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The Switch Reordering Contagion: Preventing a
Few Late Packets from Ruining the Whole Party

Ori Rottenstreich, Pu Li, Inbal Horev, Isaac Keslassy and Shivkumar Kalyanaraman

Abstract—Packet reordering has now become one of the most
significant bottlenecks in next-generation switch designs. A switch
practically experiences a reordering delay contagion, such that a
few late packets may affect a disproportionate number of other
packets. This contagion can have two possible forms. First, since
switch designers tend to keep the switch flow order, i.e. the order
of packets arriving at the same switch input and departing from
the same switch output, a packet may be delayed due to packets
of other flows with little or no reason. Further, within a flow,
if a single packet is delayed for a long time, then all the other
packets of the same flow will have to wait for it and suffer as
well.

In this paper, we suggest solutions against this reordering
contagion. We first suggest several hash-based counter schemes
that prevent inter-flow blocking and reduce reordering delay.
We further suggest schemes based on network coding to protect
against rare events with high queueing delay within a flow. Last,
we demonstrate using both analysis and simulations that the use
of these solutions can indeed reduce the resequencing delay. For
instance, resequencing delays are reduced by up to an order of
magnitude using real-life traces and a real hashing function.

Index Terms—Switching theory, Packet-switching networks.

I. INTRODUCTION

A. Switch Reordering

Packet reordering is emerging as a significant design issue in
next-generation high-end switch designs. While it was easier to
prevent in older switch designs, which were more centralized,
the increasingly distributed nature of switch designs and the
growth in port numbers are making it harder to tackle [1].

Figure 1 illustrates a simplified N ×N multi-stage switch
architecture, with N input ports, M middle elements, and N
output ports. It could for instance be implemented using either
a Clos network or a load-balanced switch [2]. Variable-size
packets arriving to the switch are segmented into fixed-size
cells. Each such cell is load-balanced to one of the M middle
elements, either round-robin or uniformly-at-random. It is later
sent to its appropriate output. There, in the output resequencing
buffer, it waits for late packets from other middle elements,
so as to depart the switch in order.

For instance, assume that cells A through F arrive in order
to the switch, and belong to the same switch flow, i.e. share
the same input and output. When A arrives to the output, it can
depart. However, if cells B and C still wait to be transmitted
out of their middle elements, then cells D through F cannot
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Fig. 1. Switch flow blocking in the switch architecture.

depart the switch, because they wait for B and C to be sent
in order.

More generally, packet reordering occurs when there is
a difference in delay between middle elements. In practice,
this can happen because of many reasons: e.g., a temporary
congestion at a middle element following the sudden arrival of
a few high-fanout multicast packets from different inputs, a pe-
riodic maintenance algorithm, or a flow-control backpressure
message that temporarily stops transmissions out of a middle
element but has not yet stopped arrivals to it [3].

Because of packet reordering, a large delay at a single mid-
dle element can affect the whole switch. For instance, assume
that a given middle element temporarily stops transmitting
cells because of a flow-control message. Consider an arbitrary
switch flow, i.e. a set of packets sharing the same switch input
and output. If the switch-flow cells are load-balanced in round-
robin order across middle elements, and the switch flow has
at least M cells, then at least one cell will be stuck at the
middle element. In turn, this will block the whole switch flow,
since all other subsequent cells are waiting for it at the output
resequencing buffer. Therefore, the switch will behave as if all
the middle elements were blocked. Instead of affecting only
1
M

th of the traffic, it potentially affects the whole traffic.
Reordering causes many issues in switch designs. The
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cells that are waiting at the output resequencing buffer are
causing both increased delays and increased buffering needs.
In fact, in current switch designs, the resequencing buffer
sizes are typically pushing the limits of available on-chip
memory. In addition, reordering buffers cause implementation
complexity issues. This is because the output resequencing
structures, shown in Figure 1, are conceptually implemented as
linked lists. Therefore, longer resequencing buffers imply that
designers need to insert cells into increasingly longer linked
lists at a small constant average time.

There are two ways to address these reordering issues.
First, it is possible to change routing. One commonly-proposed
solution to fight reordering is to hash each flow to a random
middle switch [4]–[6]. However, while this indeed prevents
reordering, it also achieves a significantly lower throughput,
especially when dealing with bigger flows. In addition, other
solutions rely on a careful synchronization of packets to avoid
reordering [2], [4]. Yet these solutions are often too complex
for typical high-performance routers with high internal round-
trip-times and large packet rates. In this paper, we assume that
routing is given, and do not try to improve it in any way.

A second approach, which is often adopted by switch
vendors, is to use significant speedups on the switch fabrics
(typically 2X, but published numbers go up to 5X [6], [7]).
However, this approach also wastes a large part of the band-
width. Our goal is to suggest ways of scaling routers in the
future without further increasing this speedup.

B. Reordering Contagion and Flow Blocking

In this paper, we divide reordering effects into two different
types, and suggest algorithms to deal with each type. More
precisely, we consider two types of reordering contagion, i.e.
cases where the large delay of one cell can significantly affect
the delay of many other cells:

• A contagion within flows, e.g. when a large packet is
segmented into many cells, and one late cell makes all
other cells wait.

• A contagion across flows, e.g. when a late cell of one
flow makes cells of other flows wait.

The first type is easy to understand. The paper suggests
dealing with it by using network coding, so as to not have any
irreplaceable cell.

