
1364 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 6, DECEMBER 2005

On Guaranteed Smooth Scheduling for
Input-Queued Switches

Isaac Keslassy, Member, IEEE, Murali Kodialam, T. V. Lakshman, Fellow, IEEE, and
Dimitrios Stiliadis, Member, IEEE

Abstract—Input-queued switches are used extensively in the
design of high-speed routers. As switch speeds and sizes increase,
the design of the switch scheduler becomes a primary challenge,
because the time interval for the matching computations needed
for determining switch configurations becomes very small. Possible
alternatives in scheduler design include increasing the scheduling
interval by using envelopes [19], and using a frame-based sched-
uler that guarantees fixed rates between input–output pairs.
However, both these alternatives have significant jitter draw-
backs: the jitter increases with the envelope size in the first
alternative, and previously-known methods do not guarantee tight
jitter bounds in the second.

In this paper, we propose a hybrid approach to switch
scheduling. Traffic with tight jitter constraints is first scheduled
using a frame-based scheduler that achieves low jitter bounds.
Jitter-insensitive traffic is later scheduled using an envelope-based
scheduler. The main contribution of this paper is a scheduler
design for generating low-jitter schedules. The scheduler uses a
rate matrix decomposition designed for low jitter and different
from the minimum-bandwidth Birkhoff–Von Neumann (BV)
decomposition. In addition to generating low-jitter schedules, this
decomposition in the worst case yields fewer switch configuration
matrices (()) than the BV decomposition ((2)), and so re-
quires far less high-speed switch memory. We develop an efficient
algorithm for decomposing the rate matrix and for scheduling
the permutation matrices. We prove that our low-jitter algorithm
has an (log) factor bound on its bandwidth consumption
in comparison to the minimum-bandwidth BV decomposition.
Experimentally, we find that the bandwidth increase in practice
is much lower than the theoretical bound. We also prove several
related performance bounds for our scheduler. Finally, we propose
a practical algorithm for bandwidth-guaranteed algorithm, and
show how our findings could even be extended to systems with
large tuning time.

Index Terms—Jitter, router, scheduling, switch.

I. INTRODUCTION

MOST high-speed core routers today use input-queueing
with a crossbar switch fabric, virtual output queues, and

fixed-size cells. At each time-slot, a scheduler finds a matching
between the inputs and the outputs, and configures the crossbar
according to this matching. Many heuristic algorithms have
been proposed for finding this matching [3], [21], [27]. How-

Manuscript received March 13, 2003; revised October 6, 2004; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor F. Neri. This work was
done while I. Keslassy was with Bell Laboratories.

I. Keslassy is with the Technion–Israel Institute of Technology, Haifa 32000,
Israel (e-mail: isaac@ee.technion.ac.il).

M. Kodialam, T. V. Lakshman, and D. Stiliadis are with Bell Laboratories, Lu-
cent Technologies, Holmdel, NJ 07733 USA (e-mail: muralik@bell-labs.com;
lakshman@bell-labs.com; stiliadi@bell-labs.com).

Digital Object Identifier 10.1109/TNET.2005.860104

ever, the need for routers with more ports and faster line rates
makes these algorithms difficult to scale. For instance, with line
rates of 40 Gb/s (OC768) and 64-byte cells, an algorithm would
have to compute a matching every 12.8 ns, while the current
highest-capacity commercially available centralized scheduler
takes about 50 ns per matching. At least four alternatives have
been proposed in the literature in order to decrease the fre-
quency of the matching computation: 1) by increasing the cell
size through the use of envelopes [19]; 2) by using pipelining
[24]; 3) by using several times the same matching, possibly
with slight changes [15], [28]; and 4) relying on frame based
scheduling.

In this paper, we will be focusing on a fourth alternative:
frame-based scheduling. In this approach, at the beginning
of each frame period (for instance, every 100 time-slots), the
scheduler is assigned a guaranteed rate table (GRT), which is a
list of rate requirements. Then, it computes a list of matchings
called the schedule table, such that during the following frame
period, the schedule table will provide any input/output pair
with at least as many services as the GRT would guarantee.
Finally, the switch fabric transfers the input-queued cells ac-
cording to the matchings of the schedule table.

In order to compute the schedule table, most of the algo-
rithms in the literature are based on the Birkhoff–Von Neumann
(BV) decomposition [2], [9], [10], [18]. As explained in Sec-
tion II, the BV algorithm minimizes the bandwidth requirement
for the schedule and provides bandwidth guarantees. It can be
noted that this frame-based scheduling approach applies to sev-
eral systems other than input-queued routers. First, it is used
in SONET all-optical circuit-switches, which switch cells in
circuit-based frames by using delay lines [30]. Second, it ap-
plies to the satellite TDMA scheduling problem [31]. Third, it
is of interest in time-slotted wireless FDMA systems where any
station can communicate with any other according to a TDM
schedule often established by a centralized scheduler. And fi-
nally, it is also useful in star-based WDM broadcast-and-select
optical systems with tunable transmitters and fixed receivers
(or fixed transmitters and tunable receivers), where a central-
ized scheduler assigns a specific wavelength to a specific sta-
tion for any time-slot [25]. Therefore, although this paper will
exclusively consider this problem in the context of input-queued
router scheduling, most of the findings extend to these other sys-
tems.

For input-queued routers, this frame-based approach has sev-
eral advantages. First, it solves the scheduling-frequency scala-
bility issue mentioned above, which is one of the main bottle-
necks in designing faster core routers. Second, it can be adapted

1063-6692/$20.00 © 2005 IEEE

KESLASSY et al.: ON GUARANTEED SMOOTH SCHEDULING FOR INPUT-QUEUED SWITCHES 1365

to implement SONET, ATM, DiffServ, MPLS, and most (vir-
tual) circuit- and frame- based schemes, which are predominant
in the Internet core with which any Internet core router needs to
interact. Third, it is one of the only input-queued policies that
provably guarantee 100% throughput for both a router in iso-
lation [2], [9], [10], and a network of routers (see [1] for de-
tails). Fourth, the method for computing the frame weights is
often flexible. Therefore, this flexibility can be used to provide
specific bandwidth guarantees for any high-priority input/output
pair, which could correspond to a specific customer. This flexi-
bility can also be used to ensure fairness among flows, capping
for instance the bandwidth usage of aggressive users. Finally,
this method provides equal guarantees to uniform as well as
non-uniform traffic, contrarily to many scheduling heuristics
based on uniform traffic.

However, frame-based scheduling suffers from an important
drawback: it often results in large cell delays and large delay
variability (jitter). This is especially true for an algorithm such
as BV, which does not take delays into account. The objective of
this paper is to define, study and approximate a class of smooth
frame-based scheduling, which minimizes the jitter resulting
from the schedule table.

For instance, consider the following simplistic example. As-
sume that for every frame period of 100 time-slots, we need to
schedule the following GRT:

In this GRT, input 1 needs to send 50 cells to output 1 and 50
cells to output 2. Input 2 only needs to send 50 cells to output 2.
Call the matching connecting input 1 to output 1 and input
2 to output 2, and call the matching connecting input 1 to
output 2 and input 2 to output 1. A straightforward implementa-
tion of BV, as explained later, would lead to a schedule table first
implementing 50 times , then implementing 50 times ,
and so on periodically. However, the objective of this paper is
to obtain instead a smooth scheduling, which implements ,
then , again , then , and so on.

