
1330 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010

The Concurrent Matching Switch Architecture
Bill Lin, Member, IEEE, and Isaac Keslassy, Member, IEEE

Abstract—Network operators need high-capacity router archi-
tectures that can offer scalability, provide throughput guarantees,
and maintain packet ordering. However, current centralized
crossbar-based architectures cannot scale to fast line rates and
high port counts. On the other hand, while load-balanced switch
architectures that rely on two identical stages of fixed configura-
tion meshes appear to be an effective way to scale Internet routers
to very high capacities, they incur a large worst-case packet re-
ordering that is at best quadratic to the switch size. In this paper,
we introduce the concurrent matching switch (CMS) architecture,
which also uses two identical stages of fixed configuration meshes
with the same scalability properties as current load-balanced
routers. However, by adopting a novel contention-resolution ar-
chitecture that is scalable and distributed, the CMS architecture
enforces packet ordering throughout the switch. Using the CMS
architecture, we show that scalability, 100% throughput, packet
ordering, and ��� amortized time complexity with sequential
hardware per linecard can all be achieved. We further demon-
strate a delay analysis for the CMS architecture.

Index Terms—Concurrent matching switch (CMS), high-perfor-
mance switches, load-balanced routers, throughput guarantees.

I. INTRODUCTION

A. Background

N ETWORK operators need high-capacity router archi-
tectures that can offer scalability, provide throughput

guarantees, and maintain packet ordering. However, current
crossbar-based router architectures with centralized scheduling
and arbitrary per-packet dynamic switch configurations cannot
scale to fast line rates and high port counts. Recently, there has
been considerable interest in a class of switch architectures
called load-balanced routers [1]–[11]. These architectures
rely on two identical stages of fixed configuration meshes for
routing packets. Fig. 1 shows a diagram of a generic two-stage
load-balanced switch architecture. The first mesh connects the
first stage of input linecards to the center stage of intermediate
input linecards, and the second mesh connects the center stage
of intermediate input linecards to the final stage of output
linecards. As shown in [3], this class of architectures appears to

Manuscript received July 25, 2008; revised June 19, 2009; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor T. Wolf. First published
February 02, 2010; current version published August 18, 2010. This work was
supported in part by the ATS-WD Career Development Chair and an Alon
Fellowship. This work was presented in part at the 25th IEEE INFOCOM,
Barcelona, Spain, April 2006 and at the 3rd ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, Orlando, FL,
December 2007.

B. Lin is with the University of California, San Diego, La Jolla, CA 92093-
0407 USA (e-mail: billlin@ece.ucsd.edu).

I. Keslassy is with the Technion—Israel Institute of Technology, Haifa 32000,
Israel (e-mail: isaac@ee.technion.ac.il).

Digital Object Identifier 10.1109/TNET.2010.2040289

Fig. 1. Generic load-balanced switch architecture.

be a practical way to scale Internet routers to very high capaci-
ties and line rates. The scalability of this class of architectures
can be attributed to two key aspects. First, they do not require a
centralized scheduler: All queueing and decision-making func-
tions can be performed locally at each linecard in time.
Second, these architectures are built using two identical stages
of fixed configuration meshes whose deterministic interconnec-
tion patterns are independent of packet arrivals. Thus, there is
no need for arbitrary per-packet dynamic switch configurations,
which can be extremely difficult to achieve at high-speeds. The
use of fixed configuration meshes are particularly amenable
to scalable implementations with optics, as exemplified by
the -Tb/s reference design described in [3]. This reference
design is based on a fixed hierarchical mesh of optical channels
that interconnects linecards, each operating at a rate
of Gb/s.

Although the load-balanced router architecture originally
proposed in [1] is capable of achieving throughput guaran-
tees, it has the critical problem that packet departures can
be badly missequenced. This is detrimental to Internet traffic
since the widely used TCP transport protocol falsely regards
out-of-order packets as indications of congestion and packet
loss. Subsequently, several approaches have been proposed to
address the packet ordering problem. Most approaches [2]–[6]
are based on bounding the amount of packet reordering through
the switch and then using a finite reordering buffer at the output
to correct missequenced packets. However, these methods
require reordering buffers of size and the corresponding
quadratic increase in packet delays, where is the switch
size. Therefore, these approaches appear to be problematic,
especially for the large switch sizes that load-balanced switch
architectures target. In [7] and [8], other switch architectures
based on the load-balanced switch architecture were pro-
posed to address the packet ordering problem. However, these
approaches do not provide 100% throughput guarantees. In
addition, two load-balanced switch-based architectures that

1063-6692/$26.00 © 2010 IEEE

LIN AND KESLASSY: THE CONCURRENT MATCHING SWITCH ARCHITECTURE 1331

address packet reordering and provide 100% throughput guar-
antees are introduced in [9] and [10]. However, [9] relies on a
complex queue management algorithm, and [10] is based on a
centralized scheduler model. Therefore, both seem impractical
in large switches with unpredictable and dynamically changing
traffic. Finally, more recently, [11] independently introduced a
promising frame-based alternative approach that also addresses
packet reordering and provides 100% throughput guarantee
with low complexity.

In this paper, we introduce the concurrent matching switch
(CMS) architecture. It is also based on two identical stages of
fixed configuration meshes, so it inherits the same scalability
properties of existing load-balanced routers for switch fabric
implementation and is equally amenable to scalable implemen-
tation in optics. However, instead of bounding the amount of
packet reordering through the switch, the CMS architecture
enforces packet ordering throughout the switch by using a
novel scalable distributed load-balanced scheduling approach.
Instead of load-balancing packets, a CMS load-balances request
tokens among intermediate input linecards, where each inter-
mediate input linecard concurrently solves a local matching
problem based only on its local token count. Then, each inter-
mediate input linecard independently selects a virtual output
queue from each input linecard to service, such that the packets
selected can traverse the two fixed configuration meshes in
parallel without conflicts. Packets from selected virtual output
queues depart in order from the input linecards, through the
intermediate input linecards, and finally through the output
linecards. Each intermediate input linecard has time slots to
perform each matching, so the complexity of existing matching
algorithms can be amortized by a factor of . The exchange of
tokens and packets occurs over the two fixed uniform meshes
without the need for arbitrary dynamic switch configurations,
and all queueing and decision-making functions are performed
locally at each linecard using only local state information.

B. Contributions of the Paper

This paper makes the following major contributions.
• First, we prove that the CMS architecture can achieve

100% throughput under admissible arrival traffic by using
any stable matching algorithm at each intermediate input
linecard [12]–[18], including provably stable matching
algorithms that do not require speedups [16]–[18].

• Second, we prove a general delay bound for CMS archi-
tectures that is applicable to a broad class of matching al-
gorithms. As an example, we show that the CMS architec-
ture can be used with a frame-based scheduling algorithm
to achieve a provably low asymptotic packet delay bound
with a low complexity implementation.

• Third, we show that the CMS architecture is indeed scal-
able by showing that a class of provably stable matching
algorithms [17], [18] with good delay properties can be
amortized to complexity at each linecard using only
sequential hardware and local state information at each
linecard. The use of practical matching algorithms that
only require amortized complexity and sequential
hardware means that both algorithmic and computational
hardware complexities for each linecard are independent of

, which makes the architecture highly scalable when cou-
pled with the scaling properties of uniform meshes in op-
tics. As an example, we show that the use of a self-random-
izing algorithm called SERENA [18] in a CMS can achieve
provably 100% throughput, good average delays, and
amortized algorithmic complexity with sequential hard-
ware, all without speedup. Our simulations show notice-
ably lower average packet delays compared to existing
load-balanced switch architectures that maintain packet or-
dering.

