the five entries of this encoding. For any W -bit range R, one
of these two encodings has at most W entries.

Definition 6 (Conflicting Set of Pairs). A conflicting set of
pairs Bn of size n with respect to a range R is defined as a
set of n pairs of strings

Bn = {(ai, bi) | i ∈ [1, n],∀i ∈ [1, n], ai, bi ∈ {0, 1}W }

that satisfies the following two conditions:
(i) Alternation: For i ∈ [1, n],

ai ∈ R and bi ̸∈ R. (10)

(ii) Hull: For any i1, i2 such that 1 ≤ i1 < i2 ≤ n,

H(ai1 , ai2) ∩ {bi1 , bi2} ≠ ∅, and

H(bi1 , bi2) ∩ {ai1 , ai2} ≠ ∅. (11)

Since the alternation property holds for any pair and the hull
property holds for any two pairs, we can easily observe the
following.

Corollary 5. Let n be a positive integer, and Bn+1 =
{(a1, b1), . . . , (an+1, bn+1)} be a conflicting set of pairs of size
n + 1. Then for any 1 ≤ i ≤ n + 1, Bn+1 \ {(ai, bi)} is a
conflicting set of pairs of size n.

The next lemma gives a lower bound on the range expansion
of a range with a conflicting set of pairs. Its proof can be found
in [34].

Lemma 1. A range with a conflicting set of pairs of size n
cannot be encoded in less than n TCAM entries.

VI. BOUNDS ON WORST-CASE EXPANSION

In this section we study the exact worst-case expansions of
one-dimensional and two-dimensional ranges. We present upper
bounds on these expansions and then prove their tightness.

A. General 1-D Ranges

We start with finding the exact value of the worst-case
expansion of one-dimensional ranges. To do so we rely on an
upper bound from [12]. We then suggest a simple encoding that
achieves this known bound. Finally, we show the tightness of
this bound based on the new analytical tool from Section V.

It is known [12] that the maximum range expansion r(W )
satisfies r(W ) ≤ rp(W ) = W . In this section we describe

a very simple algorithm that encodes a W -bit range with at
most W rules. (This algorithm has the same maximum range
expansion as a previously-known encoding scheme [12] but it is
much simpler.) This algorithm either uses in entries that encode
the range, or out entries that encodes the complement of the
range and an additional in entry that matches everything else.
We compare the number of TCAM entries needed for each of
the two alternatives, and simply pick the alternative with the
least TCAM entries.

We consider a W -bit range R = [y, z] =
{y1 . . . yW , . . . , z1 . . . zW }. If y = z then R is an exact
match and can be encoded in one entry of the form y → in.
Otherwise, let j ∈ [1,W ] be the first bit index in which
y1 . . . yW and z1 . . . zW differ, that is y1 . . . yj−1 = z1 . . . zj−1,
yj = 0 and zj = 1.

Let n0(y) and n1(y) be the number of 0s and the number of
1s in yj+1 . . . yW , respectively. Similarly, let n0(z) and n1(z)
be the number of 0s and the number of 1s in zj+1 . . . zW ,
respectively. We can present R as a union of at most n0(y) +
n1(z) + 2 prefix ranges by observing that

R =
(∪

i∈[j+1,W ],yi=0{y1 . . . yi−11(∗)W−i}
)∪(∪

i∈[j+1,W ],zi=1{z1 . . . zi−10(∗)W−i}
)∪

{y, z}. (12)

A sequence of in TCAM entries each corresponding to a prefix
in Equation (12) encodes R in n0(y)+n1(z)+2 prefix entries.
Similarly, we can represent R′ = {y1 . . . yj−1(∗)W−j+1} ∩Rc

as a union of n1(y) + n0(z) prefix ranges

R′ =
(∪

i∈[j+1,W ],yi=1{y1 . . . yi−10(∗)W−i}
)∪(∪

i∈[j+1,W ],zi=0{z1 . . . zi−11(∗)W−i}
)
. (13)

It follows that we can also encode R by a sequence of out
entries each corresponding to a prefix in Equation (13) and the
entry {y1 . . . yj−1(∗)W−j+1} → in. This encoding is of size
n1(y) + n0(z) + 1. We define n⊕(R) = n0(y) + n1(z) + 2 to
be the number of entries in the first encoding and n⊖(R) =
n1(y) + n0(z) + 1 to be the number of entries in the second
encoding.