There are several reasons to desire this smoother scheduling.
First, as noted above, this smooth scheduling would reduce the
delay variability of the traffic, which is one of the main objec-
tions made to frame-based scheduling. Also, not only is this a
good property, but guaranteeing a given amount of bandwidth
to low-jitter traffic is a requirement of DiffServ for Expedited
Forwarding traffic [11]. Therefore, if a router is to implement
DiffServ, it has to find a method for implementing such guaran-
tees, even though the jitter-sensitive traffic may only represent
a small part of the total traffic. More generally, a typical imple-
mentation in core routers would first schedule traffic with tight
jitter constraints using smooth frame-based scheduling, and then
schedule the remainder bandwidth for jitter-insensitive traffic
using an envelope-based scheduler [19].

Second, a smoother scheduling results in better short-term
fairness among flows, from a delay, jitter, and bandwidth
point-of-view. Specifically, a smoother scheduling algorithm
minimizes the Worst-case Fairness Index of the switch sched-
uler, which is defined as the maximum delay between the time
instant that a virtual output queue becomes non-empty until

it is served [7]. As it has been shown in [19], when one uses
switching intervals larger than the minimum packet size, as for
example in optical packet switches, the Worst-case Fairness
Index is the dominant factor of the delay guarantees that the
switch can offer.

Third, suppose that in the example above, the capacity of the
second transmitter is only half of the line rate. The transmitter
would not be able to use a BV scheduling, because it would
be required to send at twice its capacity during half the time
(send 50 packets in 50 slots, while it can only send 25 packets
during this time). Therefore, smooth scheduling facilitates dif-
ferent per-port transmission (or reception) speeds. This is useful
in heterogeneous optical networks, with transmitters (and re-
ceivers) having different capacities. It is also useful in a wireless
slotted FDMA system, in which the capacity may vary in time
and depend on the position of the stations.

We can now outline the main contributions of this paper:
First, we outline the decomposition problem that leads to
smooth scheduling and analyze its complexity. We then pro-
pose a heuristic algorithm for solving the decomposition
problem, that together with proper scheduling can provide
tight jitter guarantees. We then prove efficiency bounds for
this algorithm. To the best of our knowledge this is the first
algorithm that takes “smoothness” or delay-jitter into account
when addressing switch scheduling.

In addition to finding a smooth scheduling algorithm, our ob-
jective is also to find a practical scheduling algorithm. First, be-
cause the BV algorithm needs permutations in the worst
case [9], these are difficult to store on a single chip when
is large (for , each permutation takes

bits, hence, we would need to store up to 150 MB). Second,
the BV algorithm complexity is in [9], and thus it is
difficult to implement at high speeds. Our contribution in Sec-
tion IV is a practical algorithm for guaranteed rate traffic with

number of permutations.

II. DECOMPOSITION OF THE GUARANTEED RATE TABLE

We consider an input–output buffered packet switch
with virtual output queueing. In each time slot, a central ar-
biter matches each output to at most one input. We will assume
that for the portion of the traffic that has bandwidth and jitter
requirements, we have some knowledge of the rates required
for each input/output port pair. Within the Internet architecture,
this knowledge is supplied either through a bandwidth broker or
through MPLS signaling.

We are concerned only with the scheduling of the bandwidth
guaranteed low-jitter traffic that is specified by a (Guaranteed)
Rate Matrix. Best effort traffic can be scheduled using any of
the matching algorithms available in the literature.

Let represent the per-port capacity of the fabric. Let the
non-null matrix represent the Rate Matrix where

represents the rate required from input to output . Let
represent the maximum row or column sum of the matrix .
Using standard techniques [9], it is easy to augment into a
matrix where all the row and column sums of
are . Such a matrix is called a Doubly Stochastic Matrix. For
the rest of this paper, we will assume that all the row sums and

1366 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 6, DECEMBER 2005

column sums of are . When is not given, it is assumed
that . Finally, note that the rate matrix can be scheduled
(without jitter constraints) if and only if the aggregate amount
of traffic going to (respectively coming from) any port is less
than the port capacity, i.e., .

A. Birkhoff–Von Neumann Decomposition

The basic idea of the Guaranteed Rate Tables is that once a
rate matrix is provided, it is decomposed into schedule tables.
Each schedule table is either a permutation or a partial permu-
tation matrix (i.e., a 0 – 1 matrix whose row sums and column
sums are at most one without it being a permutation matrix).
The standard approach to creating the schedule tables from the
rate matrix relies on the following result due to Birkhoff and
Von Neumann [9].

Theorem 1: Any doubly stochastic matrix can be written as
a convex combination of permutation matrices.

Therefore, the BV decomposition of the rate matrix is to
generate a set of permutation matrices (schedule tables) for

such that

In other words . We refer to as the
bandwidth requirement of the schedule tables generated by the
BV decomposition. By Theorem 1, the value of ,
where is the row and column sum of the rate matrix. Thus,
the BV decomposition minimizes the bandwidth requirement.
The number of matrices in the BV decomposition is
and the running time of the algorithm is . More details
and references on the decomposition algorithm can be found in
Chang et al. [9], [10]. The permutation (switching) matrices are
scheduled across the switch using some Weighted Round Robin
(WRR) scheme. Chang et al. [9] gives a scheduling algorithm
and gives bounds on its performance. This method that is based
on the BV decomposition is reasonable in the case that there are
no jitter constraints. However, there is no known algorithm that
can schedule the permutations derived from a BV decomposi-
tion that can also lead to low delay variation.

B. Low-Jitter Decomposition

In the BV decomposition of the rate matrix , a given entry
is striped across several permutation matrices. Therefore, in-

dependent of the type of algorithm used to schedule the permu-
tation matrices, there is no control on when individual entries in
the rate matrix will be scheduled. It is possible to derive bounds
on the delay [4], [9], but it is not possible to ensure that the jitter
is low. The bounds on the jitter for the traffic between input port

and output port depends on the number of matrices in the
decomposition that is striped across and also on the number
of matrices in the decomposition. Since both these factors in-
crease with the number of ports in the switch, the jitter problem
becomes severe when the number of ports is large. We formulate
an alternate decomposition which we term low-jitter decompo-
sition (LJD). As in the case of the BV decomposition, we de-
compose the rate matrix into a combination of permutation ma-
trices with the additional restriction that each non-zero entry in

the rate matrix appears in only one of the permutation matrices.
Let be the set of permutation matrices that
form the LJD. Associated with each matrix in the decom-
position is a rate which signifies bandwidth requirement for
the switching matrix

(1)

(2)

(3)

(4)

(5)

Constraints (3)–(5) specify that is a partial permutation ma-
trix. Constraint (1) specifies that the weighted sum of these per-
mutation matrices should be greater than the rate matrix. Con-
straint (2) enforces that each entry in the rate matrix belongs to
precisely one element in the decomposition. Note, that unlike
the BV decomposition which uses only (full) permutation ma-
trices, LJ decomposition splits the rate matrix into partial per-
mutation matrices. Using the scheduling algorithm developed
in the next section, we show that the above set of constraints
are sufficient to guarantee low jitter. It is possible to construct
specific examples where constraint (2) is not necessary to guar-
antee low jitter. We will comment on this in the last section of the
paper. The bandwidth requirement for the schedule is .
Therefore, the objective of the LJ decomposition is to solve the
following integer programming problem (ILJD):

subject to the constraints (1)–(5) defined above. Since the BV
decomposition solves the above problem without constraint (2),
and the schedule length of BV is at most , then .
Therefore, there will be rate matrices that can be scheduled by
the BV decomposition but not by the LJ decomposition. This
will especially be true if the amount of low-jitter guaranteed
traffic is a large fraction of the total switch traffic. In the ap-
plications that we consider the low-jitter traffic is a relatively
small fraction of the total switch traffic. This is a valid assump-
tion within the context of the EF class, that is expected to oc-
cupy less than 50% of the total bandwidth. In our experiments
we varied the low-jitter traffic load from 10% to 80% and all
the rate matrices could be scheduled with LJD. As in the case
of BV decomposition, the LJ decomposition of the rate matrix
is not unique. Unlike the BV decomposition, the integer pro-
gramming problem ILJD is NP-hard. The proof of the theorem
below is a simple variant of a proof due to Rendl [23]. (In [23],
the number of matrices in the decomposition is restricted to ,
which is not the case here.)

