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The Bloom Paradox:
When not to Use a Bloom Filter

Ori Rottenstreich and Isaac Keslassy

Abstract—In this paper, we uncover the Bloom paradox in
Bloom filters: sometimes, the Bloom filter is harmful and should
not be queried.

We first analyze conditions under which the Bloom paradox
occurs in a Bloom filter, and demonstrate that it depends on
the a priori probability that a given element belongs to the
represented set. We show that the Bloom paradox also applies
to Counting Bloom Filters (CBFs), and depends on the product
of the hashed counters of each element. In addition, we further
suggest improved architectures that deal with the Bloom paradox
in Bloom filters, CBFs and their variants. We further present
an application of the presented theory in cache sharing among
Web proxies. Last, using simulations, we verify our theoretical
results, and show that our improved schemes can lead to a large
improvement in the performance of Bloom filters and CBFs.

Index Terms—The Bloom Filter Paradox, Bloom Filter, Count-
ing Bloom Filter, A Priori Membership Probability.

I. INTRODUCTION

A. The Bloom Paradox

Bloom filters are widely used in many networking device al-
gorithms, in fields as diverse as accounting, monitoring, load-
balancing, policy enforcement, routing, filtering, security, and
differentiated services [1]–[6]. Bloom filters are probabilistic
data structures that can answer set membership queries without
false negatives (if they indicate that an element does not belong
to the represented set, they are always correct), but also with
low-probability false positives (they might sometimes indicate
that an arbitrary element is a member of the represented
set although it is not). In addition, Bloom filters have many
variants. In particular, Counting Bloom Filters (CBFs) add
counters to the Bloom filter structure, thus also allowing for
deletions within counter limits.

Networking devices typically use Bloom filters as cache di-
rectories. Bloom filters are particularly popular among design-
ers because a Bloom filter-based cache directory has no false
negatives, few false positives, and O(1) update complexity.

In this paper, we show that the traditional approach to
this Bloom-based directory forgets to take into account the a
priori set-membership probability of the elements, i.e. the set-
membership probability without such a directory. Surprisingly,
forgetting this a priori probability can actually make the
directory more harmful than beneficial.

Figure 1(a) illustrates the intuition behind the importance
of the a priori set-membership probability. Consider a generic
system composed of a user, a main memory containing all the
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(a) Illustration of the importance of the a priori set-membership probability.
When the user needs element x (illustrated as an arrival of a query for x),
there are two options. First, to access the main memory with a fixed cost of
10. Second, to look for it in the cache. With some probability, it is indeed
there and the cost is only 1. With the complementary probability, it is not
there and the user has to also access the main memory with a total cost of
1 + 10 = 11.

(b) Illustration of the elements in the cache C, those with a positive
membership indication in the Bloom Filter B, and those in the memory M.
With a false positive probability of 10−3, a positive indication of the Bloom
filter is incorrect w.p. |B\C|

|B| ≈ 107−104

107 = 1 − 10−3 ≈ 1.

Fig. 1. Illustration of the Bloom paradox.

data, and a cache with a subset of the data. When the user
needs to read a piece of data, it can simply access the main
memory directly, with a cost of 10. Alternatively, it can also
access the cache first, with a cost of 1. If the cache owns this
piece of data, there is no additional cost. Else, it also needs to
access the main memory with an additional cost of 10. This is
a generic problem, where the costs may correspond to dollar
amounts (e.g. for an ISP customer that either accesses a cached
Youtube video at the ISP cache, or the more distant Youtube
server), to power (e.g. in a two-level memory system or a
two-level IP forwarding system within a networking device),
or to bandwidth (e.g. in a data center, with a local cache in the
same rack as a server versus a more distant main memory).

Assume that the user holds a Bloom filter to indicate which
elements are in the cache, and this Bloom filter has a false
positive probability of 10−3. Further assume that this Bloom
filter indicates that some arbitrary element x is in the cache.
It would seem intuitive to always access the cache in such a
case. If the user does access the cache, it would seem that
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he pays just above 1 on average, since he will most often
pay 1 (with probability 1 − 10−3), and rarely 1 + 10 = 11
(with probability 10−3). If instead he directly accesses the
main memory, he always pays 10.

However, this approach completely disregards the a pri-
ori probability, and it is particularly wrong if the a priori
probability is too small. For instance, assume that the main
memory contains 1010 elements, while the cache only contains
104 elements. For simplicity, further assume that x is drawn
uniformly at random from the memory, i.e., the a priori
probability that it belongs to the cache is 104/1010 = 10−6.
This is the probability before we query the Bloom filter. Then
the probability that x is in the cache after the Bloom filter
says it is in the cache is only about ≈ 10−6/10−3 = 10−3

(the exact computation is in the paper).
This is the Bloom paradox: with high probability (1−10−3),

x is actually not in the cache, even though the Bloom filter
indicates that x is in the cache. More generally, if the a priori
probability is low enough before accessing the Bloom filter,
it is better to disregard the Bloom filter results and always go
automatically to the main memory — in fact, in this case the
Bloom filter is harmful and it is better to not even query the
Bloom filter. Taken to the extreme, when the Bloom paradox
applies to all elements, it means in fact that the entire cache
is useless.

Figure 1(b) provides a more formal view to this Bloom
paradox. Let B be the set of elements with a positive
membership indication from the Bloom filter. Then, |B| =
104 + 10−3 · (1010 − 104) ≈ 107. While the false positive
rate of the Bloom filter is |B\C|

|M\C| = 10−3, the probability that
a positive indication is incorrect is significantly larger and
equals |B\C|

|B| ≈ 107−104

107 = 1 − 10−3.
Of course, in the general case, different assumptions may

weaken or even cancel the Bloom paradox, especially when
caches have significantly non-uniform a priori probabilities.

B. Contributions
The main contribution of this paper is pointing out the

Bloom paradox, and providing a first analysis of its conse-
quences on Bloom filters and Counting Bloom Filters (CBFs).

First, in Section IV, we provide simple criteria for the
existence of a Bloom paradox in Bloom filters. In particular,
we develop an upper bound on the a priori probability
under which the Bloom paradox appears and the Bloom filter
answer is irrelevant. Based on this observation, we suggest
improvements to the implementation of both the insertion and
the query operations in a Bloom filter.

Then, in Section V, we focus on CBFs. We observe that we
can calculate a more accurate membership probability based
on the exact values of the counters provided in a query, and
provide a closed-form solution for this probability. We further
show how to use this probability to obtain a decision that
optimizes the use of a CBF in a generic system. We also
discuss the effect of the number of hash functions on the CBF
performance.

Next, in Section VI, we generalize our analysis to other
variants of the Bloom filter and in particular the Bh − CBF
scheme [5].

Later, in Section VII, we consider a distributed-cache ap-
plication with several proxies that use CBFs to represent their
cache contents. We suggest an optimal order of the queries
that should be sent to the proxies in this network.

Last, in Section VIII, we evaluate our optimization schemes,
and show how they can lead to a significant performance
improvement. Our evaluations are based on synthetic data as
well as on real-life traces.

II. RELATED WORK

The Bloom filter data structure (and its variants) has a long
list of applications in the networking area [7]. This includes,
for instance, cache digests [2], packet classification [8], rout-
ing [9], deep packet inspection [10], security [11] and state
representation [12]. Bloom Filters and CBFs can be found in
such well-known products as Facebook’s distributed storage
system Cassandra [13], Google’s web browser Chrome [14]
and the network storage system Venti [15].

Different design schemes have been suggested to improve
the false positive rate of CBFs with a limited memory size. For
instance, the MultiLayer Hashed CBF performs a hierarchical
compression [16]. A related approach is presented in [17],
[18]. Memory-efficient schemes based on fingerprints instead
of on counters were suggested in [3], [12]. The Bh − CBF [5]
is a recent efficient CBF variant based on variable increments.
In all these variants, false negatives are prohibited and only
false positives are allowed.