By definition, n0(y)+n1(y) = W −j ≤ W −1 and n0(z)+
n1(z) ≤ W − 1, so n⊕(R) + n⊖(R) = (n0(y) + n1(z) + 2) +
(n1(y)+n0(z)+1) ≤ 2(W −1)+3 = 2W +1. It follows that
min{n⊕(R), n⊖(R)} ≤ W : the smaller of the two encodings
includes at most W entries. We encode R by this encoding.

Example 4. Let W = 5, and consider the range R = [y, z] =
[5, 22] = {00101, . . . , 10110}. As illustrated in Fig. 3(a), we
can encode R as a union of n⊕(R) = n0(y) + n1(z) + 2 =
2 + 2 + 2 = 6 (here j = 1) prefix TCAM entries (01(∗)3 →
in, 0011∗ → in, 100(∗)2 → in, 1010∗ → in, 00101 →
in, 10110 → in). We can also encode R, as presented in
Fig. 3(b), by first encoding Rc by out entries followed by a last
in entry that matches everything: (000(∗)2 → out, 00100 →
out, 11(∗)3 → out, 10111 → out, (∗)5 → in). This encoding
consists of n⊖(R) = n1(y) + n0(z) + 1 = 2 + 2 + 1 = 5
entries. Here we have that n⊖(R) = 5 ≤ W .

The next theorem shows that the upper-bound r(W ) ≤ W
on the maximum range expansion is actually tight. In [12] it
is proved that the bound is tight for prefix encoding schemes,
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(that is rp(W ) = W ). Here we show that it is tight among all
TCAM encoding schemes (that is r(W ) = W ).

Theorem 6. For all W ≥ 1, the maximum range expansion
satisfies

r(W ) = rp(W ) = W. (14)

Proof. We show that for all W ≥ 1, the maximum range
expansion satisfies r(W ) ≥ W . Since r(W ) ≤ rp(W ) ≤ W
(by [12] and the construction above) it then follows that
r(W ) = rp(W ) = W.

We first assume that W is even, and consider the range
R =

[
1
3

(
2W − 1

)
, 2W−1 − 1

]∪ [
2W−1, 2

3

(
2W − 1

)]
=[

1
3

(
2W − 1

)
, 2
3

(
2W − 1

)]
= {(01)W

2 , . . . , (10)
W
2 }. We show

a conflicting set of pairs of size W for R. Then, by Lemma 1,
we conclude that R cannot be encoded by less than W TCAM
entries.

The construction is as follows. We start by defining 2W
elements c1, c2, . . . , c2W from which we will assemble the W
pairs of the conflicting set of pairs . We define c1 = (01)

W
2 , and

for i = 1, . . . ,W we obtain ci+1 by flipping the (W−(i−1))th

bit of ci. That is we get c2 = (01)
W
2 −100 by flipping the

least significant bit of c1. Then we get c3 = (01)
W
2 −110 by

flipping the (W − 1)th bit of c2 and likewise until we obtain
cW = 00(10)

W
2 −1 and cW+1 = (10)

W
2 . We then continue to

obtain cW+2, . . . , c2W in a similar way, such that ci+1 is given
by flipping the (2W−(i−1))th bit of ci, for i ∈ [W+1, 2W−1].

We can see that R =
[
1
3

(
2W − 1

)
, 2
3

(
2W − 1

)]
=

{(01)W
2 , . . . , (10)

W
2 } = [c1, cW+1]. We recall that when com-

paring two W -bit binary strings ci and cj by the lexicographic
order, ci < cj iff there exists a bit k such that the first k − 1
bits of ci and cj are equal, the kth bit of ci is 0, and the kth

bit of cj is 1. We now observe that c1, c2, . . . , c2W satisfy the
following properties.

(i) For i ∈ [1,W ], the most significant bit of ci is 0 and
ci ∈ [0, 2W−1 − 1]. Likewise, for i ∈ [W + 1, 2W ], the most
significant bit of ci is 1 and ci ∈ [2W−1, 2W − 1].