Theorem 2: The problem ILJD is NP hard.
Several flavors of matrix decomposition problems have been

studied extensively in the TDMA scheduling literature [5], [8],
[16], [22]. As in our case, the two most important considerations

KESLASSY et al.: ON GUARANTEED SMOOTH SCHEDULING FOR INPUT-QUEUED SWITCHES 1367

in TDMA scheduling (especially for satellite scheduling) are to
minimize the number of matrices in the decomposition and the
total bandwidth needed to support the decomposition. However,
the TDMA literature does not deal with low-jitter implementa-
tion of the rate matrix decomposition. Since the ILJD problem
is NP-hard, our objective is to derive lower bounds on solutions
to this problem, and then to use these lower bounds in order to
get intuition and motivate a heuristic for solving the problem
and implementing a low-jitter decomposition.

We first prove a lemma on vector-ordering, and then use this
lemma in order to find a lower bound on . Proofs are placed
in the Appendix for ease of reading.

Lemma 3: Consider two vectors and
where . Then a permuta-

tion of the set that minimizes

is a permutation where

Theorem 4: Let be a rate matrix. Sort each column of the
matrix in descending order to get the matrix . Compute the
maximum of each row of the matrix . Then is a
lower bound on . Similarly, sort each row of in descending
order to get the matrix . Compute the maximum of each
column of . Then is a lower bound on . Hence,

.
The higher of the two lower bounds computed above is a

lower bound on and is tighter than . Let us illustrate the
bounds of this theorem on the 4 4 doubly stochastic rate ma-
trix introduced in [9]:

First we sort each column of in descending order to obtain
matrix as per Theorem 4:

We find the sum of the maximum of each row to get
. Now we sort

each row to obtain matrix :

We find the sum of the maximum of each column to get
. Therefore,

the lower bound for this problem is 1.26. As a comparison,

we solved the integer programming problem (ILJD) using the
CPLEX optimization program. The ILJD optimization yields

Therefore, the optimal LJ decomposition has a value
. We can check .

Consider now a particular matrix in the LJ decomposi-
tion. The rate associated with this matrix is the largest entry
in that is covered by this matrix. Therefore, the total amount
of bandwidth can be optimized by covering entries of roughly
equal size with the same matrix. Of course, the entries should
not share the same row or column in order to be in a decompo-
sition. This is the basis of the greedy low-jitter decomposition
(GLJD) algorithm, which is a heuristic to solve the integer pro-
gramming problem ILJD.

C. Greedy Low-Jitter Decomposition

The GLJD algorithm is defined as follows. First, the ele-
ments in are sorted in descending order and put in an ordered
list . Note that each element in corresponds to some ele-
ment in the matrix . Two elements in are defined to be
non-conflicting if these two elements do not belong to the same
row or column in . Then, we fill up each of the decomposi-
tion sub-matrices by traversing the list from the top and picking
non-conflicting elements greedily. Once an element is picked to
be inserted into the decomposition sub-matrix, the element is
deleted from . Once the end of the list is reached, then a new
decomposition sub-matrix is initiated. This process is repeated
until all the elements of are inserted into some sub-matrix. It
is easy to see that the worst case running time of the algorithm
is . The description of the GLJD algorithm is shown in
Fig. 1. For the numerical example above, the GLJD algorithm
generates the following decomposition.

GLJD yields a schedule time of
(as expected, it is greater than the optimal ILJD

schedule time of and the BV schedule time of 1).

1368 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 6, DECEMBER 2005

Fig. 1. Description of the greedy low-jitter decomposition algorithm.

Therefore, if the low-jitter traffic load is less than ,
then the LJ heuristic can guarantee a full capacity to the traffic.
This is useful because, in practical situations, we expect the
low-jitter traffic to not be a sizable portion of the traffic across
the switch. Also, it can be noted that the bandwidth is not nec-
essarily wasted just because the LJ heuristic has a higher value
than the BV decomposition. Indeed, any bandwidth not used by
the low-jitter traffic class can then carry best effort traffic.

D. Guarantees on the GLJD Algorithm

The primary objective of the GLJD algorithm is to enable
traffic scheduling with low-jitter guarantees. However, the fol-
lowing theorems prove that it also provides additional guaran-
tees, with upper bounds on the number of partial permutations
needed, the bandwidth required for the scheduling and the com-
petitive ratio with respect to the optimal algorithm.

For the sake of simplicity, in this section, we will always as-
sume that , and that a rate matrix has to be doubly
stochastic with line and column sum 1. The results will then
be easy to generalize to any given . The following theorem
provides an upper bound on the number of partial permutations
used by GLJD. It derives from a more general result on greedy
on-line edge coloring [6], [31].

Theorem 5: Let be the number of partial permutation ma-
trices needed in the GLJD algorithm. Then

We have just found that the GLJD algorithm provides a guar-
antee on the number of matrices that it will use. We are now
interested in the worst case bandwidth that it will require. More
generally, define the length of the schedule provided by an al-
gorithm for a rate matrix as .
Then, define the worst case bandwidth requirement of algorithm

as , where the maximum
is taken over the set of rate matrices . Then, the next theorem
guarantees that .

Theorem 6: Let and let represent the harmonic
series (). Then

How good is the upper bound provided by this theorem? The-
orem 6 states that GLJD guarantees at least of the
bandwidth to low-jitter traffic. Therefore, GLJD guarantees at
least 11.8% of the bandwidth to low-jitter traffic when ,
and 7.1% when .

However, during simulations, the bandwidth generally guar-
anteed to low-jitter traffic was more than 60% with ,
as described later. One may thus wonder if really
grows as and reaches this worst case bound. The ob-
jective of the next theorem is to show that indeed
grows as . In addition, this theorem will prove that for
any algorithm which satisfies the conditions of the in-
teger programming problem, grows at least as fast
as . In particular, if ILJD is an optimal such algorithm,
i.e., for any rate matrix , then the band-
width-guarantee competitive ratio is
bounded.

Theorem 7: For any , there exists at least one rate
matrix with the following lower bound on the length of its
optimal LJ decomposition:

Corollary 8: and
, hence, .

Is this bound meaningful? The fact that the bandwidth-guar-
antee competitive ratio of GLJD has a constant upper bound is
indeed meaningful. This result implies that the bandwidth guar-
antee of any other algorithm satisfying the low-jitter decomposi-
tion would not be better than the bandwidth guarantee of GLJD
by much as the scheduling complexity increases with , con-
trarily to what one would have intuitively thought when con-
sidering the behavior of . However, note
that the bound on the competitive ratio is not tight, and that the
following theorems will prove in particular that this ratio is at
most 2.