In [19], Donnet et al. presented the Retouched Bloom Filter
(RBF), a Bloom Filter extension that reduces its false positive
rate at the expense of random false negatives by resetting
selected bits. The authors also suggested several heuristics
for selectively clearing several bits in order to improve this
tradeoff. For instance, choosing the bits to reset such that
the number of generated false negatives is minimized, or
alternatively, the number of cleared false positives is maxi-
mized. They also show that randomly resetting bits yields a
lower bound on the performance of their suggested schemes.
Unfortunately, calculating the optimal selection of bits can
be prohibitive (for instance, it requires going over all the
elements in the universe several times), and in practice only
approximated schemes are used.

Laufer et al. presented in [20] a similar idea called the
Generalized Bloom Filter (GBF) in which at each insertion,
several bits are set and others are reset, according to two sets of
hash functions. To examine the membership of an element, a
match is required in all corresponding hash locations of both
types. False negatives can occur in case of bit overwriting
during the insertions of later elements. On the one hand,
increasing the number of hash functions reduces the false
positive rate, since more bits are compared. On the other, it
increases the false negative rate due to a higher probability of
bit overwriting. Data structures with false positives as well as
false negatives have also been discussed in [21].

In some Bloom-filter applications, false negatives are not
acceptable in any circumstances and avoiding them is manda-
tory. Such applications can tolerate false positives and not
false negatives. In these applications the Bloom paradox does
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TABLE I
MEMBERSHIP QUERY DECISION COSTS FOR AN ELEMENT x ∈ U

Positive Membership Negative Membership
Decision Decision

x ∈ S WP = 0 WFN = α ·WFP

x /∈ S WFP WN = 0

not exist. Consider for instance, a variant of the Web proxy
application from [2] in which Bloom filters are used to
summarize the content of each cache. If a large memory with
all elements does not exist and each data element can be found
in at most one of the caches, false negatives can eliminate
the possibility to find a queried element. Another application
is in Bloom-filter-based forwarding [22], [23]. Bloom filters
are used to encode a delivery tree as a set of forwarding-hop
identifiers, e.g. links or pairs of adjacent links in the tree.
While false positives can just cause a short increase in the
delay, false negatives may prevent the packet from reaching
its destination.

The issue of wrongly considering the a priori probabilities
is a known problem in diverse fields. For instance, the Prose-
cutor’s Fallacy [24] is a known mistake made in law when the
prior odds of a defendant to be guilty before an evidence was
found are neglected. The same problem is also known as the
False Positive Paradox in other fields such as computational
geology [25], and is also related to Probabilistic Primality
Testing [26]. Our results might apply to such problems when
the costs of false negatives and false positives are taken into
account. We leave these to future work.

III. MODEL AND NOTATIONS

We consider a Bloom filter (or alternatively a Counting
Bloom Filter (CBF)) representing a set S of n elements taken
from a universe U of N elements. The Bloom filter uses m
bits, and relies on a set of k hash functions H = {h1, . . . , hk}.

For each element x ∈ U , we denote by Pr(x ∈ S) the a pri-
ori probability that x ∈ S, i.e. the probability before we query
the Bloom filter. We further denote by Pr (x ∈ S|BF = 1) the
probability that x ∈ S given that the Bloom filter indicates
so, where BF is the indicator function of the answer of the
Bloom filter to the query of whether x is a member of S.

We assume that the cost function of an answer to a member-
ship query can have four possible values. They are summarized
in Table I, which illustrates these costs for a query of an
element x ∈ U . If x ∈ S, the cost of a positive (correct)
decision is WP while the cost of negative (incorrect) decision
is WFN . Similarly, if x /∈ S, the costs are WFP and WN

for a positive and negative decision, respectively. In the most
general case, the costs of the two correct decisions, WP and
WN might be positive. However, we can simply reduce the
problem to the case where WP = WN = 0 by considering
only the marginal additional costs of a negative incorrect
decision and a positive incorrect decision (WFN −WP ) and
(WFP −WN ). Finally, for WFP > 0 let α denote the ratio
WFN/WFP . The variable α represents how expensive a false
negative error is in comparison with a false positive error.

In the suggested analysis, we assume for the sake of simplic-
ity uniformly-distributed and independent hash functions. We

also assume that the number of hash functions in the Bloom
filter and the Counting Bloom filter is the optimal number
k ≈ ln(2) · (m/n). Accordingly, the probability of a bit to
be set after the insertion of the n elements is 0.5. These
assumptions often appear in the literature, e.g. in [3], [27],
[28]. Of course, in practice k has to be integer and thus the
probability of 0.5 is approximated. Likewise, the requirement
for independency between the hash functions can be slightly
relaxed while keeping the same asymptotic error [29]. We also
assume that each hash function has a range of m/k entries that
are disjoint from the entries for the other hash functions. This
common implementation is described in [7] and is shown to
have the same asymptotic performance.

Our goal is to minimize the expected cost in each query
decision, therefore we return a negative answer iff its expected
cost is smaller than the cost of a positive answer.

IV. THE BLOOM PARADOX IN BLOOM FILTERS

In this section we develop conditions for the existence
of the Bloom paradox in Bloom filters. We also provide
improvements to the implementation of both the insertion and
the query operations in a Bloom filter.

A. Conditions for the Bloom Paradox

The next theorem expresses the maximal a priori set-
membership probability of an element such that the Bloom
filter is irrelevant in its queries. This bound depends on the
error cost ratio α and on the bits-per-element ratio of the
Bloom filter, which impacts its false positive rate.

Intuitively, in cases where the Bloom filter indicates that the
element is in the cache, a smaller α = WFN/WFP means that
the cost of a false negative is relatively smaller, and therefore
we would prefer a negative answer in more cases, i.e., even
for elements with a higher a priori probability. Therefore, a
smaller α allows for the Bloom paradox to occur more often,
and in particular also given a higher a priori probability.

Theorem 1: The Bloom filter paradox occurs for an element
x if and only if its a priori membership probability satisfies

Pr(x ∈ S) <
1

1 + α · 2ln(2)·(m/n)

Proof: We compare the expected cost of positive and neg-
ative answers in case the Bloom filter indicates a membership
and show that for a low a priori membership probability, the
cost of a positive answer can be larger. The Bloom paradox
occurs when a negative answer should be returned even though
the Bloom filter indicates a membership. In order to choose
the right answer, we first calculate the conditioned membership
probability when BF = 1. First,

Pr(x ∈ S|BF = 1) =
Pr(x ∈ S,BF = 1)

Pr(BF = 1)
=

Pr(x ∈ S)
Pr(BF = 1)

,

because by definition a Bloom filter always returns 1 for an
element in the set S, i.e. Pr(BF = 1|x ∈ S) = 1. Likewise,

Pr(x /∈ S|BF = 1) = 1 − Pr(x ∈ S|BF = 1)

=
Pr(BF = 1) − Pr(x ∈ S)

Pr(BF = 1)
.
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For BF = 1, let E1(x) denote the expected cost of a positive
decision for an element x, and E0(x) for a negative decision.
Then,

E1(x) = Pr (x /∈ S|BF = 1) ·WFP

=
Pr(BF = 1) − Pr(x ∈ S)

Pr(BF = 1)
·WFP ,

and

E0(x) = Pr (x ∈ S|BF = 1) ·WFN =
Pr(x ∈ S)
Pr(BF = 1)

·WFN .

The Bloom paradox occurs when E1(x) > E0(x), i.e

Pr(BF = 1) − Pr(x ∈ S)
Pr(BF = 1)

·WFP >
Pr(x ∈ S)
Pr(BF = 1)

·WFN ,

which can be rewritten as

Pr(BF = 1) > (α+ 1) · Pr(x ∈ S).

We use our model assumption that Pr(BF = 1) =
(1/2)ln(2)·(m/n) if x /∈ S. Also, Pr(BF = 1) = 1 if x ∈ S.
Then, the left side of the last condition can be rewritten as(
(1/2)ln(2)·(m/n) ·Pr(x /∈ S)+1 ·Pr(x ∈ S)

)
, and we finally

have

(1/2)ln(2)·(m/n) · (1 − Pr(x ∈ S)) > α · Pr(x ∈ S),

which provides the required result.
We refer to the inequality from Theorem 1 as the condition

for the Bloom paradox.

B. Analysis of the Bloom Paradox

We now provide an illustration of the impact of various
parameters on the Bloom paradox.