(ii) For i ∈ [1,W + 1], the W − (i − 1) most significant
bits of ci are as of c1 = (01)

W
2 and the i− 1 least significant

bits of ci are as of cW+1 = (10)
W
2 . For i ∈ [W + 1, 2W ], the

2W − (i−1) most significant bits of ci are as of cW+1 and the
i− (W + 1) least significant bits of ci are as of c1 = (01)

W
2 .

(iii) For i ∈ [2,W ], the most significant bit in which ci and
c1 differ is the (W − (i − 2))th bit. Since c1W−(i−2) = 0 if i

is odd and c1W−(i−2) = 1 if i is even, we have that ci ≥ c1,
ci ∈ R if i is odd, and ci < c1, ci /∈ R if i is even. For the
same reason, by comparing ci and cW+1, we also have that for
i ∈ [W + 1, 2W ], ci ∈ R if i is odd, and ci /∈ R if i is even.

We now define for i ∈ [1,W ], ai = c2i−1 and bi = c2i. To
show that BW = {(a1, b1), . . . , (aW , bW )} is a conflicting set
of pairs of size W , we have to show it satisfies the alteration
property and the hull property. The alternation property follows
directly from (iii).

To show that BW satisfies the hull property consider two
elements ai1 , ai2 for 1 ≤ i1 < i2 ≤ W . If i1, i2 ∈ [1, W

2 ] or
i1, i2 ∈ [W2 +1,W ], then bi1 ∈ H(ai1 , ai2) since it shares W−1
of its W bits with ai1 and the remaining bit with ai2 . If i1 ∈
[1, W

2 ] and i2 ∈ [W2 +1,W ], let i = i1 and j = i2−W
2 . We then

(a) (b)

Fig. 4. Two-dimensional range R2 = Rx×Ry . Fig. 4(a) presents the encoding
of the two-dimensional range R2 by negatively (with out entries) encoding the
complement of Rx and then positively (with in entries) encoding Ry . Fig. 4(b)
demonstrates the alternative encoding of R2 by first negatively encoding the
complement of Ry and then positively encoding Rx.

have ai1 = ai = (01)
W
2 −(i−1)(10)(i−1) and ai2 = aj+

W
2 =

(10)
W
2 −(j−1)(01)(j−1). We distinguish two possible subcases.

If i ≥ j, ai1 , ai2 differ in their W − 2(i− 1) most significant
bits. Since ai1 and bi1 differ only in their (W − 2(i− 1)) most
significant bit, we have that bi1 ∈ H(ai1 , ai2). For the same
reason, if i < j then bi2 ∈ H(ai1 , ai2).

We now consider two elements bi1 , bi2 such that 1 ≤ i1 <
i2 ≤ W . If i1, i2 ∈ [1, W

2 ] or i1, i2 ∈ [W2 + 1,W ], then ai2 ∈
H(bi1 , bi2) since ai2 , bi2 differ in a single bit on which ai2 and
bi1 agree. If i1 ∈ [1, W

2 ] and i2 ∈ [W2 +1,W ], we define i and
j as above. Here bi1 = bi = (01)

W
2 −i00(10)(i−1) and bi2 =

bj+
W
2 = (10)

W
2 −j11(01)(j−1). If i ≥ j, bi1 , bi2 differ (at least)

in their last 2j − 1 bits with indices {W − (2j − 2), . . . ,W}.
Since ai2 , bi2 differ only in their (W − (2j−2))th bit, we have
that ai2 ∈ H(bi1 , bi2). From the same reason, if i < j then
ai1 ∈ H(bi1 , bi2).

It follows that BW is a conflicting set of pairs of size W
so by Lemma 1, R cannot be encoded in less than W TCAM
entries.

If W is odd, the proof is analogous using the
range R =

[
1
3

(
2W−1 − 1

)
, 4
3

(
2W−1 − 1

)]
=

{0(01)W−1
2 , . . . , (10)

W−1
2 0}.

B. General 2-D Ranges

We now find the exact maximum expansion of two-
dimensional ranges. We show upper bounds on this expansion
and then prove the tightness of the bounds by exposing a hard-
to-encode two-dimensional range.

A two-dimensional range R2 is defined as the product of two
one-dimensional ranges Rx × Ry , and the encoding of such a
range should positively encode exactly the pairs of strings (a, b)
such that a ∈ Rx and b ∈ Ry .