• Finally, we show that the idea of load-balanced scheduling
used in the CMS architecture can also be used to improve
the scalability of scheduling algorithms even in the case of
single crossbar switch implementations.

C. Organization of the Paper

The rest of the paper is organized as follows. In Section II, we
introduce the CMS architecture. In Sections III and IV, we prove
that the CMS architecture indeed achieves 100% throughput
when used with a stable matching algorithm. In Section V, we
provide a general delay analysis for the CMS architecture. In
Section VI, we show that a low asympotic average delay bound
can be achieved with low complexity by means of a frame-
based scheduling method. In Section VII, we compare the av-
erage delay performance of the CMS architecture with existing
load-balanced router architectures on both nonbursty and bursty
traffic. In Section VIII, we briefly outline how load-balanced
scheduling can be used to improve the scalability of crossbar
switches. Finally, we conclude the paper in Section IX.

II. THE SWITCH ARCHITECTURE

In this section, we provide a high-level overview of the CMS
architecture. We defer to Sections III and IV for more detailed
discussions on the operation of the CMS architecture. Note
that throughout this paper, we assume that packets have a fixed
length and time is slotted.

A. Overview

The CMS architecture consists of three linecard stages that
are interconnected by two fixed uniform meshes, exactly like
the load-balanced switch architecture described in [1]–[11]. The
CMS architecture is depicted in Fig. 2. A high-level overview
of the switch operation is as follows.

1) In the basic load-balanced switch architecture proposed
in [1], incoming packets are uniformly load-balanced
across the intermediate input linecards at the center
stage where packets are buffered. Instead, in the CMS
architecture, incoming packets are mainly buffered in
virtual output queues at each input linecard. Specifically,
each input linecard maintains virtual output queues,

, one per output destination, as shown in
Fig. 2(a). Incoming packets to input destined for output
are buffered at their virtual output queue immediately
upon arrival.

2) Instead of spreading packets across the center stage, a
key idea in the CMS architecture is to first spread request
tokens to the intermediate input linecards at the center
stage instead of actual packets. Each request token acts

1332 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010

as a placeholder for its flow . The actual packets
are transferred later, based on matching decisions that are
made by the intermediate input linecards. Specifically,
each input linecard is periodically connected to a given
intermediate input linecard every time slots. For each
incoming packet to input destined for output , a request
token is immediately generated and sent to the
intermediate input linecard that is currently connected to
the input. In other words, the input linecard load-balances
request tokens among intermediate linecards in a cyclical
way that is influenced by the arrival time of each packet.

3) When a request token is received at an interme-
diate input linecard , the corresponding token counter at
intermediate input gets incremented. Specifically, each
intermediate input linecard maintains virtual token
counters, , one counter per each flow from
input to output , as shown in Fig. 2(b). The virtual token
counters are exactly analogous to the role of virtual output
queues in conventional input-queueing (IQ) or combined
input–output queueing (CIOQ) switches. However, instead
of queueing actual packets, a virtual token counter
keeps count of the number of request tokens that have been
received at intermediate input for flow .

4) Each intermediate input linecard then concurrently, and in-
dependently, solves a matching problem based on its own
virtual token counts that it maintains locally. It does not
need any global state information or any virtual token count
information from any other intermediate input linecard.
Any bipartite matching algorithm may be used with the
CMS architecture to perform this matching step, lever-
aging the well-developed body of work in this area. As we
shall see, each intermediate input linecard has time slots
to perform each matching step, and thus the algorithmic
complexity of the matching algorithm used may be amor-
tized by a factor of .

5) Based on the result of the matching step, each intermediate
input sends in parallel over the first mesh a grant token

to each input . The grant token indicates that the
request token counter is positive and that the corre-
sponding virtual output queue has been matched. In
other words, the grant token indicates that there was a de-
mand and that the demand has been answered. In addition,
token counters for which a grant token is generated
are decremented.

6) In response to the grant token received, each
input then sends the packet at the head of the corre-
sponding virtual output queue to intermediate input
over the first mesh. (Note that this packet is not necessarily
the one that generated the request token that triggered this
grant token. In other words, a request token corresponds
to a flow , not to a specific packet.) Then, the (up
to) packets sent by the inputs are temporarily stored in
a set of coordination slots at each intermediate input on
their path to the outputs. Specifically, each intermediate
input linecard maintains a set of coordination slots,

. As soon as the packets are fully received,
the intermediate input linecard forwards them in parallel
over the second mesh to the output linecards.

Fig. 2. The CMS architecture. (a) Input linecard. (b) Intermediate input
linecard.

7) Finally, packets are received at output linecard , where
they depart immediately from the router.

As we shall see in Section III, using the above operation, the
CMS architecture is strongly stable as long as a strongly stable
matching algorithm is used for Step 4. In particular, for any
admissible Bernoulli i.i.d. arrival traffic, CMS guarantees that
the number of packets queued in the switch is not expected to
grow to infinity. The proof relies on the interesting fact that the
token traffic received by any intermediate input during time
slots has the same distribution as the packet traffic received by
the router during a single time slot.

However, it is well known that a cyclical adversary arrival
traffic can significantly reduce the throughput of the switch.
Therefore, we will provide below a deterministic mechanism to
fight the negative effects of cyclical adversary traffic patterns.

B. Adding Flow-Splitting

To ensure that the CMS architecture is stable for any admis-
sible traffic, we need to ensure that each input sends exactly

of the request tokens generated for flow to each in-
termediate input , thereby guaranteeing that exactly of the
packets for flow will pass through intermediate input .

To provide the guarantee that we evenly spread request to-
kens according to their flows, we extend the CMS architec-
ture by adding a flow splitter and a set of load-balancing re-
quest token queues to each input linecard, as shown in Fig. 3.
Specifically, each input linecard maintains request token
queues, , one per intermediate input , as shown
in Fig. 3(a). For each flow from input to output , a pointer
keeps track of the last request token queue in which a request

LIN AND KESLASSY: THE CONCURRENT MATCHING SWITCH ARCHITECTURE 1333

Fig. 3. The CMS architecture with flow-splitting. (a) Input linecard. (b) Inter-
mediate input linecard.

token was placed, and the next request token is always placed
in the next request token queue in round-robin order.

Using a flow-splitter, request tokens are distributed based
on the order of the corresponding packet in its respective flow
rather than based on the packet’s arrival time. As we shall see
in Section IV, the size of each request token queue is
guaranteed to be less than with flow-splitting. The rest of
the switch operation is as described above in Section II-A. As
detailed in Section IV, when flow-splitting is used, the CMS
architecture is stable (hence providing 100% throughput) for
any admissible traffic satisfying a strong law of large numbers
as long as a stable matching algorithm is used.

C. Mesh Implementation

In the CMS architecture, the two uniform meshes can also
be replaced by a single mesh running twice as fast, as in the
load-balanced switch architecture [3], with each linecard now
containing three logical parts (input, intermediate input, and
output). Fig. 4 depicts the single combined mesh, which can
be used either with (as depicted) or without flow-splitting. In
the remainder of the paper, unless otherwise noted, we will still
refer to the three logical parts as input, intermediate input, and
output, respectively, and we will refer to the physical linecard
that combines all three logical parts as the combined linecard.

Specifically, each pair of combined linecards in the CMS
architecture are interconnected by four fixed-rate channels:
two control channels and two data channels. The first control
channel is used to transmit request tokens from input to
intermediate input . This request control channel only needs
to operate at a rate of , where is the ratio of the token
size to the fixed packet size. Since it is clear that a request token

received at intermediate input is from input , the

Fig. 4. The CMS architecture using a single combined mesh, shown with� �

�.

request token only needs to represent the output destination ID
. For a switch size of , the request token can be represented

in bits. Suppose the packet size is . Then

(1)

For example, with , bits (64 bytes), then
, so the size of the token is negligible relative

to the packet size.
The second control channel is used to transmit grant tokens

from intermediate input to input . This grant control channel
also only needs to operate at a rate of . This is because it
is again clear that a grant token received at input is
from intermediate input . Therefore, a grant token only needs
to represent the output destination so that input knows to
service its th virtual output queue. Thus, the grant token can
also be represented in bits.