Figure 2(a) illustrates the probability that a Bloom filter is
indeed correct when it indicates that an element x is a member
of the set. This probability, Pr (x ∈ S|BF = 1), depends on the
a priori set-membership probability of the element Pr(x ∈ S)
as well as on the false positive rate of the Bloom filter. For
instance, if Pr(x ∈ S) = 10−6 and the false positive rate is
10−3, the Bloom filter is correct w.p. Pr (x ∈ S|BF = 1) =
Pr(x∈S)
Pr(BF=1) = 10−6

10−3·(1−10−6)+1·10−6 ≈ 10−6/10−3 = 10−3.
Figure 2(b) plots the boundaries of the Bloom paradox.

It presents the minimal bits-per-element ratio m/n needed
to avoid the Bloom paradox, as a function of the a priori
probability, given α = 0.1, 1, 10, 100. For instance, if α = 1,
i.e. the costs of the two possible errors are equal, and the a
priori probability is Pr(x ∈ S) = 10−6, at least m/n = 28.7
memory bits per element are required to consider the Bloom
filter and avoid the Bloom paradox. If this ratio is smaller, the
Bloom paradox occurs, so we should return a negative answer
for all the queries of x, independently of the answer of the
Bloom filter.
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(b) Boundaries of the Bloom paradox: minimal number of bits-per-element
for a Bloom filter to avoid the Bloom paradox, as a function of the a priori
set-membership probability.

Fig. 2. Analysis of the Bloom paradox. (a) shows that a lower a priori
probability makes the Bloom filter increasingly irrelevant, because the a
posteriori membership probability after the Bloom filter is positive is also
lower. This favors the Bloom paradox. (b) provides the exact borders of the
region in which the Bloom paradox occurs as a function of the a priori
probability, the Bloom filter load, and the relative weights of false-positive
and false-negative errors.

C. Bloom Filter Improvements Against the Bloom Paradox

Based on the observation in Theorem 1, we suggest the
two following improvements to Bloom filters, as illustrated in
Figure 3:

Selective Bloom Filter Insertion—If the a priori proba-
bility of an element x satisfies the condition for the Bloom
paradox, we will not take the answer of the Bloom filter into
account after the query. Therefore, it is better not to even insert
it in the Bloom filter, so as to reduce the load of the Bloom
filter. Therefore, the final number n∗ of inserted elements may
satisfy n∗ < n.

Selective Bloom Filter Query—If the a priori probability
of an element x satisfies the condition for the Bloom paradox,
we do not want to take the answer of the Bloom filter
into account, and therefore it is better to not even query it.
Formally, if Pr(x ∈ S) < P0 = (1+α·2ln(2)·(m/n∗))−1, where
n∗ is the final number of inserted elements, then a negative
answer should be returned for the queries of x, regardless of
the Bloom filter.

Each of these two improvements can be implemented inde-
pendently. Implementing the Selective Bloom Filter Insertion
alone yields fewer insertions and therefore a lower Bloom
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(a) Selective Bloom Filter Insertion. Elements with
low a priori set-membership probability are not in-
serted into the Bloom filter.

(b) Selective Bloom Filter Query. Elements with low a priori set-membership probability
are not even queried, as shown in the first rectangle, and a negative answer is always
returned for them no matter what the Bloom filter would have actually stated.

Fig. 3. Logical view of the Selective Bloom Filter implementation. Components that also appear in a regular Bloom filter are presented in gray. (a) shows a
first possible improvement during insertion, where elements that satisfy the condition for the Bloom paradox are not even inserted into the Bloom filter. (b)
displays a second possible improvement during query, where elements that satisfy the condition for the Bloom paradox are not even queried.

filter load, leading to a lower false positive probability. In turn,
implementing the Selective Bloom Filter Query alone makes a
regular Bloom filter more efficient by discarding harmful query
results for elements with low a priori probability. Finally,
implementing both the Selective Bloom Filter Insertion and
Query results in the strongest improvement that combines the
benefits of both approaches. All these approaches are further
compared using simulations in Section VIII.

Note that each of the two improvements requires knowing
the a priori probabilities at different times (either during the
insertion or during the query). Also, as expected, this approach
may cause false negatives, since this may reduce the overall
error cost.

D. Estimating the a Priori Probability

Access patterns to caches tend to have the locality of
reference property, i.e. it is more likely that recently-used
data will be accessed again in the near future. Therefore, the
a priori probability distribution might be significantly non-
uniform over U .

In such cases, we suggest to estimate the a priori prob-
ability by sampling arbitrary element queries and checking
whether they belong to the cache. In practice, for 1% of
element queries, we will check whether they belong to the
cache, and use an exponentially-weighted moving average to
approximate the a priori probability. Of course, the accuracy
of the estimation depends on the sampling rate. The estimation
accuracy as a function of the rate is discussed for instance
in [30].

In addition, there might be several subsets of elements with
clearly different a priori probabilities. For instance, packets
originating from Class-A IP addresses might have distinct a
priori probabilities from those with classes B and C. Then
we will simply model the a priori probability as uniform over
each class, and sample each class independently.

Besides sampling, analytical models have been proposed
to predict the locality and the hit rate of a cache while
considering its cache size and replacement policy [31]–[33].
For instance, [34] described a model based on the histogram of
the time differences between two accesses to the same memory
element.

V. THE BLOOM PARADOX IN THE COUNTING BLOOM
FILTER

A. The CBF-Based Membership Probability

In this section, we want to show the existence and the
consequences of the Bloom paradox in Counting Bloom
Filters (CBFs). To do so, we show how we can calculate
the membership probability of an element in S based on
the exact values of the counters of the CBF. We show again
the existence of a Bloom paradox: in some cases, a negative
answer should be returned even though the CBF indicates that
the element is inside that set. Finally, we prove a simple result
that surprised us: to determine whether an element that hashes
into k counters falls under the Bloom paradox, we only need
to compare the product of these counters with a threshold, and
do not have to analyze a full combinatorial set of possibilities.

For an element x ∈ U , we denote by Pr (x ∈ S|CBF ) its
membership probability in S, based on its CBF counter values.
That is, on the values of the k counters with indices hj(x)
for j ∈ {1, . . . , k} pointed by the set of k hash functions
{h1, . . . , hk}. Let C = (C1, . . . , Ck) denote the k counter
indices of x, i.e. Cj = hj(x) for j ∈ {1, . . . , k}, and let
c = (c1, . . . , ck) denote the values of these counters.

Theorem 2: The CBF-based membership probability is

Pr (x ∈ S|CBF ) =

mk · (
∏k
j=1 cj) · Pr(x ∈ S)

mk · (
∏k
j=1 cj) · Pr(x ∈ S) + (n · k)k · (1 − Pr(x ∈ S))

.

Proof: We again use Bayes’ theorem to calculate the
conditioned membership probability while now considering
the exact values of the k counters. Let X be an indicator
variable for the event x ∈ S such that X = 1 iff x ∈ S. If
cj = 0 for any j ∈ {1, . . . , k}, then Pr (x ∈ S|CBF ) = 0.
Otherwise, we use the independency among the different sub-
arrays of the CBF. If X = 1 then x ∈ S is one of n inserted
elements. Thus, cj−1 is the number of times that the counter
Cj was accessed by the other n − 1 elements in S. We now
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have that

Pr (C = c|X = 1) =
k∏
j=1

Pr (Cj = cj |X = 1)

=
k∏
j=1

(
n− 1
cj − 1

)( k
m

)cj−1(
1 − k

m

)n−cj

.

Likewise,

Pr (C = c|X = 0) =
k∏
j=1

Pr (Cj = cj |X = 0)

=
k∏
j=1

(
n

cj

)( k
m

)cj
(
1 − k

m

)n−cj

and again Pr (X = 1) = Pr(x ∈ S) and Pr (X = 0) = (1 −
Pr(x ∈ S)). Putting all together, we have

Pr (x ∈ S|CBF ) = Pr (X = 1|C = c)

=
Pr (C = c|X = 1) Pr (X = 1)

Pr (C = c|X = 1) Pr (X = 1) + Pr (C = c|X = 0) Pr (X = 0)

=

∏k

j=1
(n−1)!

(cj−1)!(n−cj)! Pr (X = 1)∏k

j=1
(n−1)!