We generalize the definition of r(W ) to multi-dimensional
ranges, and define rd(W ) as the maximum expansion of a d-
dimensional range in [0, 2W −1]d. Likewise, define re,d(W ) as
the maximum expansion of a d-dimensional extremal range, i.e.
the maximum expansion of a range whose projection on each
dimension is an extremal range. Finally, let rdp(W ) (respectively
re,dp (W )) be the maximum expansion of a (an extremal) d-
dimensional range when we use only prefix encodings.

We begin with presenting an upper bound on the maximum
expansion.
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Lemma 2. The worst-case expansion r2(W ) of a two-
dimensional classification rule R2 satisfies

r2(W ) ≤ 2W. (15)

Proof. The proof is based on the two possible encodings
of a one-dimensional range presented at the beginning of
Section VI. We also use similar notations. We consider a two-
dimensional range R2 = Rx × Ry and present two possible
encodings of R2 such that one of them has the required
expansion.

First, as illustrated in Fig. 4(a), we encode R2 starting with
a sequence of out entries consisting of the cartesian product of
an encoding of the complement of Rx and {(∗)W } (the second
field in all entries is (∗)W ). This sequence consists of n⊖(Rx)−
1 entries (here an additional entry that positively encodes Rx

itself is not required). The encoding of R2 continues with a
sequence of in entries which are the product of an encoding of
Ry itself with {(∗)W }. The length of this sequence is n⊕(Ry).
This encodes R2 in n⊖(Rx)− 1 + n⊕(Ry) entries.

We obtain the second encoding similarly, as demonstrated
in Fig. 4(b). We start with a sequence of out entries whose
projection on the y axis encode the complement of Ry followed
by a sequence of in entries whose projections on the x-axis
encode Rx. The length of this encoding is n⊖(Ry) − 1 +
n⊕(Rx). As explained earlier in this section, n⊕(Rx)+n⊖(Rx)
and n⊕(Ry) + n⊖(Ry) are at most 2W + 1. It follows
that n⊖(Rx) − 1 + n⊕(Ry) + n⊖(Ry) − 1 + n⊕(Rx) =
n⊕(Rx) + n⊖(Rx) + n⊕(Ry) + n⊖(Ry) − 2 ≤ 4W . Thus
min{n⊖(Rx)−1+n⊕(Ry), n⊖(Ry)−1+n⊕(Rx)} ≤ 2W so
the smaller of the two encodings has the desired expansion.

We now show that our suggested encoding scheme for two-
dimensional ranges has the optimal worst-case range expansion.
To do so, we present a particular two-dimensional range,
denoted by R2, and show that we can build a conflicting set
of pairs of size 2W for R2. Then, from Lemma 1, we deduce
that R2 cannot be encoded in less than 2W TCAM entries.

Lemma 3. The worst-case expansion of a two-dimensional
classification rule R2 satisfies,

r2(W ) ≥ 2W. (16)

Proof Outline. The full proof is relatively straightforward
but long, and appears in [34]. We first generalize Defini-
tion 5 for pairs of strings and provide the proof for even
values of W . We consider the range R2 = R × R =[
1
3

(
2W − 1

)
, 2
3

(
2W − 1

)]
×
[
1
3

(
2W − 1

)
, 2
3

(
2W − 1

)]
. The

projection of R2 on each dimension is the hard-to-encode
range R =

[
1
3

(
2W − 1

)
, 2
3

(
2W − 1

)]
from which we can

build a conflicting set of pairs of size W , as described
for the one-dimensional case. We also reuse the definitions
of a1, b1, . . . , aW , bW defined there. We construct 4W pairs
of strings as follows. For i ∈ [1, W

2 ], ui = (ai, a1) and
vi = (bi, a1). For i ∈ [W2 + 1,W ], ui = (a1, ai) and
vi = (a1, bi). Next, for i ∈ [W +1, 3W

2 ], ui = (ai−
W
2 , a

W
2 +1)

and vi = (bi−
W
2 , a

W
2 +1). Finally, for i ∈ [ 3W2 + 1, 2W ],

ui = (a
W
2 +1, ai−

3W
2 ) and vi = (a

W
2 +1, bi−

3W
2 ). Then, to

obtain the result we show that {(u1, v1), . . . , (u2W , v2W )} is a
conflicting set of pairs with 2W pairs of pairs of strings.