We are now interested in the performance of the GLJD
algorithm with any given rate matrix , rather than with its
worst case rate matrix. The following theorems will slightly
improve the lower bound on provided
by Theorem 4, and then prove that for any rate matrix ,

. This means that for any
matrix, the bandwidth required by GLJD is less than twice the
bandwidth required by the optimal low-jitter decomposition.
A consequence of this result is that the bandwidth-guarantee
competitive ratio is also less than .

Theorem 9: For any given schedule, assume without loss of
generality that . Then for any

,

(6)

(7)

Theorem 10: For any rate matrix ,

KESLASSY et al.: ON GUARANTEED SMOOTH SCHEDULING FOR INPUT-QUEUED SWITCHES 1369

Corollary 11: The bandwidth-guarantee competitive ratio of
the GLJD algorithm is upper-bounded by .

Note that it is possible to derive a doubly stochastic bipartite
version of the worst case matching in [6] in order to prove that
this bound of 2 is actually tight for large .

We now outline the scheduling algorithm that will be used to
schedule the matrices generated by the LJ decomposition.

III. SCHEDULING THE LJ DECOMPOSITION

Since is the desired rate from input port to output port
, we ideally want the time slots when is matched to to

be spaced apart, i.e., the points .
Given that there are multiple connections that share the same
bandwidth, this is not possible in general. We settle for a slightly
degraded jitter performance. We call a connection low jitter if
we have exactly one match for this connection in each of the
time intervals . At the
end of the LJ decomposition, we have (perhaps partial) per-
mutation matrices. Let be the bandwidth for the switching
matrix and let . We assume that ,
where is the switch speed. We define , where
represents the fraction of timeslots that should use the schedule
table (switching matrix) . We assume that . We
want to schedule matrix at rate . Since each port pair be-
longs in exactly one matrix in the decomposition, it is possible
to control the jitter for each port pair individually. Let repre-
sent the time slot in which the schedule table is scheduled for
the time. For low jitter, we want

We compute as follows the start time and the finish time
for the schedule of table :

In the implementation of the scheduling algorithm we define
iteratively and , respectively, the current start time and
the current finish time for schedule table , as shown in Fig. 2.

At the beginning of time slot , schedule table is defined
to be eligible if and ineligible otherwise. The sched-
uling algorithm works as follows: At the beginning of each time
slot, among all the eligible schedule tables, the table with the
smallest finishing time is picked for scheduling. Let represent
this table. The start time and the finish time for schedule table
is updated. This process is then repeated. If no class is eligible at
the beginning of a given time slot, then the inputs are matched to
the outputs by some algorithm that optimizes the performance
of best effort traffic. Best effort traffic also uses the slots where
guaranteed jitter traffic is not available to take its allotted slot
or in the case where the schedule table is a partial permutation
table. The following theorem is a special case of the general re-
sult in [13]. The proof of the result in our case is straightforward
and is proved directly.

Fig. 2. Description of low-jitter scheduling algorithm.

Theorem 12: If , then for all classes , the LJS
algorithm results in

Therefore, by the above theorem, all connections are (almost)
low jitter. Note that some connections may miss their allotted
range by one time slot. Under the moderate loading conditions
that we consider, this seems to happen very rarely. In the ex-
perimental section, we compare the LJ decomposition with the
scheduling algorithm described above with the BV decompo-
sition and the scheduling algorithm outlined in Chang et al.
[9]. The main difference between the scheduling algorithm de-
scribed above and the one in [9] is that the scheduling algorithm
in [9] does not use starting times. We ran the BV decomposition
algorithm with our scheduling algorithm and the results for BV
are not qualitatively different from the ones shown in the next
section.

A. Experimental Results

The experimental results are shown to illustrate the advan-
tages in jitter performance of the LJD and evaluate the penalty
of the required speed-up. In most experiments we restricted the
switch size to 64 64 and 128 128, as larger switches are un-
likely to be built based on single-stage crossbar architectures. In
the case of the BV decomposition, the scheduling algorithm in
[9] is used. For the LJ decomposition, the low-jitter scheduling
algorithm is used in the experiments, and it is assumed that the
switches process 100 slots per second.

Jitter Performance: For a given input–output pair ,
the LJ decomposition will result in one match in each interval

. In the case of the
BV decomposition, however, some intervals will get multiple
matches and others will get none. For these experiments, we
assumed that the guaranteed rate for each input–output pair is
independently and uniformly distributed between 0 and 60%.
We adjusted the rates using a technique similar to [9], to ensure
that all row and column sums are the same by using an iterative
procedure that increases the rates of some ports in order to meet
the requirement. Note that this only increases the guaranteed
bandwidth load of the switch, and can stress the algorithm.

1370 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 6, DECEMBER 2005

Fig. 3. Number of matches per interval for a 64� 64 switch.

In Fig. 3, we plot the interval number versus the number of
matches produced by the different decompositions. Results are
shown for a particular input–output port combination, but other
input–output ports had similar results. The results show a very
poor jitter performance for the BV decomposition. There are no
matches for almost 20 intervals between 40 and 60, and almost
12 matches in the interval 39. On the contrary, GLJD results in
one match per interval as predicted by Theorem 12. For BV,
performance was even worse with the 128 128 switch, not
shown here.

Speed-up Ratio: This represents the ratio of the bandwidth
requirement of the GLJD heuristic to the bandwidth require-
ment of BV. Recall that the bandwidth requirement of BV de-
composition is the row sum of the rate matrix, and that BV
decomposition leads to a schedule with no speed-up require-
ments. In other words, if the bandwidth of guaranteed traffic is

, the bandwidth reserved in the switch is also . On the con-
trary, the LJ decomposition can require a bandwidth reservation
larger than and this is determined by the number of permuta-
tions.

We performed two sets of experiments for a 64 64 switch.
In the first it is assumed that the guaranteed rate for each
input–output pair is independently and uniformly distributed
between 0 and some upper bound , where the value of
determines the mean guaranteed rate traffic load in the switch.
The capacity of the switch is fixed to 1000 packet slots per
unit of time. For each load value we generated multiple
traffic matrices and calculated the mean bandwidth reservations
required by the LJ decomposition. If the bandwidth reservation
is no more than the capacity of the switch, which is fixed, the
decomposition is considered successful.

Fig. 4 shows the average as well as the minimum and max-
imum fraction of the bandwidth that is reserved by the GLJD al-
gorithm for various loads of jitter-sensitive traffic. Fig. 5 shows
the rate of successful experiments. An experiment is successful
if the GLJD leads to a bandwidth reservation that is less than
the capacity of the switch. The speed-up required is defined as
the ratio of bandwidth reserved to the load of the guaranteed
traffic. As can be seen for all experiments under 80% load, the
GLJD led to a successful schedule with an average speed-up of

Fig. 4. Fraction of bandwidth reserved in a 64� 64 switch under uniform
traffic load.

Fig. 5. Success rate for a 64� 64 switch under uniform traffic load.

1.13 (i.e., GLJD reserves 13% more bandwidth than the offered
load). At 84% load, approximately 98% of the experiments led
to a successful schedule with a speed-up requirement of about
15%. For 2% of the experiments, the algorithm failed to pro-
duce a successful schedule. For loads above 84%, the success
rate drops drastically, indicating that the GLJD cannot be prac-
tically used when guaranteed rate traffic is so high.