(cj−1)!(n−cj)! Pr (X = 1) +
∏k

j=1

(
n!

cj !(n−cj)! · k
m

)
Pr (X = 0)

=
Pr (X = 1)

Pr (X = 1) +
∏k
j=1

(
n
cj

· km
)
· Pr (X = 0)

=
mk · (

∏k
j=1 cj) · Pr(x ∈ S)

mk · (
∏k
j=1 cj) · Pr(x ∈ S) + (n · k)k · (1 − Pr(x ∈ S))

.

Directly from the last theorem we can deduce the following
corollary.

Corollary 3: For an element x ∈ U , the CBF-based mem-
bership probability Pr (x ∈ S|CBF ) is an increasing func-
tion of the product of the k counters pointed by hi(x) for
i ∈ {1, . . . , k}.

This result surprised us because of the simple dependency
of Pr (x ∈ S|CBF ) only in the product of the k counters and
not in a more complicated function of them.

Example 1: Figure 4 illustrates queries of two elements
x and y in a CBF with parameters of m, n and k.
The values of the counters pointed by x are 1, 10. Like-
wise, they are 5, 5 for y. Then, by Theorem 2 their CBF-
based membership probabilities are Pr (x ∈ S|CBF ) =

mk·(1·10)·Pr(x∈S)
mk·(1·10)·Pr(x∈S)+(n·k)k·(1−Pr(x∈S))

and Pr (y ∈ S|CBF ) =
mk·(5·5)·Pr(y∈S)

mk·(5·5)·Pr(y∈S)+(n·k)k·(1−Pr(y∈S))
, respectively. In particular,

if they have the same a priori membership probabilities
(i.e. Pr(x ∈ S) = Pr(y ∈ S)) then Pr (y ∈ S|CBF ) >
Pr (x ∈ S|CBF ) since 5 · 5 = 25 > 10 = 1 · 10.

B. Optimal Decision Policy for a Minimal Cost

We now suggest an optimal decision policy for the query
of an element x ∈ U in a CBF. This policy relies on its

Fig. 4. Illustration of CBF queries of two elements x and y. If x and
y have the same a priori membership probabilities then their CBF-based
membership probabilities satisfies Pr (y ∈ S|CBF ) > Pr (x ∈ S|CBF )
since 5 · 5 = 25 > 10 = 1 · 10.

Fig. 5. Logical view of the Selective Counting Bloom Filter implementation.
Components that also appear in a regular CBF are presented in gray. Mem-
bership probability is calculated based on the counters product. A negative
answer is returned for elements with low calculated membership probability.

CBF-based membership probability, which was expressed in
Theorem 2 as a function of the product of its counter values.

Theorem 4: An optimal decision policy for the CBF is to
be positive on the membership iff

Pr (x ∈ S|CBF ) ≥ 1
α+ 1

.

Proof: We compare the expected cost of positive and neg-
ative decisions given the conditioned CBF-based membership
probability, and explain that a positive decision should be made
only when the probability is beyond a given threshold. Let
again E1(x) be the expected cost of a positive decision for an
element x and E0(x) for a negative decision. For a positive
decision, the cost is WP if x ∈ S (w.p. Pr (x ∈ S|CBF )) and
WFP if x /∈ S (w.p 1−Pr (x ∈ S|CBF )). Thus, we have that

E1(x) = (1 − Pr (x ∈ S|CBF )) ·WFP .

Likewise, we have an expected cost for a negative decision,

E0(x) = Pr (x ∈ S|CBF ) ·WFN .

To minimize the expected cost, the scheme decides on a
positive answer if E1(x) ≤ E0(x), i.e when

(1 − Pr (x ∈ S|CBF )) ·WFP ≤ Pr (x ∈ S|CBF ) ·WFN

With simple algebra, we can see that the last inequality
holds if

Pr (x ∈ S|CBF ) ≥ 1
α+ 1

.

Figure 5 illustrates the improved logical process of a query
of an element x in the Selective Counting Bloom Filter. It is
similar to the query process of the Selective Bloom Filter that
was presented in Figure 3(b). Here, the product of counters is
used to calculate the membership probability.
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C. Optimal Number of Hash Functions

Given the parameters m,n of a Bloom filter (and a CBF
as well), the number of hash functions k ≈ ln(2) · (m/n)
is typically chosen in order to minimize the false positive
probability without false negatives. In the suggested schemes,
the goal is different. Instead of minimizing the false positive
probability, we try to minimize the expected cost of a query
decision. Thus, the optimal number of hash functions is not
necessarily k ≈ ln(2) · (m/n) anymore. According to the
decision policy in the previous subsection, we present the
expected cost as the function of the number of hash functions
k, such that a k that minimizes this cost should be selected.

To do so, we define several new notations. We generalize
the function Pr (x ∈ S|CBF ) to be a function of the number
of hash functions k and of the product π of these counters,
while m and n are considered as constants, such that

P (x, k, π) = Pr

x ∈ S|k = k,
( k∏
j=1

cj

)
= π


=

mk · π · Pr(x ∈ S)
mk · π · Pr(x ∈ S) + (n · k)k · (1 − Pr(x ∈ S))

.

Likewise, we generalize the function of the expected cost for
both of the decisions. We define E0(x, k, π) and E1(x, k, π)
as the expected cost of negative and positive decisions for an
element x when the number of hash functions is k and the
product of the counters is π. Formally,

E0(x, k, π) =P (x, k, π) ·WFN ,

and

E1(x, k, π) = (1 − P (x, k, π)) ·WFP .

We also define for x ∈ U and k hash functions, the value
Π(x, k) as the minimal value of π that yields a probability
P (x, k, π) not smaller than the threshold 1/(α+ 1), i.e.

Π(x, k) = min
{
π ∈ N |P (x, k, π) ≥ 1

α+ 1

}
.

Last, we define P (k, π) as the probability that the product
of k counters, in a CBF is exactly π, where each counter
is randomly picked in each sub-array of the CBF. It can be
calculated as the sum of the probabilities for the vectors of
counters with this property.

Then, we have that the expected cost function for a query
of an element x ∈ U is:

E(x, k) =
Π(x,k)−1∑
π=0

P (k, π) · E0(x, k, π)

+
∞∑

π=Π(x,k)

P (k, π) · E1(x, k, π).

Given the probability that a query is of a specific element
x ∈ U denoted by PQ(x), the expected cost when k hash

functions are used is

E(k) =
∑
x∈U

PQ(x) · E(x, k)

=
∑
x∈U

PQ(x) ·

(
Π(x,k)−1∑
π=0

P (k, π) · E0(x, k, π)

+
∞∑

π=Π(x,k)

P (k, π) · E1(x, k, π)

)
.

Thus, the optimal number of hash functions is the value of k
that minimizes the last expression. In simulations, we discuss
this further.

VI. THE BLOOM PARADOX IN ADDITIONAL VARIANTS OF
THE BLOOM FILTER

In this section, we examine the existence and the conse-
quences of the Bloom paradox in an additional variant of the
Bloom Filter and the Counting Bloom Filter. We consider the
Bh − CBF scheme [5], a recently suggested improved Count-
ing Bloom Filter technique based on variable increments. The
scheme makes use of Bh sequences. Intuitively, a Bh sequence
is a set of integers with the property that for any h′ ≤ h, all the
sums of h′ elements from the set are distinct. Therefore, given
a sum of up to h elements, we can calculate, for each element
of the Bh sequence, its multiplicity in the unique multiset of
addends from which the sum is comprised.

The Bh − CBF scheme includes a pair of counters in
each hash entry: one with fixed increments, and another
one with variable increments that are selected from the Bh
sequence. For j ∈ [1, k], let cj and aj be the values of the
fixed-increment and variable-increment counters in the entry
hj(x), respectively. Further, we denote the Bh sequence by
D = {v1, v2, ..., vℓ} such that |D| = ℓ. The Bh − CBF uses
two sets of k hash functions. The first set H = {h1, . . . , hk}
uses k hash functions with range {1, . . . ,m} and points to the
set of entries, as in the CBF. The second set G = {g1, . . . , gk}
uses k functions with range {1, . . . , ℓ}, i.e. it points to the set
D and determines the variable increment of an element in each
of its k updated counters.