The following theorem summarizes the result that follows
from Lemma 2 and Lemma 3.

Theorem 7. The worst-case expansion of a two-dimensional
classification rule satisfies,

r2(W ) = r2p(W ) = 2W. (17)

Proof. Clearly, r2(W ) ≤ r2p(W ). Since the encoding presented
in the proof of Lemma 2 includes only prefix entries we have
also that r2p(W ) ≤ 2W . Finally, by Lemma 3 we have the
result.

C. Extremal 2-D Ranges

By Theorem 6 and the mentioned result of [12] regarding
the exact value of the worst-case expansion of one-dimensional
extremal ranges, the worst-case expansion is improved when
only extremal ranges are considered. The next theorem shows
that a similar improvement exists also for two-dimensional
ranges.

Theorem 8. The worst-case expansion of a two-dimensional
extremal classification rule satisfies

2 ·
⌈
W + 1

2

⌉
− 1 ≤ re,2(W ) ≤ re,2p (W ) ≤ W + 1. (18)

More specifically, if W is even, re,2(W ) = re,2p (W ) = W + 1
and if W is odd W ≤ re,2(W ) ≤ re,2p (W ) ≤ W + 1.

Proof Outline. See [34] for the full proof. We consider the
same two possible encodings suggested earlier for general
two-dimensional ranges. We prove that for two-dimensional
extremal ranges the smaller of the two achieves the improved
upper bound. Later, we present a range with a conflicting set
of pairs of the required size to get the lower bound.

VII. EXPERIMENTAL RESULTS

A. One-Dimensional Extremal Ranges

We performed simulations to verify the results of the average
range expansion for extremal ranges presented in Section IV-D.
Fig. 5(a) presents the function G(W ) for W ∈ [1, 32]. For
each value of W , we averaged all 2W extremal ranges of the
form [0, y]. We can see that the simulated average expansion
exactly matches the theory from Theorem 3. For instance,
G(W = 3) = 1.5 since the ranges [0, 0], [0, 1], [0, 3], [0, 7] can
be encoded in one TCAM entry while the encodings of the
ranges [0, 2], [0, 4], [0, 5], [0, 6] requires 2 entries.

Fig. 5(b) presents the function G(W )
W for W ∈ [1, 32]. We can

see that indeed limW→∞
G(W )
W = 1

3 as stated in Corollary 4.
For instance, for W = 16, G(W )/W ≈ 0.3611 and for W =
32, G(W )/W ≈ 0.3472.

Last, Fig. 5(c) presents the distribution of the extremal range
expansion for W = 32. The minimal expansion is of course
1 and the maximal expansion is

⌈
W+1

2

⌉
= 17, both with

negligible probability.
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(a) The average extremal range expansion G(W )
presented in Theorem 3.

(b) The normalized average extremal range ex-
pansion G(W )/W . We can see that indeed
limW→∞

G(W )
W

= 1
3

as stated in Corollary 4.

(c) Extremal range expansion distribution for
W = 32. The minimal expansion is 1 and the
maximal expansion is

⌈
W+1

2

⌉
= 17.

Fig. 5. Simulations of extremal range expansion

TABLE II
RANGE EXPANSION FOR TWO-DIMENSIONAL RANGES IN [0, 2W − 1] ×

[0, 2W − 1].

Encoding Worst-Case Average Expansion
Scheme Expansion W = 4 W = 5 W = 6 W = 7 W = 8

Binary Prefix (2W − 2)2 6.14 10.72 17.26 25.86 36.56
SRGE (2W − 4)2 4.03 6.96 11.51 17.95 26.42

External Encoding 4W − 3 5.24 7.06 9.00 10.98 12.98
Suggested Scheme 2W 1.84 2.45 3.18 3.99 4.85

B. Two-Dimensional Ranges

We would like to examine the average expansion of two-
dimensional ranges in [0, 2W − 1] × [0, 2W − 1]. We consider
the encoding scheme for two-dimensional ranges described in
Section VI (with an improved worst-case expansion of 2W ) in
comparison with other well-known encoding schemes such as
the Binary Prefix encoding [11], the SRGE encoding [9] and
the external encoding for two-dimensional ranges from [12].