Besides the two control channels, the two data channels are
used to transfer packets. The first-stage data channel is used to
transfer a packet from input to intermediate input over the
first logical mesh, and the second-stage data channel is used
to transfer a packet from intermediate input to output over
the second logical mesh. Each data channel operates at a fixed
rate of . Combining all four channels together, each pair of
combined linecards are interconnected with a combined band-
width of . For example, with and

bits, the required combined bandwidth for connecting
each pair of combined linecards is

, which is approximately the same as re-
quired for the load-balanced router described in [3].

As described in [3] and [4], the uniform mesh model can be
readily implemented at very high capacities and line rates using
different types of switches, such as optical meshes with space
and/or wavelength multiplexing, as well as time-multiplexed
cyclic permutation switches (also called round-robin switches).

Also, note that we can improve the total propagation delay
model by time-multiplexing each control channel of rate
with a corresponding data channel of rate onto a single

1334 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010

channel of rate . This would reduce the overall best-
case propagation delay (including matching time) from to

.

D. Speedup

It is possible to generalize the CMS architecture by using
some speedup . In the CMS architecture using speedup, time
slots are replaced by phases, with phases per time slot.
Data channels of rate (respectively control channels
of rate) are replaced by data channels of rate
(respectively control channels of rate), and packets
(respectively tokens) are sent at each time slot whenever a
single packet (respectively token) was sent without speedup.
Furthermore, outputs will hold queues because of the speedup.
As we shall see in Section III-E, the CMS architecture with
speedup is stable when using any matching algorithm that is
stable with speedup .

E. Linecard Complexity

Each linecard only requires information available locally to
perform all of its decision and queueing functions. The most
complex part of the linecard implementation is the implemen-
tation of the matching step, which is logically performed at
each intermediate input linecard. As mentioned, any bipartite
matching algorithm may be used with the CMS architecture,
and each intermediate input linecard has time slots to
perform each matching step. Therefore, the algorithmic com-
plexity of the matching algorithm used is amortized by a factor
of . For example, a self-randomizing matching algorithm
called SERENA [18] with algorithmic complexity has
been shown to provide both stability and good delay properties.
Amortized over time slots, the algorithmic complexity
reduces to . Since SERENA only requires sequential
hardware without speedup, the hardware complexity at each
linecard can be made independent of . All other control func-
tions in the linecards also only require constant time operation,
which makes the architecture both scalable and practical to
implement.

In addition to control functions, memory is required for tem-
porary storage. The bulk of the memory required is for im-
plementing the virtual output queues at the input linecards to
provide temporary buffering at times of congestion. Besides
these congestion buffers, the memory required for the remaining
storage functions is relatively modest. In particular, the number
of coordination slots and virtual token counters required at each
intermediate input linecard is fixed given , i.e., independent
of the load and of the traffic pattern. In the case where a flow-
splitter is used, as depicted in Fig. 3, memory is required to
implement the request token queues. Since the tokens in these
request token queues only need to encode output destinations,
the size of these tokens is negligible relative to the size of the
packets, as noted in (1).

F. Properties of the CMS Architecture

The CMS architecture has the following properties.
• Packet ordering is maintained throughout the switch. The

CMS architecture enforces packet ordering throughout the
switch by making sure that once a packet is matched for de-

parture from the input stage, it arrives at its corresponding
output linecard after a fixed propagation delay, where it
then subsequently departs. The matching step performed
by the intermediate input linecards guarantees that a packet
can traverse the two stages of meshes without any con-
tention once matched. Packets from selected virtual output
queues in turn depart in order from the input linecards,
through the intermediate linecards, and finally through the
output linecards.

• CMS is stable. As detailed in Sections III and IV, CMS
provides 100% throughput under diverse admissible traffic
arrival patterns, both with and without flow-splitting.

• CMS is practical to implement. As discussed in
Sections II-C and II-E, fixed configuration meshes can be
scaled to very high speeds and port counts, and the amor-
tized algorithmic complexity of all linecard operations can
be made constant. The combination of these two factors
makes the CMS architecture practical to implement and
highly scalable.

• Priorities are practical to implement. It is straightforward
to extend the CMS architecture to support priority levels
with virtual output queues at each input instead
of . The priority levels can, for example, be used to
distinguish different service levels. Like a conventional IQ
or CIOQ switch, when a flow from input to output is
selected in a match, the virtual output queue from input
to output with the highest priority level is serviced.

III. STABILITY OF THE CMS ARCHITECTURE

In this section, we prove that the CMS architecture is stable
when using any stable matching algorithm and apply this result
to specific stable matching algorithms.

A. CMS Architecture Model

Consider a CMS architecture with linecards. We will use
standard notations and assumptions developed in the literature
[4], [10], [12].

We will first consider the switch model without speedup.
Time is slotted and packets arrive to the switch at the beginning
of a time slot. Each packet arrives at some time slot to some
input and is destined to some output . Upon the arrival of
the packet, a new request token is created for the intermediate
input that is connected with input at time . The request
token is immediately sent to this intermediate input . We will
say that the token belongs to token flow .

For the sake of simplicity, we will decompose the scheduling
process into five consecutive phases taking time slots each,
corresponding to the two control channels, the two data chan-
nels, and the matching phase: (a) transmission of request tokens;
(b) matching; (c) transmission of grant tokens; (d) transmission
of packets through the first mesh; and (e) transmission of packets
through the second mesh. We refer to [10] for a discussion on
the practicality of this model.

(a) At the start of time slot , after packet arrivals, each input
linecard sends at most one request token to intermediate
input linecard , where

(2)

LIN AND KESLASSY: THE CONCURRENT MATCHING SWITCH ARCHITECTURE 1335

These request tokens of size are sent in parallel over
their respective request control channels at rate .
Consequently, they take time slots to propagate, and
intermediate input linecard receives up to request
tokens in parallel by the end of time slot

(3)

(b) At the start of time slot after reception of the
request tokens, each intermediate input linecard applies
its matching algorithm to determine a one-to-one match
between the set of inputs and the set of outputs . As
explained later, we assume that this matching algorithm
takes time slots to run and is therefore done by the end
of time slot

(4)

(c) At the start of time slot after the matching al-
gorithm is completed, each intermediate input linecard
sends up to grant tokens of size in parallel to the
input linecards over their respective grant control chan-
nels at rate . These grant tokens take time slots
to propagate, and each grant token reaches input
linecard by the end of time slot

(5)

Note that grant tokens are only generated if there exists
some corresponding request token, i.e., if the virtual token
counter is positive. Consequently, each grant token gener-
ates a later departure of a packet.

(d) At the start of time slot after reception of grant
token from intermediate input linecard , input
linecard sends the head-of-line packet of virtual output
queue to intermediate input linecard . The inter-
mediate input linecard is selected following the equation
used by the control channel [(2)]. Note that

(6)

which corresponds indeed to the intermediate linecard
that granted the token, as indicated in (2). These packets
are sent in parallel over the first mesh at rate . Conse-
quently, they take time slots to propagate, and interme-
diate input linecard receives up to packets in parallel
by the end of time slot

(7)

(e) Finally, at the start of time slot intermediate
input linecard sends up to packets in parallel over
the second mesh to the output linecards, including at
most one packet to each output linecard from the corre-
sponding slot . Each output linecard then receives
the packet sent by intermediate input linecard by the end
of time slot

(8)

and the packet departs immediately from the router.
Incidentally, note that the delay between the time slot at which

input sends its packet and the time slot at which the packet
finishes to arrive at output is

(9)

which is completely independent of time slot and intermediate
input . As noted before, this ensures that there is no reordering
since a packet sent first also arrives first.