In the second set of experiments, we evaluated the impact of
diagonal traffic matrices on the GLJD performance. Diagonal
matrices have been used in several evaluations of input-queued
switch scheduling algorithms as they produce non-uniform dis-
tributions. For each input port , a large fraction of the band-
width (50% or 75%) was reserved for output and the rest was
equally distributed among the rest of the output ports. Figs. 6
and 7 show the bandwidth reservation required and the success
rate for various loads. In this case, GLJD managed to success-
fully schedule all traffic requests with a total load of 82% with a
speed-up of approximately 15%. The success rate drops rapidly
for guaranteed traffic loads of more than 80%.

Optimality Gap: For a set of experiments with uniform
traffic demands, we compute the ratio of to the lower
bound generated by applying Lemma 3. This ratio

KESLASSY et al.: ON GUARANTEED SMOOTH SCHEDULING FOR INPUT-QUEUED SWITCHES 1371

Fig. 6. Fraction of bandwidth reserved in a 64� 64 switch under non-uniform
traffic load.

Fig. 7. Success rate for a 64� 64 switch under non-uniform traffic load.

tracks the performance of GLJD to the optimal solution. The
result is shown in Fig. 8. Note that in all the cases, the heuristic
is within 10% of the optimal solution.

Number of Matrices in the Decomposition: We compare the
number of matrices in BV and GLJD. Lower number of matrices
results in easier scheduling algorithms. The results are shown
for a 64 64 and 128 128 switch in Table I. With , BV
typically generates about 850 matrices versus about 70 matrices
for GLJD. Similarly, for , BV results in about 1600
matrices and GLJD results in about 135 matrices. Therefore, the
size of the schedule table is typically an order of magnitude less
for GLJD than for BV.

Total Computation Time: We compare the total computation
time to run both the BV and the LJ decompositions in Table II.
The runs were done on a 1 GHz Pentium processor. All run times
are in seconds of system time. For the BV decomposition we
run a fast maximum flow algorithm at each step in order to de-
termine the next switching matrix in the decomposition. Note
that although both these computation times could be minimized
in hardware implementations, we believe that the LJ decompo-
sition (using GLJD) will still be significantly faster.

Fig. 8. Optimality ratio for a 64� 64 switch.

TABLE I
NUMBER OF MATRICES IN THE DECOMPOSITION

TABLE II
RUNNING TIMES OF THE ALGORITHM

IV. A PRACTICAL ALGORITHM FOR

BANDWIDTH-GUARANTEED TRAFFIC

In this section, we change the focus of our discussion and use
the previous methodology to introduce a scheme for a practical
implementation of a frame-based scheduler that provides only
bandwidth gaurantees. As we discussed earlier, the BV decom-
position provides an optimal solution in terms of bandwidth re-
quirements, but requires in the worst case permutations.
In this section, we are looking for a practical algorithm that can
solve the problem of bandwidth guarantees only with per-
mutations in the worst case.

In a mathematical formulation, a designer needs to consider
a rate matrix with real (floating point) coefficients, and find
an algorithm that would guarantee a schedule to with small
speed-up (), a number of permutations small enough to
be stored on a single chip (say), and a complexity small
enough to be implemented at core-router speeds.

To solve this problem, we have considered many algorithms
proposed in the literature. Most of them are based on a common
divisor in and thus require too many permutations, because

1372 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 6, DECEMBER 2005

the common divisor in router implementations might be as small
as the floating point precision. Thus, this excludes algorithms
related to call routing in Clos networks [17], [20], to openshop
scheduling [14], to heuristic row bottleneck minimization in op-
tical WDMA star networks [12] and in TDM switching [32], and
to bipartite graph matching [31]. Alternative algorithms which
do not require a common divisor are often too impractical be-
cause they require optimal edge coloring in bipartite graphs,
such as BV [9] and a traffic rate approximation scheme pro-
posed in [29].

Our approach is inspired by this last scheme. However, con-
trary to this scheme, we will use maximal matchings [31] in-
stead of optimal edge coloring. Maximal matchings are faster,
but provide less guarantees.

We thus propose the following iterative maximal frame-
scheduling. First, define an integer , which will be a common
divisor in the coarse matrix, such that , for instance,

, , , and so on.
Then, given the rates , compute and

. Note that when is a power of 2 and numbers are
represented in a binary form, this computation simply truncates
the first digits of . , the coarse approximation
matrix, is a non-negative-integer doubly sub-stochastic matrix
with row and column sum of at most . ,
the remainder matrix, is such that for all , .

Then, apply a maximal matching algorithm to , yielding
(partial) permutation , and compute . Apply
again a maximal matching to , yielding , and compute

. Continue likewise times, until obtaining
(partial) permutations .

Finally, for , call the permutation that con-
nects any input to output , and consider the set

. Then the following theorem
proves that a schedule table using each of the permutations in
exactly once in a cycle of time-slots satisfies the rate matrix
requirements.

Theorem 13: At the end of the algorithm defined above,
, , and therefore,

.
Assume that . The resulting decomposition satis-

fies our objectives. First, it uses at most
permutations in the schedule table, thus these permutations will
typically hold on a chip. Second, it needs a finite speed-up of

in order to guarantee 100% throughput.
Finally, it takes a computation time of with a centralized
scheduler, and with a distributed scheduling, as shown
below. It can also be noted that the jitter guarantee is in
(the length of the schedule), hence, this is an alternative for
traffic not needing the extremely low jitter implemented with
GLJD.

Also, all the maximal algorithms used in current routers can
be extended to frame scheduling, and in particular as well those
based on pipelining such as WFA [27] as those based on a re-
quest-grant-accept arbitration type such as iSlip [21]. This is in-
teresting for legacy issues. The pipelined version of WFA seems
especially suited for such an iterative algorithm, since cross-
point can start working on iteration of the decom-
position algorithm at the same time as crosspoints and

start working on iteration [27]. Therefore, for any
given crosspoint, there are iterations, with at most one
computation and two transmissions of information per iteration.
Hence, the distributed algorithm runs in time.

Finally, from a practical point of view, the main advantage
of such a scheme is that it can easily support incremental rate
updates without computing a whole new schedule again. For in-
stance, assume that is updated into . Compute the change
in the integer coarse matrix . If , do nothing.
If , remove elements in position from the set .
If , add elements in position to the set (pos-
sible because the set contains elements [31]). Hence, with
a correct data structure, an update takes time. Interestingly
enough, this feature is related to the ease for establishing and re-
moving calls in a non-blocking Clos network with middle
stages.

V. A LAST WORD ON BURSTY DECOMPOSITION ALGORITHMS

A surprising side effect of the greedy smooth scheduling pro-
vided in this paper is that it can actually be helpful when looking
for the least smooth scheduling possible. For instance, consider
an input-queued router using an optical switch fabric. Note that
this fabric could be passive (for instance, based on an arrayed
waveguide grating with tunable lasers [33]) as well as active
(for instance, based on micro-mirrors [26]). Similarly, consider
a star-based WDM broadcast-and-select optical system [25]. In
those two cases, the tuning time from one channel to another
takes a major share of the frame schedule time [29]. Thus, the
main issue is no longer the bandwidth available, but rather the
number of tuning times in a given schedule: the designer will
prefer a schedule with very few permutations, and thus few tun-
ings, even if it implies an increased burstiness.