Table II summarizes the results. The improvement in the
average expansion is more significant for larger values of W .
For instance, for W = 8 the average expansion of the suggested
scheme is 4.85 in comparison with 36.56, 26.42 and 12.98 in
the first three schemes, an improvement of 86.7%, 81.6% and
62.6%, respectively.

C. Real-Life Database Statistics

We examine the frequency of generalized extremal rules in a
real-life database of 120 separate rule files with 214, 941 rules
originating from various applications (such as firewalls, and
ACL in routers). The same database was also used in [1], [9],
[10]. The rules in this database are defined on the typical 5
fields and follow the description in the introduction. Ranges
can appear only in the source port or in the destination port
while the requirement for the other fields is either a prefix or
an exact match that can be encoded without any expansion.
The source port and the destination port are W -bit fields (with
W = 16). We find that out of the 214,941 rules, 97.2%
(208,850) are generalized extremal rules, i.e. all their fields
contain generalized extremal ranges. Even when excluding
the exact-match rules, 89.4% of the remaining rules are still
generalized extremal rules (51,065 rules out of 57,146).

(a)

(b)

Fig. 6. Effectiveness of our encoding scheme and the suggested In/Out TCAM
architecture (illustrated in Fig. 1) on twelve artificial classifiers generated by
ClassBench benchmark tool and on a real-life database. For each classifier,
the two left bars present the expansion of Binary Prefix encoding and of
SRGE encoding, while the third bar illustrates the expansion of our suggested
solution. In (a), we compare the total expansion of the two-dimensional ranges
of the classifiers. In (b), we examine the expansion using the In/Out TCAM
architecture when the two-dimensional ranges are encoded in the modified
TCAM, i.e. the white bars correspond to (a).

D. Effectiveness on Real-life Packet Classifiers

We now consider twelve artificial classifiers generated by
the ClassBench benchmark tool [35] in addition to the union
of the 120 real-life rule files from Section VII-C. These twelve
artificial files are of three families: access control lists (files
acl1-acl5), firewalls (files fw1-fw5) and IP chains (files ipc1-
ipc2). To produce them, we use the original twelve parameter
files of the tool, as in [9]. The number of rules in each file was
in the range [40362, 50000]. Also in these files, ranges appear
only in the two port fields.

Fig. 6(a) presents the results. We compared the expansion
of our encoding scheme for two-dimensional ranges (with the
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upper bound of 2W ) versus Binary Prefix encoding [11] and
SRGE encoding [9]. For the classifier fw4, for instance, the
total expansion using our scheme is 33,774 entries in com-
parison with 154,813 and 153,691 entries using Binary Prefix
encoding and SRGE encoding, respectively. An improvement
of 78.2% and 78.0%, respectively. Furthermore, the results for
the different files in each of the three families were similar. This
can be explained by the fact that files of the same family have
a similar (although non identical) distribution of complicated
ranges that have large expansions. Likewise, for the real-life
files, the improvement is 73.4% in comparison with Binary
Prefix.

Fig. 6(b) compares the total expansion of all rules in these
classifiers in the regular TCAM architecture using Binary Prefix
encoding and SRGE encoding (illustrated in the two left bars
in each group of three) and in our In/Out TCAM architecture
from Fig. 1 (in the right bar). In this simulation, we choose to
encode all the two-dimensional ranges in the modified TCAM
of the new architecture using in and out entries in order to
improve their average expansion. Therefore, the expansion of
exact-match rules and one-dimensional rules (encoded in the
first part of the architecture with only in entries), is exactly
as in Binary Prefix encoding and the total improvement is less
significant but still not negligible. For instance, for the real-
life files, the improvement in the total expansion is 19.5% with
respect to Binary Prefix encoding. This essentially serves as a
proof of concept to our In/Out TCAM architecture.

VIII. CONCLUSION

In this paper, we presented a novel combined TCAM archi-
tecture, composed of a regular TCAM and a modified TCAM,
which enables independent encoding of each rule in a set of
rules, providing a guaranteed improved expansion at the cost
of additional logic. Motivated by this architecture, we studied
how to optimally encode a single range rule. We presented an
encoding algorithm that is optimal for all possible generalized
extremal rules, which represent 89% of all non trivial rules in a
typical real-life classification database. We also obtained tight
bounds on the worst case expansion for general classification
rules, both for one-dimensional and two-dimensional ranges.
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