B. Notations

Let denote the cumulative number of request tokens
created for token flow by time slot . In other words,

is the number of packets arrived by time slot to input
linecard , destined to output linecard , and for which the token
request is destined to intermediate input linecard . We adopt the
convention that for all .

Similarly, let denote the cumulative number of re-
quest tokens for flow arrived to intermediate input by
time slot , denote the cumulative number of grant to-
kens generated for flow by time slot , and
denote the cumulative number of packets corresponding to flow

and having departed the router by the end of time slot .
As noted in the above model, in the CMS architecture, each re-
quest token generated at time arrives at the intermediate input
at the end of time slot , and therefore

(10)

Similarly, each grant token generated at time corre-
sponds to a packet departure at the end of time slot ,
and therefore

(11)

We also want to define the number of request tokens and
packets queued in the switch. Let

(12)

denote the cumulative number of request tokens for flow
that are still queued (have not yet been granted) by time slot ,
and let

(13)

denote the cumulative number of packets for flow that
are still queued by time slot .

Finally, let denote the cumulative number of arrivals
to input by time slot of packets destined to output . Then

(14)

Similarly, the cumulative number of packet departures from the
router will be denoted as

(15)

1336 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010

C. Definition of Strong Stability

We will now prove the strong stability of the CMS architec-
ture by relying on the Lyapunov method. For the sake of con-
ciseness, we will not develop again the whole framework of
this method; the interested reader can refer to the large litera-
ture about Lyapunov techniques and notations in switches [13],
[16], [17], [19].

We assume that the packet arrival process is Bernoulli i.i.d.,
such that at each time slot, the probability that a packet arrives at
input and is destined for output is provided by a nonnegative
traffic matrix . Furthermore, we assume that the arrival
matrix is strictly doubly substochastic (admissible), i.e., for all

(16)

We can now introduce the definition of strong stability.
Definition 1 (Strong Stability): A switch is said to be strongly

stable if, under the Bernoulli i.i.d. admissible packet arrival
process defined above, the expected number of packets queued
in the switch is bounded, i.e.,

(17)

D. Strong Stability Theorem

The following theorem establishes that when each interme-
diate input linecard uses a strongly stable matching algorithm,
then the CMS architecture is strongly stable as well. Please refer
to Appendix A for the proof.

Theorem 1 (CMS Strong Stability): CMS is strongly stable
when using any strongly stable matching algorithm.

In particular, this theorem applies to the maximum weight
matching (MWM) scheduling algorithm, which is known to be
strongly stable [16].

Corollary 1 (CMS-MWM): CMS is strongly stable when
using MWM.

Similarly, this theorem applies to the SERENA scheduling
algorithm, which is known to be strongly stable as well [18].

Corollary 2 (CMS-SERENA): CMS is strongly stable when
using SERENA.

As discussed in Section II-E, SERENA can be amortized to
time complexity using only sequential hardware without

speedup (independent of the switch size) at each linecard, thus
making the implementation both scalable and practical to re-
alize. As we shall see in Section VII, good average delay results
can be achieved using this matching algorithm.

E. Stability With Speedup

As discussed in Section II-D, the CMS architecture can be
generalized to operate under some speedup of . For more in-
formation on how to implement speedup, refer to [10]. As the
following theorem shows, strong stability of a matching algo-
rithm extends to the CMS architecture when using speedup as
well. The proof is in Appendix B.

Theorem 2 (Speedup): The CMS architecture with speedup
is strongly stable when using any matching algorithm that is
strongly stable with speedup .

In particular, this theorem applies to maximal matching algo-
rithms such as iSLIP [14] since they are known to be stable with
speedup two [13].

Corollary 3 (CMS-Maximal): CMS is strongly stable when
using any maximal matching algorithm and speedup 2.

IV. STABILITY OF CMS WITH FLOW-SPLITTING

We proved in the previous section that the CMS architecture
is strongly stable when using a strongly stable matching algo-
rithm. In this section, we prove that the CMS architecture with
flow-splitting is stable as well when using stable matching al-
gorithms. In particular, we will prove the stability of CMS with
flow-splitting using fluid models (we call it stability to distin-
guish from the strong stability defined previously and based on
Lyapunov models). We will then apply this result to specific
strongly stable matching algorithms.

A. Definition of Stability

The CMS architecture model and notations with flow-split-
ting are the same as the CMS model and notations defined pre-
viously.

As in [12], we assume that the arrival processes satisfy a
strong law of large numbers (SLLN): For all , with proba-
bility 1

(18)

where forms the arrival rate matrix. This occurs,
for instance, if they are jointly stationary and ergodic with ar-
rival rates . Furthermore, we assume that the arrival matrix
is doubly substochastic (admissible), i.e., for all

(19)

Definition 2 (Stability): A switch is said to be stable if under
any arrival process satisfying (18) and (19); then, for all ,
with probability 1

(20)

B. Stability Theorem

The following theorem establishes that when each interme-
diate input linecard uses a stable matching algorithm, then the
CMS architecture with flow-splitting is stable as well. It is
proved in Appendix C.

Theorem 3 (CMS Stability With Flow-Splitting): CMS with
flow-splitting is stable when using any stable matching algo-
rithm.

In particular, this theorem applies to the MWM scheduling
algorithm [16]. MWM is known to be stable [12].

Corollary 4 (CMS-MWM): CMS with flow-splitting is stable
when using MWM.

LIN AND KESLASSY: THE CONCURRENT MATCHING SWITCH ARCHITECTURE 1337

C. Speedup

We saw how to generalize the CMS architecture by using
some speedup . We can do the same for CMS with flow-split-
ting. As the following theorem shows, stability of a matching
algorithm extends to the CMS architecture with flow-splitting
when using speedup as well. The proof is in Appendix D.

Theorem 4 (Speedup): The CMS architecture with flow-split-
ting and speedup is stable when using any matching algorithm
that is stable with speedup .

In particular, this theorem applies to maximal matching algo-
rithms such as iSLIP [14] since they are known to be stable with
speedup two [12].

Corollary 5 (CMS-Maximal): CMS with flow-splitting
is stable when using any maximal matching algorithm and
speedup 2.

V. GENERAL DELAY ANALYSIS

In Sections III and IV, we showed that the CMS architecture
is indeed strongly stable or stable when used with a strongly
stable or stable matching algorithm, respectively. In this sec-
tion, we extend the theoretical analysis by analyzing the av-
erage delay of a CMS. In Section IV, the stability condition
only requires that the arrival processes satisfy a strong law of
large numbers in that the average rate of a flow between input
and output converges to some rate as time approaches in-
finity, and that the corresponding arrival matrix is
doubly substochastic (admissible). However, the average delay
under this assumption is not well-defined since the switch can
be “overloaded” for an arbitrary, albeit temporary, amount of
time. Here, we focus on deriving an average delay bound under
the assumption that the packet arrival process to each input is
Bernoulli i.i.d., and that the probability that a packet arrives to
input for output at any time slot is provided by an admis-
sible traffic matrix. Under this assumption, the following the-
orem establishes the average delay of a CMS with a strongly
stable matching algorithm. Please refer to Appendix E for the
proof.

Theorem 5 (CMS Delay): Given an admissible Bernoulli i.i.d.
arrival process, let be a strongly stable matching algorithm
with average packet delay (waiting time) of in a single
switch. Then, a CMS using is also strongly stable, with an
average delay of .