For an element x ∈ U , we would like to calculate
Pr (x ∈ S|Bh − CBF ), the membership probability of x
based on the k corresponding hash entries of the Bh − CBF .

Theorem 5: For j ∈ {1, . . . , k}, let yj denote the multiplic-
ity of vgj(x) in the addends of the sum aj . Further, let I(j)
be an indicator function representing whether cj ≤ h. Then,
Pr (x ∈ S|Bh − CBF ) =

mk · δ · Pr(x ∈ S)
mk · δ · Pr(x ∈ S) + (n · k)k · (1 − Pr(x ∈ S))

,

for

δ =

(
k∏

j=1,I(j)=0

cj

)
·

(
k∏

j=1,I(j)=1

ℓ · yj

)
.

Proof: We again use Bayes’ theorem to calculate the
conditioned membership probability in Bh − CBF scheme
while now considering the k pairs of counters. In each hash
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entry hj(x), we consider two possible options according to
the value of cj , the number of elements hashed into this hash
entry.

If cj ≤ h (denoted by I(j) = 1), based on the properties of
the Bh sequence, we can calculate the multiplicity of vgi(x),
the corresponding element of D, in the sum aj . We denote
the random variable representing this value by Yj .

If cj > h (and I(j) = 0), we cannot necessarily calculate
Yj , and the membership probability is based on the value of the
cj which represents the value of the random variable denoted
by Cj .

As in the CBF, also for the Bh − CBF we have that

Pr (Cj = cj |X = 1) =
(
n− 1
cj − 1

)( k
m

)cj−1(
1 − k

m

)n−cj

,

and

Pr (Cj = cj |X = 0) =
(
n

cj

)( k
m

)cj
(
1 − k

m

)n−cj

.

Likewise, since in the Bh − CBF , a hash entry is accessed
w.p. k/m and in each entry the variable increment is uniformly
selected w.p. 1/ℓ, we also have that

Pr (Yj = yj |X = 1) =
(
n− 1
yj − 1

)( k

m · ℓ

)yj−1(
1 − k

m · ℓ

)n−yj

,

and

Pr (Yj = yj |X = 0) =
(
n

yj

)( k

m · ℓ

)yj
(
1 − k

m · ℓ

)n−yj

.

Let Q = (Q1, . . . , Qk) be an ordered set of n variables such
that, for j ∈ {1, . . . , k}, Qj = Yj if I(j) = 1 and Qj = Cj if
I(j) = 0. Let q = (q1, . . . , qk) denote their values. Then,

Pr (x ∈ S|Bh − CBF ) = Pr (X = 1|Q = q)

=
Pr (Q = q|X = 1)Pr (X = 1)

Pr (Q = q|X = 1) Pr (X = 1) + Pr (Q = q|X = 0)Pr (X = 0)

=
β · Pr (X = 1)

β · Pr (X = 1) + γ · Pr (X = 0)
,

for

β = Pr (Q = q|X = 1) =

( k∏
j=1,I(j)=0

Pr (Cj = cj |X = 1)

)
·

( k∏
j=1,I(j)=1

Pr (Yj = yj |X = 1)

)
=

( k∏
j=1,I(j)=0

(n− 1

cj − 1

)( k
m

)cj−1(
1 −

k

m

)n−cj
)
·

( k∏
j=1,I(j)=1

(n− 1

yj − 1

)( k

m · ℓ

)yj−1(
1 −

k

m · ℓ

)n−yj
)
,

Fig. 6. Illustration of two queries in the Bh − CBF with the Bh=2

sequence D = {1, 2, 4}. The jth selected hash entry includes a pair of
counters: cj with fixed increments, and aj with variable increments. The
k variable increments of each element are presented. For each element, we
consider the exact values of both counters in k = 2 hash entries to calculate
the membership probability based on the Bh − CBF .

and

γ = Pr (Q = q|X = 0) =

( k∏
j=1,I(j)=0

Pr (Cj = cj |X = 0)

)
·

( k∏
j=1,I(j)=1

Pr (Yj = yj |X = 0)

)
=

( k∏
j=1,I(j)=0

(n
cj

)( k
m

)cj
(

1 −
k

m

)n−cj
)
·

( k∏
j=1,I(j)=1

(n
yj

)( k

m · ℓ

)yj
(

1 −
k

m · ℓ

)n−yj
)
.

Finally, we have that

Pr (x ∈ S|Bh − CBF ) =
β · Pr (X = 1)

β · Pr (X = 1) + γ · Pr (X = 0)

=
Pr (X = 1)

Pr (X = 1) +
∏k

j=1,I(j)=0
n·k

m·cj
·
∏k

j=1,I(j)=1
n·k

m·ℓ·yj
· Pr (X = 0)

=
mk · δ · Pr (X = 1)

mk · δ · Pr (X = 1) + (n · k)k · Pr (X = 0)

for δ as defined above.
We would like now to demonstrate the similarity of the

formulas of Pr (x ∈ S|CBF ) and Pr (x ∈ S|Bh − CBF )
as presented in Theorem 2 and Theorem 5, respec-
tively. Simply, Pr (x ∈ S|CBF ) can be obtained from
Pr (x ∈ S|Bh − CBF ) by setting I(j) = 0 for j ∈
{1, . . . , k}, which yields that δ =

∏k
j=1 cj . The intuition for

that is as follows. In the CBF, the value of δ in the formula of
Pr (x ∈ S|CBF ) equals the product of the number of inserted
elements to each of the k hash entries used by the element
x. In the Bh − CBF we can obtain, for some of the hash
entries used by x, not only the value of cj which represents
the number of inserted elements into the jth hash entry, but
also yj , the number of inserted elements with the same variable
increment as the element x. For such counters, the value of
the counter cj is replaced in the formula of δ by a more
informative value which is ℓ · yj , where ℓ is the number of
possible variable increments. Of course, we should try to avoid
the influence of elements inserted into this hash entry with
other variable increments that are guaranteed not to be the
element x itself. Unfortunately, if cj > h, we cannot do that
and δ depends on the value of cj itself.
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As in the CBF, for each value of α we can consider the
membership probability Pr (x ∈ S|Bh − CBF ) based on the
Bh − CBF , in order to decide on the optimal answer to a
membership query. Again, in some cases it might be better to
return a negative answer even if Pr (x ∈ S|Bh − CBF ) > 0
and the indication of the Bh − CBF is positive.

Example 2: Figure 6 illustrates queries of two elements x
and z in a Bh − CBF with the set of variable increments
D = {1, 2, 4}. We can see all the 6 sums 2 elements of
D are distinct: 1 + 1 = 2, 1 + 2 = 3, 1 + 4 = 5, 2 +
2 = 4, 2 + 4 = 6, 4 + 4 = 8. Therefore, D is a Bh=2

sequence. For the element x, since c1 = 1, c2 = 2 ≤ h
we can determine the multiplicities y1 = 1, y2 = 2 of the
variable increments vg1(x) = 2, vg2(x) = 4 in the sums
a1 = 2, a2 = 8, respectively. By Theorem 5, we have that
Pr (x ∈ S|Bh − CBF ) = mk·δ·Pr(x∈S)

mk·δ·Pr(x∈S)+(n·k)k·(1−Pr(x∈S))

for δ = (ℓ · y1) · (ℓ · y2) = (3 · 1) · (3 · 2) = 18. Likewise,
for the element z, c1 = 2, a1 = 3, vg1(z) = 1 and necessarily
y1 = 1. However, since c2 = 4 > h, we cannot determine the
multiplicity of vg2(z) = 2 in the sum a2 = 7 = 1+1+1+4 =
1+2+2+2. Thus, I(2) = 0 and the Bh − CBF -based mem-
bership probability takes into account c2 and not y2. Therefore,
Pr (z ∈ S|Bh − CBF ) = mk·δ·Pr(z∈S)

mk·δ·Pr(z∈S)+(n·k)k·(1−Pr(z∈S))
for

δ = (ℓ · y1) · (c2) = (3 · 1) · 4 = 12.

VII. DISTRIBUTED-CACHE APPLICATION

Eliminating the Bloom paradox and the ability to calculate
the membership probability based on the exact values of
the CBF counters can improve the performance of many
applications. In this section, we suggest an example for such
an application.