The primary objective is therefore to minimize as much as
possible the number of permutations in a schedule, in order to
minimize the number of tuning times, and a secondary objec-
tive is to minimize the bandwidth taken by those permutations.
Towles and Dally [29] propose a heuristic algorithm for this
problem called MIN. MIN minimizes the number of permuta-
tions used, and therefore uses at most permutations. However,
MIN needs a speed-up of at least in order to schedule
any rate matrix. Also, MIN needs to perform several times edge
coloring in a bipartite graph, and is therefore difficult to imple-
ment in a core router. GLJD could thus be a practical algorithm
for approximating MIN. First, GLJD needs at most per-
mutations (Theorem 5), and in simulations the number of per-
mutations is shown to be very close to . Second, GLJD also
needs a speed-up of at most , with simulations results
close to a speed-up of 1.5. And finally, GLJD was shown to have
a low implementation complexity.

VI. CONCLUSION

In this paper we considered the problem of scheduling guar-
anteed-bandwidth low-jitter traffic in input-queued switches.
We proposed to combine the GLJD algorithm and a low-jitter
scheduler, and found experimentally that they are both practical
and efficient. We provided several performance bounds on
these algorithms, with respect to the number of permutations as

KESLASSY et al.: ON GUARANTEED SMOOTH SCHEDULING FOR INPUT-QUEUED SWITCHES 1373

well as the schedule time. We proposed a practical algorithm
for scheduling the remaining jitter-insensitive bandwidth-guar-
anteed traffic, and found that it supports incremental updates.
Finally, we showed how our findings could even be extended to
non-smooth systems with large tuning time.

APPENDIX

Proof for Lemma 3

Let be an optimal permutation. For some , let
. Let . By interchanging and
, note that the objective function value is non-increasing.

The same result can be shown if .

Proof for Theorem 4

We show the result for the case where the rows are sorted.
The proof for the column sorting is identical. Consider the first
row of the matrix . Assume without loss of generality that

. Each entry in the first row has to belong
to a different matrix in the decomposition. Therefore, a lower
bound on the amount of bandwidth needed for the low-jitter
decomposition is . Now consider the first two rows of

. A lower bound on the amount of bandwidth needed for a
low-jitter decomposition for the first two rows is given by

where is a permutation of . This holds because
every entry in the second row has to belong to a different ma-
trix in the decomposition. An entry in the first row of and an
entry in the second row of can belong in the same matrix in
the decomposition. If and belongs to the some ma-
trix in the decomposition then the amount of bandwidth needed
for this matrix is given by . Since we are de-
riving a lower bound, we ignore the column constraints, i.e, two
elements in the same column in have to belong to different
matrices in the decomposition. From Lemma 3

attains its smallest value when .
The same argument can be extended to the third row of and
so on until the last row. Therefore, all the rows are arranged in
descending order and a lower bound on the minimum amount of
bandwidth needed is given as the sum of the maximum values
of the columns of this rearranged matrix.

Proof of Theorem 5

Let be an element of the rate matrix , and let be the
ordered list used in the GLJD algorithm. Let us show that
is deleted from in at most iterations. Let be the
set of all other elements in that belong to the same row or

column as and have at least the same weight. Since there are
at most other elements on the same row and other
elements on the same column, has at most

. Now, at each iteration of the GLJD algorithm,
if GLJD does not pick while is still in , then this implies
that an element in was picked before and blocks from
being picked. Thus, at each iteration, as long as is in ,
either is picked, or it is blocked and the cardinality of
is decreased by at least one, which cannot happen for more than

iterations.

Proof for Theorem 6

Let us follow the same notation as in the proof of Theorem 5.
Let be a rate matrix, and assume that is an element of
that still remains to be scheduled after iterations of the GLJD
algorithm. Let be the ordered list used in the GLJD algorithm
and consider the subset of all elements in that belong to the
same row or column as and have at least the same weight.
Then, following the same argument as in Theorem 5, during the
first iterations, the algorithm picked at least elements from

(in the union of row and column). Thus, the algorithm
picked at least of these elements either in row or in
column —without loss of generality, let us assume that it was in
row . Therefore, on row , there were initially at least
elements with a rate of at least (counting itself). Hence,
since the row sum is 1, . We thus know
that after iterations, all remaining elements have a rate of at
most . This implies that the weight of the partial
permutation picked at the next iteration will have the same upper
bound (). Using

and (Theorem 5), we get

i.e., . Using the inequality
for , one gets

for , hence, the result of the theorem.
Note that this proof shows that for if is unscheduled after

iterations, then is at least the ele-
ment of either its row or column. Thus, a finer approximation
is , where and are as de-
fined in Theorem 4. Hence,

(because). We can then get the result of the theorem by
using the upper bound for .

1374 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 6, DECEMBER 2005

Proof for Theorem 7

For any , define such that ,
define , and let be the following bloc-diagonal
doubly stochastic matrix:

...
. . .

...
...

...
...

...
...

...
...

...
. . .

where for any , is the uniform doubly stochastic
matrix of sum 1: . is an doubly

stochastic rate matrix (as in [29]). Theorem 4 provides the fol-
lowing lower bound on the length of the optimal LJ decompo-
sition of :

Since , , and thus
.

Proof for Corollary 8

For ,

Proof for Theorem 9

Let us prove that for a given .
By definition of , there is an element in the matrix
such that , and has the weight of its column
. In other words, in column , there are at least elements

with the same weight as . Since two elements from the same
column cannot be scheduled at the same time, by the pigeon-
hole principle, at least one of these elements does not belong
to the first permutations—say it is . Thus, be-
longs to some permutation such that . But then

. Similarly, .

Proof for Theorem 10

For , let . First, since
and , clearly and

. Second, from the comment in the proof of
Theorem 6, we know that . Third,
from Theorem 9, we also know that

. Hence, combining these three results, we get
.

Proof for Corollary 11

Consider such that . Then from
Theorem 10

Proof for Theorem 13

The inequality is a property of maximal
matchings [31]. An outline of a similar proof is also provided
here for completeness. It is enough to prove that the matrix
that is derived after repetitions of the algorithm has no
entries greater than zero. Let us assume that some element
of the matrix is greater than zero. Let be the set of all
non-zero elements that belong to row and column of the ma-
trix , including , and let denote the sum of the values
of these elements. Since the sum of all elements of a row or
column are no more than , and element belongs to both row

and column , . In each iteration of the al-
gorithm, we pick a maximal matching, and as long as ,
we peak at least one element from row or row or the element

. In other words, in each iteration of the algorithm the value
of is decreased by at least one. Thus, after iterations,
the value , and thus element must
be equal to zero. For the second part of the proof, by definition,

. Finally, .

REFERENCES

[1] M. A. Marsan, P. Giaccone, E. Leonardi, and F. Neri, “On the stability
of local scheduling policies in networks of packet switches with input
queues,” IEEE J. Sel. Areas Commun., vol. 21, no. 4, pp. 642–655, May
2003.

[2] E. Altman, Z. Liu, and R. Righter, “Scheduling of an input-queued
switch to achieve maximal throughput,” Prob. Eng. Inform. Sci., vol.
14, pp. 327–334, 2000.

[3] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High speed
switch scheduling for local area networks,” ACM Trans. Comput. Syst.,
vol. 11, no. 4, pp. 319–52, Nov. 1993.