Under admissible Bernoulli i.i.d. traffic, given some fixed
load, the average delay of output-queued switches is known to
be upper-bounded by a constant, independently of [20]. Fur-
thermore, using a speedup of 2, there exist matching algorithms
that can emulate output-queued switches [21]. Therefore, ap-
plying Theorem 5 to these matching algorithms, we obtain the
following result.

Corollary 6 (Achievable Delay With Speedup 2): CMS can
achieve an average packet delay with a speedup of 2.

VI. FRAME-BASED SCHEDULING

In the previous section, we provided a general delay bound
for a CMS with a strongly stable matching algorithm under a
Bernoulli i.i.d. packet arrival process. Although an av-
erage packet delay can be achieved when a CMS is used with

a matching algorithm that emulates output-queueing [21], the
time complexity is too high even when amortized by a factor
of . In this section, we seek to show that a low asymptotic
average packet delay bound could be provably achieved with a
low-complexity scheduling algorithm. In particular, a fair-frame
scheduling algorithm was proposed in [20] that can achieve an
average waiting time that is logarithmic with respect to
the switch size —i.e., . Therefore, by Theorem 5,
the average packet delay of a CMS using the fair-frame sched-
uling algorithm is . We show in this section that the
amortized time complexity of a CMS with an improved version
of fair-frame scheduling can be reduced to just ,
which is nearly constant and, hence, scalable.

The rest of this section is organized as follows. We first sum-
marize the fair-frame scheduling algorithm proposed in [20].
We then show that the CMS architecture can implement the
fair-frame scheduling algorithm to achieve average
delay with amortized time complexity. Then, we
improve on the time complexity by proposing an alternative
frame decomposition formulation based on edge coloring that
can achieve the same delay bound, but with a lower complexity
of .

A. Fair-Frame Scheduling Algorithm

The main idea of the fair-frame scheduling algorithm pro-
posed in [20] is the following. Given some random (Poisson or
Bernoulli i.i.d.) packet arrivals, there exists an integer frame size
of consecutive time slots such that the probability of oversub-
scription at any output is negligible. It was shown in [20] that,
for a specified demand load upper bound and a switch size

, logarithmic average delay can be achieved if we choose the
minimum frame size

(21)

where , and the probability of overflow satisfies

(22)

It was also shown that can be chosen such that
remains .

Let be the arrival matrix under random input for frame
of consecutive time slots. The fair-frame scheduling algo-
rithm works by scheduling on a frame-by-frame basis as
follows:

1) In the first frame, the initial permutation matrices are
chosen at random.

2) In the th frame, the maximum row and column sum
is computed for the previously arrived frame .

3) If , then is augmented with null packets
to form so that all row and column sums are .
Otherwise, any arriving packet that exceeds packets to
an output is stripped off from to overflow queues to
form .

4) is scheduled during frame by means of max-
imum size matching at each time slot, which is guaranteed
to clear in time slots.

1338 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010

5) If , uniform random scheduling is performed on
the remaining slots to serve the overflow queues. Repeat
from Step 2.

The main complexity is in Step 4, where the complexity of
maximum matching is [22], with being the
number of nonzero entries in , which is
since is . Therefore, the complexity of Step 4 is

. Two optimizations to the above algorithm
were outlined in [20]. First, in Step 3, instead of augmenting

with null packets, it can be augmented with packets from
the overflow queues. Second, in Step 5, if , and the
overflow queues are empty, then dynamic frame sizing can be
employed by starting immediately on the next frame.

B. Frame Scheduling for CMS

As shown in Sections III and IV, any scheduling algorithm
can be used with the CMS architecture—and for any strongly
stable scheduling algorithm, the corresponding CMS is also
strongly stable. Furthermore, it has been shown in [20] that the
fair-frame scheduling algorithm is strongly stable. Therefore, a
CMS based on the fair-frame scheduling algorithm is strongly
stable as well, as stated in the following theorem. The proofs
for all theorems on frame-based scheduling are in Appendix F.

Theorem 6: CMS using fair-frame scheduling is strongly
stable and achieves average delay.

We now analyze the complexity of CMS using frame-based
scheduling.

Theorem 7: The amortized time complexity of CMS using
fair-frame scheduling at each linecard is .

C. Frame Decomposition via Edge Coloring

In this section, our objective is to provide the same delay guar-
antees as with the above fair-frame scheduling algorithm, but
with a smaller complexity. The key idea is that we replace the
on-the-fly maximum matches done in Step 4 of the fair-frame
scheduling (Section VI-A) by using edge coloring. We will first
apply the results to the typical single-crossbar switch case, and
then expand them to the CMS architecture.

Our objective is to perform a frame decomposition of
into a sequence of permutation matrices. However, instead
of scheduling during frame by means of maximum
matching, the actual sequencing of the permutation matrices de-
rived for is not carried out until during frame . This
way, the frame decomposition of by means of edge col-
oring can be performed during frame , thus amortizing
its time complexity over several time slots.

Theorem 8: The complexity of decomposing in a
single-crossbar switch is .

The complexity improves upon the
complexity at the expense of one frame

delay, but the average delay remains logarithmic. We can now
state that in a typical single-crossbar switch, the edge coloring
frame decomposition will achieve the same asymptotic average
delay as the fair-frame decomposition algorithm, with a smaller
complexity.

Theorem 9: The edge coloring frame decomposition algo-
rithm can achieve average delay in a single-crossbar
switch.

It is easy to see that the two optimizations proposed in [20]
can also be similarly applied with our edge coloring frame de-
composition algorithm, namely can be augmented with
packets from the overflow queues, and, after the decomposition
of a frame, we can start decomposing immediately the next com-
pleted frame via edge coloring. Moreover, with edge coloring,
there is no need to augment with null packets.

We can now apply the edge coloring results to the CMS archi-
tecture. We will show that CMS using edge coloring frame de-
composition achieves the same average delay, but
a smaller amortized time complexity of instead of

.
Theorem 10: CMS using edge coloring frame decomposition

is strongly stable and achieves an average delay
bound .

Theorem 11: The amortized time complexity of CMS
using edge coloring frame decomposition at each linecard is

.

VII. SIMULATION RESULTS

In this section, we present the results of various simulations
that we have performed to verify our theoretical results and ob-
servations in the previous sections.

In our first set of experiments, we consider a uniform traffic
model where packets arriving to each input have a uniform dis-
tribution of output destinations. That is, the probability that a
packet arriving at input has output destination is uniformly

. In this first set of experiments, we consider a Bernoulli
i.i.d. arrival process. Using the CMS architecture, we compare
results using three matching algorithms. The first is a self-ran-
domizing matching algorithm called SERENA [18]. We will
use this matching algorithm as the reference algorithm for the
CMS architecture because it guarantees 100% throughput for
all admissible Bernoulli i.i.d. traffic with no speedup, it has
good delay properties, and it can be amortized to com-
plexity with sequential hardware for scalability. The second is
the widely used iSLIP [14] algorithm. We have included iSLIP
for comparisons because it is often used as a reference matching
algorithm for performance. Although widely used and effec-
tive, it should be noted that it requires parallel hardware, which
means that the amount of processing hardware per linecard in
the CMS architecture would be directly dependent on , hence
limiting scalability. The third is the MWM algorithm, which is
known to achieve 100% throughput without speedup and very
good average delays. Though impractical to implement at high
speeds, we have also included it for comparisons.

In addition to results using different matching algorithms
with the CMS architecture, we have also included in this first
set of experiments simulation results on average delay under
the uniform Bernoulli traffic model for the originally proposed
load-balanced switch with no packet ordering guarantees [1],
the frame-aggregation-based method called uniform frame
spreading (UFS) [4], and the frame-aggregation-based method
called full-ordered frame first (FOFF) [4].

Simulation results for this first set of experiments are shown
in Fig. 5. Several observations can be made in this first set of
experiments.