A. Model

Our model is based on the model of cache sharing among
Web proxies as described in the seminal paper presenting the
CBFs [2]. In the Summary Cache sharing protocol suggested in
this paper, each proxy keeps an array of CBFs that summarize
the cache content of each of the other proxies. If a proxy
encounters a local cache miss, it examines the summaries of
the contents of the other caches. It then sends a query message
only to the proxies with a positive membership indication for
the existence of the required data element in their caches,
based on the corresponding CBFs. Since CBFs have no false
negatives, only this subset of the proxies might contain this
specific data element. Since the content of each of the caches
dynamically changes and deletions have to be supported, we
cannot simply use Bloom filters in this case, and need to keep
counters. In their model, the performance is measured by the
total amount of network traffic as a function of the memory
size dedicated for the summaries.

Based on the theory we presented, it is possible to consider
the exact values of the CBF counters in order to calculate
the membership probability in each of the possible proxies.
Thus, we can further distinguish between the proxies with a
positive indication. For instance, we can prefer to probe first
the proxies with higher chances to have the element in their
caches.

Fig. 7. Illustration of the cache sharing model. A query of an element x
can be sent from proxy i to L − 1 other proxies. A query sent to proxy
j ∈ ({1, . . . , L} \ {i}) has a traffic cost of τi,j and is successful w.p.
pi,j = Pr (x ∈ Sj |CBFi,j). Alternatively, the element x can be found with
certainty in a single larger memory with a relatively expensive traffic cost ψi.

As illustrated in Figure 7, we generalize the model as
follows. Let L be the number of proxies and let Si represent
the content of cache i for i ∈ {1, . . . , L}. The set of all
possible data elements is denoted by U . We assume that
different proxies may have different traffic costs for a query
they send to each of the other proxies. Let τi,j > 0 denote
the traffic cost of a query sent from proxy i to proxy j for
i, j ∈ {1, . . . , L}.

We also assume that the a priori probability Pr(x ∈ Si)
for the membership of each data element x ∈ U in each
of the caches is available. The probabilities may be uniform
or non-uniform over U and may vary in each of the caches.
For the required data element x ∈ U , we denote by pi,j the
membership probability based on the CBF held by proxy i for
summarizing the cache content of proxy j. These probabilities
are assumed independent. By denoting this CBF by CBFi,j ,
we have pi,j = Pr (x ∈ Sj |CBFi,j).

Last, we assume that all of the elements can be found in
a special proxy (denoted by the index L + 1) with a large
memory containing all the elements in U . A query sent to
this special proxy from each other proxy i has a relatively
expensive traffic cost ψi. We also refer to the other L proxies
as regular proxies.

B. Optimal Query Policy

Given a request for a data element in one of the proxies, we
would like to determine the order of the queries it should send
in order to minimize the total expected cost of queries until the
element is found. Of course, we can clearly see, as suggested
also in [2], that since all the queries costs are positive there is
no reason to send a query to a proxy when the CBF indicates
that it does not contain the required element. In addition, we
observe that in this model, any two queries should not be sent
in parallel. By sending these queries one after another, the
expected cost is reduced since if the first is successful, then
the second query can be avoided.

When proxy i encounters a local cache miss for the query of
an element x ∈ U , it should consider the success probability of
probing a proxy j that satisfies pi,j = Pr (x ∈ Sj |CBFi,j) >
0. It should also take into account the cost of a single query
to each of these proxies τi,j and the traffic cost to the special
proxy with all the data elements ψi.

We consider two possible scenarios and present the optimal
order of queries that should be sent in each. These two
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scenarios can be described as a special case of a very general
problem described in [35].

General case: In the first scenario, we deal with general
traffic costs and just assume that each of the costs τi,j are
positive without any additional constraints.

The next theorem presents the optimal order of queries for
minimizing the expected cost. Intuitively, we want to access
first proxies with high success probability. We also prefer
proxies with low query cost. The theorem shows that we
should compare the ratio of these two parameters for each of
the proxies and query them in a non-increasing order of the
ratios. After encountering some failures while accessing the
proxies with high ratio, we are left only with proxies that have
a relatively low ratio, i.e. proxies with low success probability
or high traffic cost. At some point, we prefer to access the
special proxy despite its high cost, and obtain the data element
with certainty rather than probing the proxies left.

As mentioned earlier, the theorem follows from a more
general claim presented in [35] in a different context. We
present the shorter and easier proof of this special case.

Theorem 6: An optimal sequence of queries performed by
proxy i that minimizes the expected total cost is given by
accessing the proxies (the regular proxies or the single special
proxy) in a non-increasing order of the ratio of their success
probability and the query cost, i.e. the ratio pi,j

τi,j
for a proxy

j ∈ ({1, . . . , L} \ {i}) or 1
ψi

for the special proxy.
Indeed, after accessing a proxy with a success probability of
1 (and in particular the special proxy), the order of the next
queries can be arbitrary.

Proof: The proof is by contradiction. We show that for
any sequence with different order, we can switch the order
of two queries and reduce the expected cost. For the sake of
simplicity, we also use the notations pi,L+1 and τi,L+1 for the
success probability (which equals 1) and the query traffic cost
(denoted earlier also by ψi) of the special proxy, respectively.

Clearly, after accessing a proxy with a success probability
of 1, the data element is available, any additional queries are
always useless. Let σ = (σ1, . . . , σL) be an optimal order such
that σj ∈ ({1, . . . , (L+1)}\{i}) and for each 1 ≤ j < t ≤ L,
we have σj ̸= σt. We denote by σℓ the first proxy in this
order that has a success probability of 1. Then, pi,σℓ

= 1 and
pi,σj < 1 for j ∈ {1, . . . , (ℓ − 1)}. The special proxy is an
example for such a proxy and thus there is always at least one
proxy with this property. Let E(σ) be the expected traffic cost
when the order σ is used.

If σ does not satisfy the presented condition, there are
two adjacent indices 1 ≤ k, k + 1 ≤ ℓ such that
pi,σk

τi,σk
<

pi,σk+1
τi,σk+1

. We then consider a second order σ′ =
(σ1, . . . , σk−1, σk+1, σk, σk+2, . . . , σL) obtained by flipping
the order of the kth and (k + 1)th queries in σ. We show
that E(σ′) < E(σ), a contradiction to the optimality of σ.

Clearly, since σ and σ′ differ only in the two indices k and
k + 1, such a change can influence the total traffic cost only
when the first k− 1 queries fail and at least one of these two
queries succeeds. Assuming that the first k − 1 queries fail
(it happens w.p. pfail =

(∏k−1
j=1 (1 − pi,σj )

)
), and both of

these two considered queries succeed (w.p. pi,σk
·pi,σk+1), the

change in the traffic cost is τi,σk+1 − τi,σk
with the switching

from σ to σ′. This is because the kth and last query is now
sent to proxy σk+1 instead of to σk. Likewise, when only the
query sent to σk succeeds, the cost is increased by τi,σk+1 with
the order change. Last, if only σk+1 has the data element,
the cost is decreased by τi,σk

. To summarize, we have that
E(σ′) − E(σ) = pfail ·

(
pi,σk

· pi,σk+1 · (τi,σk+1 − τi,σk
) +

pi,σk
· (1 − pi,σk+1) · τi,σk+1 − (1 − pi,σk

) · pi,σk+1 · τi,σk

)
=

pfail ·
(
pi,σk

· τi,σk+1 − pi,σk+1 · τi,σk

)
< 0. A contradiction

to the optimality of E(σ).
Simple case: We now consider the simple case in which

each proxy i has the same traffic cost τi to each of the regular
proxies such that τi = τi,j for j ∈ ({1, . . . , L} \ {i}).

The next theorem presents the optimal order of queries for
a minimal expected cost. Now, since the query costs are fixed,
we access the proxies in a decreasing order of their success
probability and again prefer to access the special proxy after
some failures rather than examining the other left proxies with
low success probability.