[4] M. Andrews and M. Vojnovic, “Scheduling reserved traffic in input
queued switches: New delay bounds via probabilistic techniqueues,”
IEEE J. Sel. Areas Commun., vol. 21, no. 4, pp. 595–605, May 2003.

[5] E. Balas and P. R. Landweer, “Traffic assignment in communication
satellites,” Oper. Res. Lett., vol. 2, pp. 141–147, Nov. 1983.

[6] A. Bar-Noy, R. Motwani, and J. Naor, “The greedy algorithm is optimal
for on-line edge coloring,” Inf. Process. Lett., vol. 44, no. 5, pp. 251–253,
1992.

[7] J. C. R. Bennett and H. Zhang, “WF Q: Worst-case fair weighted fair
queueing,” in Proc. IEEE INFOCOM, San Francisco, CA, Mar. 1996,
pp. 120–128.

[8] G. Bongiovanni, D. Coppersmith, and C. K. Wong, “An optimal time slot
assignment for an SS/TDMA system with variable number of transpon-
ders,” IEEE Trans. Communications, vol. COM-29, no. 5, pp. 721–726,
May 1981.

[9] C. S. Chang, J. W. Chen, and H. Y. Huang, “On service guarantees for
input-buffered crossbar switches: a capacity decomposition approach by
Birkhoff and von Neumann,” in Proc. 7th Int. Workshop on Quality of
Service (IWQoS), London, U.K., 1999, pp. 79–86.

[10] , “Birkhoff-Von Neumann input-buffered crossbar switches,” in
Proc. IEEE INFOCOM, Tel Aviv, Israel, 2000, pp. 1614–1623.

[11] A. Charny et al.. An expedited forwarding PHB. Internet Engineering
Task Force. [Online]. Available: draft-ietf-diffserv-rfc2598bis-02.txt

[12] K. L. Chen, “A conflict-free protocol for optical WDMA networks,” in
Proc. IEEE GLOBECOM, 1991, pp. 1276–1281.

[13] N. R. Figueira and J. Pasquale, “An upper bound delay for the virtual-
clock service discipline,” IEEE Trans. Netw., vol. 3, no. 4, pp. 399–408,
Aug. 1995.

[14] A. Ganz and Y. Gao, “Efficient algorithms for SS/TDMA scheduling,”
IEEE Trans. Commun., vol. 40, no. 8, pp. 1367–1374, Aug. 1992.

[15] P. Giaccone, B. Prabhakar, and D. Shah, “Toward simple, high-per-
formance schedulers for high-aggregate bandwidth switches,” in Proc.
IEEE INFOCOM, New York, Jun. 2002, pp. 1160–1169.

[16] I. Gopal and C. K. Wong, “Minimizing the number of switchings in an
SS/TDMA system,” IEEE Trans. Commun., vol. COM-33, no. 6, pp.
497–501, Jun. 1985.

KESLASSY et al.: ON GUARANTEED SMOOTH SCHEDULING FOR INPUT-QUEUED SWITCHES 1375

[17] I. Gragopoulos and F.-N. Pavlidou, “A new evaluation criterion for
Clos- and Benes-type rearrangeable switching networks,” IEEE Trans.
Commun., vol. 45, no. 1, pp. 119–126, Jan. 1997.

[18] A. Hung, G. Kesidis, and N. McKeown, “ATM input-buffered switches
with the guaranteed-rate property,” in Proc. 3rd IEEE Symp. Computers
and Communications (ISCC), Athens, Greece, 1998, pp. 331–335.

[19] K. Kar, T. V. Lakshman, D. Stiliadis, and L. Tassiulas, “Reduced com-
plexity input buffered switches,” in Proc. Hot Interconnects VIII, Palo
Alto, CA, Aug. 2000.

[20] H. Lee, F. Hwang, and J. Carpinelli, “A new matrix decomposition al-
gorithm for rearrangeable Clos interconnection networks,” IEEE Trans.
Commun., vol. 44, no. 11, pp. 1572–1578, Nov. 1996.

[21] N. McKeown, M. Izzard, A. Mekkittikul, B. Ellersick, and M. Horowitz,
“Tiny Tera: a packet switch core,” in Proc. Hot Interconnects IV, Stan-
ford, CA, Aug. 1996, pp. 161–173.

[22] C. A. Pomalaza-Raez, “A note on efficient SS/TDMA assignment al-
gorithms,” IEEE Trans. Commun., vol. 36, no. 9, pp. 1078–1082, Sep.
1988.

[23] F. Rendl, “On the complexity of decomposing matrices arising in satel-
lite communication,” Oper. Res. Lett., vol. 4, pp. 5–8, May 1985.

[24] D. Shah and M. Kopikare, “Delay bounds for approximate maximum
weight matching algorithms for input queued switches,” in Proc. IEEE
INFOCOM, New York, Jun. 2002, pp. 1024–1031.

[25] V. Sivaraman and G. N. Rouskas, “A reservation protocol for broadcast
WDM networks and stability analysis,” Comput. Netw., vol. 32, no. 2,
pp. 211–227, Feb. 2000.

[26] IEEE J. Sel. Topics Quantum Electron., Special Issue on Optical MEMS,
vol. 8, no. 1, Jan.-Feb. 2002.

[27] Y. Tamir and H. C. Chi, “Symmetric crossbar arbiters for VLSI commu-
nication switches,” IEEE Trans. Parallel and Distributed Systems, vol.
4, no. 1, pp. 13–27, Jan. 1993.

[28] L. Tassiulas, “Linear complexity algorithms for maximum throughput in
radio networks and input queued switches,” in Proc. IEEE INFOCOM,
vol. 2, San Francisco, CA, 1998, pp. 533–539.

[29] B. Towles and W. J. Dally, “Guaranteed scheduling for switches with
configuration overhead,” in Proc. IEEE INFOCOM, New York, Jun.
2002, pp. 342–351.

[30] R. S. Tucker and W. D. Zhong, “Photonic packet switching: An
overview,” IEICE Trans. Commun., vol. E82-B, no. 2, pp. 254–264,
Feb. 1999.

[31] T. Weller and B. Hajek, “Scheduling nonuniform traffic in a packet-
switching system with small propagation delay,” IEEE Trans. Netw., vol.
5, no. 6, pp. 813–823, Dec. 1997.

[32] K. L. Yeung, “Efficient time slot assignment algorithms for TDM hierar-
chical and nonhierarchical switching systems,” IEEE Trans. Commun.,
vol. 49, no. 2, pp. 351–359, Feb. 2001.

[33] J. Gripp et al., “Demonstration of a 1.2 Tb/s optical packet switch fabric
based on 40 Gb/s burst-mode clock-data-recovery, fast tunable lasers,
and a high-performanceN�N AWG,” in Proc. 27th Eur. Conf. Optical
Communication (ECOC), vol. 6, Oct. 2001, pp. 58–59.

Isaac Keslassy (M’02) received the M.S. and Ph.D.
degrees in electrical engineering from Stanford Uni-
versity, Stanford, CA, in 2000 and 2004, respectively.

He is currently an Assistant Professor of electrical
engineering at the Technion–Israel Institute of Tech-
nology, Haifa, Israel. His research interests include
the design and analysis of high-performance routers,
load balancing, packet buffering, and scheduling al-
gorithms in optical and wireless networks. He holds
the ATS-WD Career Development Chair.

Murali Kodialam received the Ph.D. degree in op-
erations research from the Massachusetts Institute of
Technology, Cambridge, in 1991.