LIN AND KESLASSY: THE CONCURRENT MATCHING SWITCH ARCHITECTURE 1339

Fig. 5. Average delay under the uniform Bernoulli traffic model. Switch size
is � � ��.

Fig. 6. Average delay under the uniform Pareto traffic model. Switch size is
� � ��.

• First, the average delay of a CMS with SERENA is
about the same as a CMS with MWM under the uniform
Bernoulli traffic model, even though SERENA is much
less complex to implement than MWM. This demonstrates
that the CMS architecture can achieve good results using
an amortized time matching algorithm. SERENA
also performs better than iSLIP when used in the CMS
architecture, especially under heavy load.

• Second, the average delay of a CMS with SERENA under
uniform Bernoulli traffic is about the same as the basic
load-balanced switch. For instance, as explained before, at
light loads CMS requires a propagation delay of some ,
while the basic load-balanced switch requires some .
However, unlike the basic load-balanced switch that can
badly missequence packets, the CMS architecture guar-
antees packet ordering and does not require an additional
delay to reorder packets.

• Third, as expected, UFS incurs a high average packet delay
under light load because of the need to accumulate full
frames.

• Finally, although the average delay of the CMS architec-
ture converges to the average delays of UFS and FOFF as
the load approaches to 1.0, the average delay of the CMS
architecture is much lower for load . Therefore,
low average packet delays can be achieved with only mod-
erate speedup.

The same trends can be seen for different switch sizes. In the
next set of experiments, we consider average delays in response
to bursty traffic. Instead of a Bernoulli i.i.d. arrival process,
packets arrive in bursts. In particular, we ran simulations using
random burst lengths that are chosen independently using the
following (truncated) Pareto distribution:

for

where is the probability that a burst length of length is
chosen, and

is the normalization constant. Using this Pareto distribution, the
burst lengths can vary from 1 to 10 000 packets. We again con-
sider a uniform traffic model where packets arriving to each
input have a uniform distribution of output destinations. The
simulation results for this set of experiments are shown in Fig. 6.
In this set of experiments, we can make the following observa-
tions.

• First, we again see that the performance of the CMS archi-
tecture with SERENA and MWM are about the same, and
the performance of a CMS with SERENA is better than the
performance with iSLIP.

• Second, the performance of a CMS architecture is com-
parable to a basic load-balanced switch without packet or-
dering guarantees.

• Third, UFS incurs a high average packet delay under light
load.

• Finally, although the average delay of the CMS architec-
ture converges to the average delays of UFS and FOFF as
the load approaches to 1.0, the average delay of the CMS
architecture steadily declines under bursty traffic as load
decreases. Therefore, the performance of a CMS architec-
ture can be improved with speedup.

We observe the same trends for different switch sizes.1

VIII. LOAD-BALANCED SCHEDULING FOR CROSSBARS

We briefly explore in this section how some of the ideas
from the CMS architecture can be applied to traditional
single-crossbar switch architectures. In particular, the CMS
architecture has been designed to address two sources of bot-
tlenecks in traditional centralized crossbar-based architectures.
First, the use of fixed configuration meshes that are amenable

1Though not shown due to space limitations, results have been obtained for
CMS-SERENA with � � ���, and the same trends can be observed with
respect to the basic load-balanced switch, UFS, and FOFF.

1340 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010

to optics addresses the scalability limitations of traditional
electronic crossbars that require frequent reconfigurations. It
has been shown in [3] that the use of fixed configuration meshes
in optics can be scaled to very high line rates and port counts.
Second, although the CMS architecture also uses matching
algorithms for conflict resolution, it reduces the complexity
of the matching algorithm used by load-balancing the sched-
uling problem across slower schedulers. This second idea
is also applicable to improving the practicality of traditional
crossbar-based architectures. In particular, for moderate-size
high-performance switches with relatively small port counts,
electronic crossbar fabrics can be made fast enough. However,
the performance of these crossbar switches is often limited by
the performance of the centralized scheduler. For example,
MWM is known to be very effective, but its algorithmic
complexity is prohibitive. We can apply the load-balanced
scheduling idea developed for the CMS architecture to help
alleviate the time complexity of centralized schedulers by
load-balancing the work across slower schedulers, and the
time complexity of the scheduling algorithm used would be
amortized by a factor of . does not need to be equal to

—it can be chosen to provide the necessary reduction in time
complexity. All the theoretical results developed in Sections III
and IV and proved in the appendices directly apply.

IX. CONCLUSION

In this paper, we proposed the concurrent matching switch
as a scalable two-stage switch architecture that guarantees
packet ordering. From a scalability perspective, the concur-
rent matching switch architecture uses the same two stages
of fixed uniform meshes as in current load-balanced switch
architectures. These fixed uniform meshes do not require
arbitrary per-packet switch configurations and are amenable
to scalable implementation in optics. To enforce packet or-
dering throughout the switch, the proposed architecture uses
a novel scalable distributed contention resolution approach
where each linecard in the architecture independently solves
a local bipartite matching problem that requires only local
state information. The proposed architecture can then leverage
the large, well-developed, and still progressing, body of work
on scheduling algorithms to solve the matching problem. In
particular, we showed that the concurrent matching switch
can achieve 100% throughput guarantees using any stable
matching algorithms, including practical algorithms that do
not require speedup. We showed that each linecard has
time slots to perform each matching step, and therefore the
complexity of current matching algorithms can be amortized by
a factor of . Specifically, we showed that a class of provably
stable matching algorithms with good delay properties can be
amortized to complexity using only sequential hardware.
Therefore, the amortized complexity of the matching step can
be made independent of the switch size. Finally, we showed
that good average delays compared to existing load-balanced
switch architectures can be achieved.

In a way, the concurrent matching switch architecture tries to
combine the advantages of load-balanced routers with the well-

developed body of work on matching algorithms for contention
resolution to achieve a new scalable solution that exploits the ad-
vantages of both classes of architectures. From this perspective,
we believe that this work enables router companies that have in-
vested significant resources in developing a matching algorithm
with good throughput guarantees to scale their routers by com-
bining several routers together without losing their throughput
guarantee, the packet order, or, more simply, their algorithm
along the way. Moreover, this novel architecture opens the pos-
sibility for a great deal more research in this direction.

APPENDIX A
PROOF OF THEOREM 1

Theorem 1 states that if the matching algorithm applied on
the request tokens at each intermediate input is strongly stable,
then the CMS architecture is strongly stable as well.

We want to study the arrival process of token requests at each
of the intermediate input linecards. In order to do so, we will
first define a new time reference that is internal to each inter-
mediate input. At each intermediate input , tokens can only be
received and granted (respectively packets can only arrive and
depart) every time slots [(2)]. Therefore, at each intermediate
input, we will cut time into frames of time slots. We will de-
note the new frame-based time by the symbol (where is the
frame number, while is the time slot number). Also, for each
function , when there is no confusion possible, we will use
for with so as to avoid introducing new notations.

Proof of Theorem 1: Consider some intermediate input .
We will show that the traffic it receives at each frame period has
the same distribution as the traffic it would receive during a time
slot if the arrival traffic had a rate matrix .

First, at each frame period, each input is connected with
intermediate input exactly once during a single time slot [(2)].
During this time slot, it receives at most one packet according
to the Bernoulli i.i.d. process defined above using arrival matrix

and converts this packet into a request token. Therefore, the
request token arrival traffic to intermediate input during any
frame-slot follows exactly the same distribution as the packet
arrival traffic to the router during any time slot.