Theorem 7: An optimal sequence of queries performed by
proxy i that minimizes the expected total cost is given by
accessing the proxies in a non-increasing order of their success
probability. When the left proxies have a success probability
smaller than τi

ψi
, the next and last query should be sent to the

special proxy.
Proof: The proof directly follows from Theorem 6 based

on the following observations. Clearly, if the query cost to
each of the other proxies is fixed then a non-increasing order
of the success probability is also a non-increasing order of the
ratio of the success probability and the query cost. Likewise,
if (∀j ∈ ({1, . . . , L} \ {i})), τi = τi,j , then pi,j < τi

ψi
exactly

when pi,j

τi,j
< 1

ψi
and the next query should be sent to the

special proxy.
It is interesting to see that the last result can be useful even

in some cases where the values of the a priori membership
probabilities are not available. With the assumption of fixed
query costs, if we further assume that the a priori membership
probability of an element is identical among the different
proxies, we can prefer one regular proxy on another. Based
on Theorem 2, the order can be determined based only on
the values of the product of the k counters in the correspond-
ing CBFs, without knowing the exact values of the success
probabilities in each proxy.

VIII. SIMULATIONS

A. Bloom Filter Simulations

Table II compares the false positive rate (fpr), false negative
rate (fnr) and the total cost for the Bloom Filter (BF) [1],
Generalized Bloom Filter (GBF) [20], Retouched Bloom Filter
(RBF) [19] and the suggested Selective Bloom Filter with its
three variants.

We assume a set S composed of 256 elements from each
of 13 types of elements, such that n = |S| = 28 · 13 =
256 · 13 = 3328. Each subset of 256 elements is selected
homogeneously among sets of sizes 211, 212, ..., 223. Thus, for
i ∈ [1, 13] an element of the ith type is member of S with a
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priori set-membership probability of 2−(i+2) and N = |U | =∑13
i=1 2i+10 = 16775168. The numbers of bits per element

(bpe) are 4, 6, 8 and 10 such that m = n· bpe.
As usual, the false positive rate (fpr) is calculated among

the N − n elements of U \ S and the false negative rate (fnr)
is calculated among the n members of S. In the calculation of
the total cost, we assume that WFP = 1 and WFN = α such
that the cost equals (N − n)· fpr + n· fnr ·α. The results are
presented for the values α = 100 and α = 5, which illustrate
two possible scenarios for the ratio of the two error costs.
In the Bloom Filter and in the three variants of the Selective
Bloom Filter we use k ≈ ln(2) · (m/n) hash functions. In the
Generalized Bloom Filter we use k1 = k hash functions to
select bits to be set. Likewise, the number of functions used
to select bits to reset, k0 ∈ [1, k1 − 1], was chosen such that
the total cost is minimized. For the Retouched Bloom Filter
we used the Ratio Selection as the clearing mechanism. In this
heuristic, shown to be the best scheme in [19], the bits to be
reset are selected, such that the ratio of the additional false
negatives and the cleared false positives is minimized.

We first note that when the a priori set-membership proba-
bilities are available in the insertion process as well as in the
query process, the Selective Bloom Filter always improves the
total cost achieved in BF, GBF and RBF, even when α = 100
and accordingly the cost of a false negative is very high. For
instance, when the probabilities are used in the insertion as
well as in the query, with a memory of 4 bits per element
(and α = 100) the total cost is 1.78e5 in comparison with
2.46e6, 6.37e5 and 3.32e5 in BF, GBF and RBF respectively,
i.e. a relative reduction of 92.76%, 72.04%, 46.46%.

If α = 5, the cost of a false negative is relatively small.
As a result, optimizing the tradeoff of fpr vs. fnr results in an
(fpr,fnr) pair of (1.87e-4, 5.38e-1) instead of (3.08e-3, 3.80e-
1) for α = 100. That is, as expected, the fpr is smaller and the
fnr is larger when the relative cost of fnr is smaller. If α = 5,
the cost is 1.21e4 instead of 2.46e6 in BF. This is a significant
improvement by more than two orders of magnitude.

We can also see that, in this simulation, the contribution
of the a priori probabilities is more significant in the query
process than in the insertion process. For instance, with 4 bits
per element and α = 100, the cost is 9.49e5 if the probabilities
are used only in the insertion, while it is only 1.90e5 when
they are used only during the query. It can be explained by the
fact that in our experiment, the set U \ S is much larger than
the set S itself. Thus, the effect of avoiding the false positives
of elements with smaller a priori set-membership probability
during the query is larger than the effect achieved by avoiding
the insertion of elements with such probabilities.

B. Counting Bloom Filter Simulations

In this section we conduct experiments on CBFs. We first
examine the CBF-based membership probability in compari-
son with Theorem 2.

Then, we try to use these probabilities to further reduce the
expected cost of a query.

The set S is defined exactly as in the previous simulation. It
again includes n = 13 ·256 = 3328 elements of 13 types with
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Fig. 8. CBF-based membership probability for elements with a priori set-
membership probability P = Pr(x ∈ S). The probability is based on k=6
counter values and compared with Theorem 2.

Counting Bloom Filter Selective Counting Bloom
Filter (Only Query)

bpe m fpr fnr cost fpr fnr cost
16 13312 1.47e-1 0.00 2.46e6 8.95e-5 7.65e-1 1.42e4
24 19968 5.61e-2 0.00 9.40e5 9.59e-5 6.57e-1 1.25e4
32 26624 2.16e-2 0.00 3.61e5 9.42e-5 5.35e-1 1.05e4
40 33280 8.20e-3 0.00 1.37e5 1.01e-4 4.16e-1 8.61e3

TABLE III
SIMULATION RESULTS FOR COUNTING BLOOM FILTERS WITH α = 5.

SIMULATION PARAMETERS ARE THE SAME AS IN TABLE II.

a priori probabilities of 2−3, 2−4, ..., 2−15. Here, since CBFs
with four bits per entry are used, we consider bpe values of
16, 24, 32 and 40.

Figure 8 displays the membership probability based on the
values of the k = 6 counters. According to Theorem 2, the
probability can be described as a function of the product of
these k counters. The figure presents the results for up to a
product of 100, since larger products were encountered in
the simulations with a negligible probability. The simulated
probabilities for the most common values are compared with
the theory. The dependency in the a priori set-membership
probability is demonstrated again. For instance, if the product
is 8, the observed probabilities are 0.90594, 0.68504 and
0.34679 for the a priori probabilities 2−3, 2−5, 2−7. Likewise,
to obtain a membership probability of at least 0.8, the minimal
required products are 5, 23 and 91, respectively.

Last, we compared the achieved false positive rate, false
negative rate and total cost in a CBF (with the regular query
policy) and while using our suggested query policy of the
Selective Counting Bloom Filter, as presented in Section V.
There is no change in the insertion policy of the CBF, allowing
the insertion of all elements, even with low a priori probability.
The results are presented in Table III. With the increase (by
a factor of 4) in memory, the performance of the CBF is the
same as that of the Bloom filter. This is because its regular
query policy cannot contribute to reduce the false positive rate.

Our suggested policy for the decision helps to reduce the
total cost by at most 99.42%. By comparing the query policy of
the Selective CBF to the results of the suggested query policy
in the Selective Bloom Filter (presented in Table II), we can
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(a) α = 100

Bloom Filter Generalized Bloom Filter Retouched Bloom Filter

bpe m fpr fnr cost fpr fnr cost fpr fnr cost
4 13312 1.47e-1 0.00 2.46e6 2.52e-2 6.46e-1 6.37e5 0.00 1.00 3.32e5
6 19968 5.63e-2 0.00 9.44e5 5.06e-3 7.35e-1 3.29e5 0.00 1.00 3.32e5
8 26624 2.17e-2 0.00 3.64e5 3.09e-4 8.65e-1 2.93e5 3e-6 1.00 3.32e5
10 33280 8.24e-3 0.00 1.38e5 1.35e-4 8.44e-1 2.83e5 8.87e-3 0.00 1.49e5

Selective Bloom Filter Selective Bloom Filter Selective Bloom Filter
(Only Insertion) (Only Query) (Insertion & Query)

bpe m fpr fnr cost fpr fnr cost fpr fnr cost
4 13312 4.94e-2 3.64e-1 9.49e5 2.20e-3 4.62e-1 1.90e5 3.08e-3 3.80e-1 1.78e5
6 19968 2.40e-2 2.24e-1 4.78e5 1.60e-3 3.85e-1 1.55e5 3.00e-3 2.31e-1 1.27e5
8 26624 9.28e-3 1.51e-1 2.06e5 2.29e-3 2.31e-1 1.15e5 2.31e-3 1.54e-1 9.00e4
10 33280 5.39e-3 7.64e-2 1.16e5 1.99e-3 1.54e-1 8.45e4 2.69e-3 7.69e-2 7.08e4