He has been with Bell Laboratories, Holmdel, NJ,
since 1991. He is currently in the High Speed Net-
works Research Department, working on resource
allocation in networks and performance analysis of
communication systems. His current interests are in
the areas of new algorithms for robust routing and
real-time traffic estimation in IP networks.

T. V. Lakshman (F’05) received the Masters degree
in physics from the Indian Institute of Science, Ban-
galore, India, and the Ph.D. degree in computer sci-
ence from the University of Maryland, College Park.

He is currently the Director of the High Speed
Networks Research Department at Bell Laboratories,
Lucent Technologies, Holmdel, NJ. His research
interests and contributions span a spectrum of net-
working topics including switch architectures, traffic
management, network design, high-speed packet
filtering, and TCP performance.

Dr. Lakshman has received several best paper awards from ACM and IEEE,
and was an editor of the IEEE/ACM TRANSACTIONS ON NETWORKING from
1996 to 2002.

Dimitrios Stiliadis (M’96) received the M.S. and
Ph.D. degrees in computer engineering from the
University of California at Santa Cruz, in 1994 and
1996, respectively.

Since 1996, he has been with the High-Speed Net-
works Research Department of Bell Laboratories,
Holmdel, NJ, where he is currently a Distinguished
Member of Technical Staff. During these years,
he has been leading the architecture of several
generations of packet switching equipment. His
recent research has been in issues related to traffic

management, switch scheduling, and applications of optical technologies to
packet networks.

Dr. Stiliadis was a co-recipient of the 1998 IEEE Fred W. Ellersik Prize Paper
Award.

	toc
	On Guaranteed Smooth Scheduling for Input-Queued Switches
	Isaac Keslassy, Member, IEEE, Murali Kodialam, T. V. Lakshman, F
	I. I NTRODUCTION
	II. D ECOMPOSITION OF THE G UARANTEED R ATE T ABLE
	A. Birkhoff Von Neumann Decomposition
	Theorem 1: Any doubly stochastic matrix can be written as a conv

	B. Low-Jitter Decomposition
	Theorem 2: The problem ILJD is NP hard.
	Lemma 3: Consider two vectors $(v_{1}, v_{2}, \ldots , v_{p})$ a
	Theorem 4: Let R be a rate matrix. Sort each column of the mat

	C. Greedy Low-Jitter Decomposition

	Fig.€1. Description of the greedy low-jitter decomposition algor
	D. Guarantees on the GLJD Algorithm
	Theorem 5: Let K be the number of partial permutation matrices
	Theorem 6: Let $n \geq 2$ and let H represent the harmonic ser
	Theorem 7: For any $n \geq 3$, there exists at least one rate ma
	Corollary 8: ${\rm {\rm BW}}({\rm GLJD}) = \Theta (\log n)$ and
	Theorem 9: For any given schedule, assume without loss of genera
	Theorem 10: For any rate matrix R, $${{ T_{{\rm GLJD}} (R)}\ov
	Corollary 11: The bandwidth-guarantee competitive ratio of the G

	III. S CHEDULING THE LJ D ECOMPOSITION

	Fig.€2. Description of low-jitter scheduling algorithm.
	Theorem 12: If $\sum _{k=1}^{K} \phi _{k} < 1$, then for all cla
	A. Experimental Results
	Jitter Performance: For a given input output pair (i,j), the L

	Fig.€3. Number of matches per interval for a 64 $\,\times\,$ 64
	Speed-up Ratio: This represents the ratio of the bandwidth requi

	Fig.€4. Fraction of bandwidth reserved in a 64 $\,\times\,$ 64 s
	Fig.€5. Success rate for a 64 $\,\times\,$ 64 switch under unifo
	Optimality Gap: For a set of experiments with uniform traffic de

	Fig.€6. Fraction of bandwidth reserved in a 64 $\,\times\,$ 64 s
	Fig.€7. Success rate for a 64 $\,\times\,$ 64 switch under non-u
	Number of Matrices in the Decomposition: We compare the number o
	Total Computation Time: We compare the total computation time to

	Fig.€8. Optimality ratio for a 64 $\,\times\,$ 64 switch.
	TABLE I N UMBER OF M ATRICES IN THE D ECOMPOSITION
	TABLE II R UNNING T IMES OF THE A LGORITHM
	IV. A P RACTICAL A LGORITHM FOR B ANDWIDTH -G UARANTEED T RAFFIC
	Theorem 13: At the end of the algorithm defined above, $ {{ \sum

	V. A L AST W ORD ON B URSTY D ECOMPOSITION A LGORITHMS
	VI. C ONCLUSION
	Proof for Lemma 3
	Proof for Theorem 4
	Proof of Theorem 5
	Proof for Theorem 6
	Proof for Theorem 7
	Proof for Corollary 8
	Proof for Theorem 9
	Proof for Theorem 10
	Proof for Corollary 11
	Proof for Theorem 13

	M. A. Marsan, P. Giaccone, E. Leonardi, and F. Neri, On the stab
	E. Altman, Z. Liu, and R. Righter, Scheduling of an input-queued
	T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, Hig
	M. Andrews and M. Vojnovic, Scheduling reserved traffic in input
	E. Balas and P. R. Landweer, Traffic assignment in communication
	A. Bar-Noy, R. Motwani, and J. Naor, The greedy algorithm is opt
	J. C. R. Bennett and H. Zhang, ${\rm WF}^{2}{\rm Q}$: Worst-case
	G. Bongiovanni, D. Coppersmith, and C. K. Wong, An optimal time
	C. S. Chang, J. W. Chen, and H. Y. Huang, On service guarantees
	A. Charny et al. . An expedited forwarding PHB . Internet Engine
	K. L. Chen, A conflict-free protocol for optical WDMA networks,
	N. R. Figueira and J. Pasquale, An upper bound delay for the vir
	A. Ganz and Y. Gao, Efficient algorithms for SS/TDMA scheduling,
	P. Giaccone, B. Prabhakar, and D. Shah, Toward simple, high-perf
	I. Gopal and C. K. Wong, Minimizing the number of switchings in
	I. Gragopoulos and F.-N. Pavlidou, A new evaluation criterion fo
	A. Hung, G. Kesidis, and N. McKeown, ATM input-buffered switches
	K. Kar, T. V. Lakshman, D. Stiliadis, and L. Tassiulas, Reduced
	H. Lee, F. Hwang, and J. Carpinelli, A new matrix decomposition
	N. McKeown, M. Izzard, A. Mekkittikul, B. Ellersick, and M. Horo
	C. A. Pomalaza-Raez, A note on efficient SS/TDMA assignment algo
	F. Rendl, On the complexity of decomposing matrices arising in s
	D. Shah and M. Kopikare, Delay bounds for approximate maximum we
	V. Sivaraman and G. N. Rouskas, A reservation protocol for broad

	IEEE J. Sel. Topics Quantum Electron., Special Issue on Optical
	Y. Tamir and H. C. Chi, Symmetric crossbar arbiters for VLSI com
	L. Tassiulas, Linear complexity algorithms for maximum throughpu
	B. Towles and W. J. Dally, Guaranteed scheduling for switches wi
	R. S. Tucker and W. D. Zhong, Photonic packet switching: An over
	T. Weller and B. Hajek, Scheduling nonuniform traffic in a packe
	K. L. Yeung, Efficient time slot assignment algorithms for TDM h
	J. Gripp et al., Demonstration of a 1.2 Tb/s optical packet swit