Consequently, since the matching algorithm is strongly stable
(Definition 1), at each intermediate input

(23)

However, as defined in the architecture model, the number of
packets queued in the switch is

(24)

LIN AND KESLASSY: THE CONCURRENT MATCHING SWITCH ARCHITECTURE 1341

where we use the fact that at most packets (i.e., request to-
kens) can arrive to the switch at each time slot. Consequently,
we also have

(25)

which proves the strong stability of the CMS architecture.

APPENDIX B
PROOF OF THEOREM 2

Proof of Theorem 2: The proof using speedup is exactly the
same as the one without speedup. In fact, when using speedup,
consider internally replacing time slots by phases. All the prop-
erties of the internal components of the switch are exactly the
same, and likewise the same conclusion follows. We do not re-
peat all the equations for the sake of clarity.

APPENDIX C
PROOF OF THEOREM 3

Theorem 3 states that if the matching algorithm applied on
the request tokens at each intermediate input is stable, then the
CMS architecture with flow-splitting is stable as well. To prove
this, we will first need to demonstrate that request tokens are
effectively distributed among intermediate inputs as packets ar-
rive and are not getting stuck at the request token queues of the
input linecards (Lemma 1). Then, we will show that the arrival
process of token requests at each of the intermediate inputs
follows some admissible average rate matrix (Lemma 2). This
will enable us to use the stability properties of the matching al-
gorithms and conclude with the proof of Theorem 3.

Lemma 1 (Request Token Queue Size): The size of a re-
quest token queue cannot exceed .

Proof: Since request tokens are load-balanced in a round-
robin way among intermediate inputs, starting with intermediate
input 1 [2], [4], show that

(26)

Moreover, at most one packet arrives to any input linecard at
any time slot, and at most one request token is consequently
created. Using these two assumptions, [23, Theorem 6] shows
that the arrivals to token queue are bounded by a leaky
bucket source of average rate and burst size

while it is periodically serviced at a rate , and
therefore a FIFO queue of size is sufficient. (Lemma 3 of [2]
has a similar proof.)

We will now show that, using the internal time definition
based on frames, the arrival process of token requests at each
of the intermediate inputs follows some admissible average
rate matrix.

Lemma 2 (Request Token Arrivals): Assume that the
packet arrival process to the router follows some admissible

average rate matrix [(18) and (19)]. Then, at each interme-
diate input, using the internal time definition, the request token
arrival process also follows the same admissible average rate
matrix .

Proof: As defined above, denotes the cumulative
number of request tokens for flow arrived to interme-
diate input by the end of time slot . Using Lemma 1 and (2),
we find that a request token queued at time leaves its input
linecard by time slot and arrives to its intermediate input
linecard by the end of time slot . Moreover,
by causality, a request token obviously cannot arrive to the in-
termediate input before it is created at the input. Therefore, we
get the double inequality

(27)

Furthermore, after dividing by , we also have

(28)

Moreover, using (26)

(29)

and from (18), w.p. 1

(30)

Therefore, combining these results, w.p. 1

(31)

We can now use the internal frame-slot defined above. time
slots correspond to one frame; therefore, w.p. 1

(32)

By definition, is doubly substochastic as well, and there-
fore the proof of (18) and (19) is completed.

We can now prove Theorem 3 about the stability of the CMS
architecture with flow-splitting.

Proof of Theorem 3: Lemma 2 shows that at each interme-
diate input, the request token arrival process follows the admis-
sible average rate matrix when using the internal time defini-
tion. Therefore, by Definition 2 of algorithm stability, the grant
token arrival process at any intermediate input linecard follows
the admissible average rate matrix as well when using the in-
ternal time definition. In other words, w.p. 1

(33)

1342 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 4, AUGUST 2010

We now translate this result in frame-slots into a result in time
slots. Using the transformation as in the above (32), we
get w.p. 1

(34)

However, each function is nondecreasing, and there-
fore we will now prove that the above limit can be extended to
time slots that are not multiples of . For instance, for each time
slot , let be such that . Then,
by monotonicity of

(35)

which can be rewritten as

(36)

By (34), both the above left and right expressions converge to
w.p. 1 as goes to infinity, and therefore the middle one

as well: w.p. 1

(37)

Since packet departures directly correspond to grant token gen-
erations with a fixed delay [(11)], w.p. 1

(38)

Finally, summing up over all intermediate input linecards, we
obtain w.p. 1

(39)

which is exactly the definition of stability.

APPENDIX D
PROOF OF THEOREM 4

Proof of Theorem 4: As in the proof of Theorem 2, the
proof using speedup is exactly the same as the one without
speedup. The only change is an external property: We know that
at most one packet arrives to every input at every time slot. In
other words, at most one packet arrives to every input at every

phases. This is a less constraining property, and as a result,
the request token queue size can be reduced by a factor (new
leaky bucket constraint in the proof of Lemma 1). All the fol-
lowing results are the same (inequalities are simply tightened),
and likewise the same conclusion follows.

APPENDIX E
PROOF OF THEOREM 5

Proof of Theorem 5: The strong stability was proved in
Theorem 1, so let us now prove the delay part (note that the
delay result implies the strong stability as well, and thus is a

stronger result). First, we will define a new internal time refer-
ence for the intermediate input linecards. At each intermediate
input , tokens can only be received and granted (respectively
packets can only arrive and depart) every time slots. There-
fore, at each intermediate input, we will cut time into frames of

time slots. As detailed in the proof of strong stability in The-
orem 1, the intermediate input linecard operates at every frame
in CMS with algorithm as it would have at every time slot in
a single switch with the same algorithm . Therefore, under the
same arrival pattern of request tokens in CMS (respectively of
packets in a single switch), it takes the same number of frames
for grant requests to exit intermediate input linecards (respec-
tively the same number of time slots for packets to exit the single
switch) under the same algorithm . In addition, in both cases,
the traffic arrival matrix is indeed the same, and therefore all
traffic arrival characteristics of this Bernoulli i.i.d. traffic are the
same as well. Therefore, if the average packet waiting time is
defined as time slots in the single switch, it will be exactly

frames in the intermediate input linecard, corresponding to
time slots. Furthermore, the additional fixed propagation

times in the CMS architecture are all in (request tokens
take a bounded time to arrive to the intermediate input linecards,
grant tokens to arrive to the inputs, and finally packets to travel
through the meshes). Finally, (assuming the sched-
uling result comes at least one time slot after the packet arrivals);
therefore, the total delay is .

APPENDIX F
PROOFS OF FRAME-BASED SCHEDULING THEOREMS

Proof of Theorem 6: The result follows directly from The-
orem 5, with and .
Note that due to the frame length, this is also a
lower bound for nontrivial traffic patterns.

Proof of Theorem 7: As discussed in Section II-E, the
complexity of any scheduling algorithm is amortized by a
factor of when used with a CMS. Given that the complexity
of fair-frame scheduling is , it follows that the
amortized complexity of CMS using fair-frame scheduling is

at each linecard.
Proof of Theorem 8: A bipartite graph can be constructed

from . The complexity of edge coloring is
[24], [25], where is the number of edges and is the
maximum degree. Since the maximum row or column sum
in is bounded by , is bounded by and is
bounded by . Therefore, the edge coloring of can be
performed in . Since we have time slots to do
the decomposition, then the amortized complexity reduces to

. It follows that the complexity of decomposing
is since is .

Proof of Theorem 9: Given that is augmented with
null packets such that all row and column sums are , it is
well known that edge coloring produces a sequence of exactly

maximum matchings. Conversely, any sequence of max-
imum matchings of is a valid edge coloring of . Let

be a switch that uses edge-coloring frame decomposition.
Let be the same switch using the fair-frame scheduling al-
gorithm instead, and let correspond to the switch with
its inputs delayed by a fixed delay of . Since the scheduling

LIN AND KESLASSY: THE CONCURRENT MATCHING SWITCH ARCHITECTURE 1343

of occurs during frame with edge-coloring frame
decomposition, instead of during frame with on-the-fly
maximum matching, it is easy to see that the output behavior of

is identical to that of . Given that has been proven
to achieve average delay, it follows that also
achieves average delay since the fixed delay on the in-
puts is also . Therefore, achieves
average delay.