(b) α = 5

Bloom Filter Generalized Bloom Filter Retouched Bloom Filter

bpe m fpr fnr cost fpr fnr cost fpr fnr cost
4 13312 1.47e-1 0.00 2.46e6 2.53e-2 6.43e-1 4.34e5 0.00 1.00 1.66e4
6 19968 5.66e-2 0.00 9.50e5 5.06e-3 7.34e-1 9.70e4 0.00 1.00 1.66e4
8 26624 2.17e-2 0.00 3.64e5 3.04e-4 8.65e-1 1.95e4 0.00 1.00 1.66e4
10 33280 8.23e-3 0.00 1.38e5 1.33e-4 8.43e-1 1.63e4 0.00 1.00 1.66e4

Selective Bloom Filter Selective Bloom Filter Selective Bloom Filter
(Only Insertion) (Only Query) (Insertion & Query)

bpe m fpr fnr cost fpr fnr cost fpr fnr cost
4 13312 2.47e-2 5.24e-1 4.23e5 1.16e-4 7.69e-1 1.47e4 1.87e-4 5.38e-1 1.21e4
6 19968 7.90e-3 4.56e-1 1.40e5 9.1e-5 6.92e-1 1.31e4 2.44e-4 4.61e-1 1.18e4
8 26624 2.22e-3 3.83e-1 4.37e4 6.8e-5 6.15e-1 1.14e4 1.39e-4 3.84e-1 8.73e3
10 33280 1.21e-3 3.07e-1 2.53e4 1.22e-4 4.62e-1 9.72e3 1.52e-4 3.08e-1 7.67e3

TABLE II
COMPARISON OF FALSE POSITIVE RATE (FPR), FALSE NEGATIVE RATE (FNR) AND THE TOTAL COST FOR BLOOM FILTER, GENERALIZED BLOOM FILTER,

RETOUCHED BLOOM FILTER AND THE SUGGESTED SELECTIVE BLOOM FILTER WITH THREE VARIANTS. IN THE FIRST, THE a priori SET-MEMBERSHIP
PROBABILITY IS USED ONLY DURING THE INSERTION OF THE ELEMENTS, WHILE IN THE SECOND VARIANT IT IS USED ONLY IN THE QUERY PROCESS AND
IN THE THIRD ONE IT IS USED IN BOTH OF THEM. THE TOTAL NUMBER OF INSERTED ELEMENTS IS n = 256 · 13 = 3328 WITH a priori SET-MEMBERSHIP

PROBABILITIES OF 2−3, 2−4, ..., 2−15 AND |U | = 16775168.

see an additional improvement of up to 11.43%. This reduction
in the total cost is due to the more accurate calculation of the
membership probability based on the information on the exact
values of the counters. Such information is not available in
the Selective Bloom Filter.

C. Trace-Driven Simulations

We now want to explore the tradeoff of the false positive
rate and the false negative rate in the Selective CBF. To do
so, we conduct experiments using real-life traces recorded on
a single direction of an OC192 backbone link [36]. We used a
64-bit mix hash function [37] to implement the requested hash
functions. The hash functions are calculated based on the 5-
tuple (Source IP, Destination IP, Source Port, Destination Port,
Protocol).

The Selective CBF represents here, using 30 bits per el-
ement and 4 bits per counter, a set of n = 210 different
tuples that we encounter in a short period of 3614 µs. Our
queries are based on N = 220 tuples (that includes the
first n) that were encountered later on during a longer time

interval. This yields an a priori set-membership probability of
n/N = 210/220 = 2−10.

Figure 9(a) illustrates this tradeoff. The three dashed lines
draw the tradeoff achieved using the Selective CBF with the
k = 4, 5 and 6 hash functions. Three points are located on the
y-axis. They present, of course, the typical false positive rate
of the CBF where no false negatives are allowed. The rates
are 0.03086, 0.02850, 0.02908, respectively and the minimum
is achieved for k = 5 ≈ 30/4 · log(2). Thus, if WFN is large
enough and α→ ∞, the optimal number of hash functions is
k = 5.

We earlier showed that the membership probability is an
increasing function of the product of the k counters. In each
of these three lines, each point illustrates a different threshold
of the counters product such that a negative answer is returned
only if the product is smaller than the threshold. As explained
in Section V, in order to minimize the expected cost, each
value of α can be translated to a probability threshold of 1

α+1
by Theorem 4 and later on also to a product threshold. For
instance, for α = 2.4, the probability threshold is 1

α+1 = 10
34 .

For k = 5, the product threshold is 6 and the obtained false
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(a) Tradeoff of false positive rate vs. false negative
rate for 30 bits per element.

(b) Total cost of N queries in the CBF and the
Selective CBF. The cost of a false positive is 1,
and the cost of a false negative is α. Since the
CBF does not allow any false negatives, its cost
is constant and does not depend on α. For smaller
values of α, the improvement of the Selective
CBF is more significant.

(c) Total cost of N queries in the CBF and the
Selective CBF as a function of the number of bits
per element (bpe). The cost of a false positive is
1, and the cost of a false negative is α = 5. For
smaller values of bpe, the false positive rate of
the CBF is larger. The probability that its positive
indication is correct is lower, and the improvement
of the Selective CBF is more significant.

Fig. 9. Trace-Driven Simulations

positive and false negative rates are 0.00746 and 0.39258, re-
spectively. However, lower error rates of 0.00739 and 0.34766
can be obtained for k = 6 with the product threshold 10. Thus,
for such α, for instance, the optimal number of hash functions
is not the typical number of hash functions in a CBF.

Figure 9(b) compares the total cost of queries of the CBF
and the Selective CBF in this simulation as a function of
α. We again assume 30 bits per element and k = 5 hash
functions. Since the CBF does not allow any false negatives,
its total cost is constant and equals the number of obtained
false positives ϵ(N − n) = 29856 (where ϵ is the false
positive rate). For small values of α, such that α = 1 and
α = 5, the total costs of the Selective CBF are only 1024 and
4977, respectively. This is a relative reduction of 96.57% and
83.32%. The improvement may still not be negligible, even
for larger values of α. For instance, for α = 50 the total cost
is reduced by 12.09% to 26247. In practice, the α may reflect
the latency difference between an SRAM memory access and a
DRAM or an eDRAM (extended DRAM) memory access. If a
DRAM access is 12.5 times slower than an SRAM access [38],
then α = 12.5−1 = 11.5, and therefore the cost is reduced by
a factor of 3. Likewise, if an eDRAM access is 3 times slower
than an SRAM access [39], then α = 3− 1 = 2, and the total
cost is approximately reduced by an order of magnitude.

Figure 9(c) compares the total cost of queries of the CBF
and the Selective CBF in the simulation above, as a function
of the number of bits per element (bpe). For each value of
bpe, the optimal number of hash functions of the CBF is used
(in both schemes) and the results are presented for α = 5. If
less bits per element are used, the false positive rate of the
CBF is larger. The probability that its positive indication is
correct is lower, and the improvement of the Selective CBF is
more significant. Likewise, the tradeoff in the Selective CBF
is improved using more bits per element, and thus also its total
cost. In all cases, the Selective CBF achieves a lower total cost
than the CBF. For instance, if bpe=20, the cost of the CBF is
reduced from 98561 by 94.80% to 5122. If bpe=50, the costs
are 2690 and 1876, respectively. In this case, since the false
positive rate of the CBF is smaller, the relative improvement
drops to 30.26%.

IX. CONCLUSION

In this paper, we introduced the Bloom paradox and showed
that in some cases, it is better to return a negative answer
to a query of an element, even if the Bloom filter or the
CBF indicate its membership. We developed lower bounds on
the a priori set-membership probability of an element that is
required for the relevancy of the Bloom filter in its queries. We
also showed that the exact values of the CBF counters can be
easily used to calculate the set-membership probability. Last,
we showed that our schemes significantly improve the average
query cost.
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