Proof of Theorem 10: It follows directly from Theorems 5
and 9, with and .

Proof of Theorem 11: It follows from Theorem 8 since the
complexity is , amortized over time slots.

REFERENCES

[1] C. S. Chang, D. S. Lee, and Y. S. Jou, “Load balanced Birkhoff-von
Neumann switches, Part I: One-stage buffering,” Comput. Commun.,
vol. 25, pp. 611–622, 2002.

[2] C. S. Chang, D. S. Lee, and C. M. Lien, “Load balanced Birkhoff-von
Neumann switches, Part II: Multi-stage buffering,” Comput. Commun.,
vol. 25, pp. 623–634, 2002.

[3] I. Keslassy, S. T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Solgaard,
and N. McKeown, “Scaling Internet routers using optics,” in Proc.
ACM SIGCOMM, Karlsruhe, Germany, 2003, pp. 189–200.

[4] I. Keslassy, “The load-balanced router,” Ph.D. dissertation, Stanford
Univ., Stanford, CA, 2004.

[5] Y. Shen, S. Jiang, S.-S. Panwar, and H.-J. Panwar, “Byte-focal: A prac-
tical load-balanced switch,” in Proc. IEEE HPSR, Hong Kong, May
2005, pp. 6–12.

[6] C.-S. Chang, D.-S. Lee, and C.-Y. Yue, “Providing guaranteed rate
services in the load balanced Birkhoff-von Neumann switches,”
IEEE/ACM Trans. Netw., vol. 14, no. 3, pp. 644–656, Jun. 2006.

[7] C. S. Chang, D. S. Lee, and Y. J. Shih, “Mailbox switch: A scal-
able two-stage switch architecture for conflict resolution of ordered
packets,” IEEE Trans. Commun., vol. 56, no. 1, pp. 136–149, Jan. 2008.

[8] C.-Y. Tu, C.-S. Chang, D.-S. Lee, and C.-T. Chiu, “Design a simple
and high performance switch using a two-stage architecture,” in Proc.
IEEE Globecom, 2005, pp. 733–738.

[9] I. Keslassy and N. McKeown, “Maintaining packet order in two-stage
switches,” in Proc. IEEE INFOCOM, New York, Jun. 2002, vol. 2, pp.
1032–1041.

[10] B. Lin and I. Keslassy, “A scalable switch for service guarantees,”
in Proc. 13th IEEE Symp. High-Perform. Interconnects, Aug. 17–19,
2005, pp. 93–99.

[11] J. J. Jaramillo, F. Milan, and R. Srikant, “Padded frames: A novel al-
gorithm for stable scheduling in load-balanced switches,” IEEE/ACM
Trans. Netw., vol. 16, no. 5, pp. 1212–1225, Oct. 2008.

[12] J. G. Dai and B. Prabhakar, “The throughput of data switches with
and without speedup,” in Proc. IEEE INFOCOM, Tel-Aviv, Israel, Mar.
2000, vol. 2, pp. 556–564.

[13] E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan, “On the stability of
input-queued switches with speed-up,” IEEE/ACM Trans. Netw., vol.
9, no. 1, pp. 104–118, Feb. 2001.

[14] N. McKeown, “Scheduling algorithms for input-queued cell switches,”
Ph.D. dissertation, Univ. California, Berkeley, 1995.

[15] Y. Li, S. Panwar, and H. J. Chao, “On the performance of a dual round-
robin switch,” in Proc. IEEE INFOCOM, 2001, pp. 1688–1697.

[16] N. McKeown, V. Anantharan, and J. Walrand, “Achieving 100%
throughput in an input-queued switch,” in Proc. IEEE INFOCOM, San
Francisco, CA, Mar. 1996, vol. 1, pp. 296–302.

[17] L. Tassiulas, “Linear complexity algorithms for maximum throughput
in radio networks and input queued switches,” in Proc. IEEE IN-
FOCOM, New York, 1998, vol. 2, pp. 533–539.

[18] P. Giaccone, B. Prabhakar, and D. Shah, “Randomized scheduling al-
gorithms for input-queued switches,” IEEE J. Sel. Areas Commun., vol.
21, no. 4, pp. 642–655, May 2003.

[19] E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan, “Bounds on delays
and queue lengths in input-queued cell switches,” J. ACM, vol. 50, no.
4, pp. 520–550, Jul. 2003.

[20] M. J. Neely, E. Modiano, and Y.-S. Cheng, “Logarithmic delay for ��
� packet switches under the crossbar constraint,” IEEE/ACM Trans.
Netw., vol. 15, no. 3, pp. 657–668, Jun. 2007.

[21] S. T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching
output queueing with a combined input output queued switch,” IEEE
J. Sel. Areas Commun., vol. 17, no. 6, pp. 1030–1039, Jun. 1999.

[22] J. Hopcroft and R. Karp, “An � algorithm for maximum matchings
in bipartite graphs,” SIAM J. Comput., pp. 225–231, Dec. 1973.

[23] S. Iyer and N. McKeown, “Analysis of the parallel packet switch ar-
chitecture,” IEEE/ACM Trans. Netw., vol. 11, no. 2, pp. 314–324, Apr.
2003.

[24] R. Cole, K. Ost, and S. Schirra, “Edge-coloring bipartite multigraphs
in ��� ����� time,” Combinatorica, vol. 21, no. 1, pp. 5–12, 2001.

[25] T. Takabatake, “Another simple algorithm for edge-coloring bipartite
graphs,” IEICE Trans. Fundam. Electron., Commun. Comput. Sci., vol.
E88-A, no. 5, pp. 1303–1304, 2005.

Bill Lin (S’87–M’90) received the B.S., M.S., and
Ph.D. degrees in electrical engineering and computer
sciences from the University of California, Berkeley,
in 1985, 1988, and 1991, respectively.

He is currently on the faculty of Electrical and
Computer Engineering at the University of Cali-
fornia, San Diego, where he is actively involved
with the Center for Wireless Communications
(CWC), the Center for Networked Systems (CNS),
and the California Institute for Telecommunica-
tions and Information Technology (CAL-IT) in

industry-sponsored research efforts. Prior to joining the faculty at UCSD, he
was the head of the System Control and Communications Group at IMEC,
Leuven, Belgium. IMEC is the largest independent microelectronics and
information technology research center in Europe. It is funded by European
funding agencies in joint projects with major European telecom and semicon-
ductor companies. His research has led to over 100 journal and conference
publications. He also holds two awarded patents.

Dr. Lin has received a number of publication awards, including the 1995 IEEE
TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS Best
Paper Award, a Best Paper Award at the 1987 ACM/IEEE Design Automation
Conference, Distinguished Paper citations at the 1989 IFIP VLSI Conference
and the 1990 IEEE International Conference on Computer-Aided Design, a Best
Paper nomination at the 1994 ACM/IEEE Design Automation Conference, and
a Best Paper nomination at the 1998 Conference on Design Automation and
Test in Europe.

Isaac Keslassy (M’02) received the M.S. and Ph.D.
degrees in electrical engineering from Stanford Uni-
versity, Stanford, CA, in 2000 and 2004, respectively.

He is currently a faculty member with the Elec-
trical Engineering Department of the Technion—Is-
rael Institute of Technology, Haifa, Israel. His recent
research interests include the design and analysis of
high-performance routers and on-chip networks.

Dr. Keslassy is the recipient of the Yigal Alon
Fellowship and of the ATS-WD Career Development
Chair.