The second type is due to flow blocking, as explained below,
and is tackled using hash-based counter schemes.

Today, switches guarantee that packets belonging to the
same switch flow, i.e. arriving at the same switch input and
departing from the same switch output, will depart in the same
order as they arrived. For switch vendors as well as for their
customers, breaking this switch-flow order guarantee is not an
option.

To the best of our knowledge, all current switch designers
provide this guarantee.1 That, even though no standard requires
it, and in fact the IPv4 router standard does not even forbid

1However, since switch internal details are often kept confidential, we could
not find a publicly available reference. [8] (in Chapter 4), [7], [6] (in Appendix
B) refer to the use of internal sequence numbers to maintain packet order, but
none of these detail how the sequence numbers are formed.

TABLE I
AN EXAMPLE OF PACKETS WITH THEIR FLOW IDS AND SWITCH FLOW

IDS. PACKETS A THROUGH F BELONG TO THE SAME SWITCH FLOW , I.E.
SHARE THE SAME SWITCH INPUT AND SWITCH OUTPUT. PACKET G
BELONGS TO A SECOND SWITCH FLOW. IN ADDITION, PACKETS A

THROUGH F INCLUDE PACKETS FROM 5 DIFFERENT FLOWS, I.E. HAVE 5
POSSIBLE (SOURCE, DESTINATION) IP ADDRESS PAIRS.

Packet Source Destination Switch Switch Flow Switch
IP IP Input Output ID Flow

ID
A 192.168.0.1 192.168.0.8 1 i x I
B 192.168.0.1 192.168.0.8 1 i x I
C 192.168.0.1 192.168.255.0 1 i y I
D 192.168.1.64 192.168.0.16 1 i z I
E 192.168.255.0 192.168.64.0 1 i u I
F 192.168.0.0 192.168.0.16 1 i v I
G 192.168.64.9 192.168.128.0 N N w II

packet reordering (section 2.2.2 in [9]). Today, it is a signif-
icant customer requirement that needs to be addressed (it is
well known that a major core-router vendor lost market share
because of its routers experimenting some limited reordering).

However, this guarantee has been increasingly hard to
address in high-end multi-stage switches because of the com-
plex and often-overlooked flow blocking interactions. Within
a switch flow, let a flow be the set of all packets that also
share the same (source, destination) IP address pair. Then
flow blocking happens when in order to satisfy the switch-flow
order guarantee, packets from one flow wait for late packets
from another flow within the same switch flow.

To illustrate this flow blocking phenomenon, Table I details
the packets from Figure 1. Assume that even though packets
A through F belong to the same switch flow, they do not all
belong to the same flow. Packets A, B belong to flow x (shown
with a circle in Figure 1) since they have the same (source,
destination) IP pair, packet C belongs to flow y (shown with a
pentagon), packet D belongs to flow z (shown with a triangle).
Likewise, packet E belongs to flow u and packet F belongs to
flow v. An additional packet G belongs to a different switch
flow and can independently depart the switch. As previously
mentioned, packet A, which arrives to the switch before B
and C can depart in order. However, packets D, E and F
are out of switch-flow order, and therefore need to wait for
packets B, C at the output. They can only depart from the
switch when B and C arrive, and are blocked meanwhile. In
particular, note that these packets are blocked by a late packet
from a different flow: this is flow blocking.

C. Our Contributions

In this paper, we propose solutions for the two different types
of the reordering contagion. We first try to suggest hash-based
schemes to separate between flows more accurately and reduce
the inter-flow blocking, and then suggest a coding scheme to
reduce intra-flow reordering delay contagion.

First, instead of providing a switch-flow order guarantee,
we only provide a flow order guarantee, so that packets of the
same flow are still maintained in order, but are not constrained
with respect to packets of different flows. As mentioned
previously, this is compatible with all known standards. We
then suggest schemes that use this new order constraint to
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(a) Baseline scheme (b) Hashed-Counter scheme (c) Multiple-Counter scheme

Fig. 2. Illustration of the Baseline scheme, Hashed-Counter scheme and the Multiple-Counter scheme. The single flow counter from the Baseline scheme
is replaced with m hashed flow counters in the Hashed-Counter scheme and the Multiple-Counter scheme. A packet from a given flow is hashed to a single
counter in the Hashed-Counter scheme and to k counters in the Multiple-Counter scheme.

reduce resequencing delays in the output resequencing buffers.
Unlike most previous papers on switch reordering, these
schemes do not change the internal load-balancing algorithm,
and therefore also the internal packet reordering. In other
words, our resequencing schemes are end-to-end in the switch,
in the sense that they only affect the input and output buffers,
and not any element in-between, so as to be transparent to the
switch designer internal routing and flow-control algorithms.

Our schemes use various methods to increasingly distin-
guish between flows and decrease flow blocking. Our first
scheme, Hashed-Counter, uses a hash-based counter algo-
rithm. This scheme extends to switch fabrics the idea sug-
gested in [10] for network processors. It replaces each single
flow counter with m hashed flow counters, and therefore
effectively replaces flow blocking within large switch flows by
reducing it to flow blocking within smaller flow aggregates.

Then, our second scheme, the Multiple-Counter scheme,
uses the same counter structure, but replaces the single hash
function by k hash functions to distinguish even better between
flows and therefore reduce flow blocking.

Figure 2 illustrates the Hashed-Counter scheme and the
Multiple-Counter scheme in comparison with a simple
counter-based scheme called the Baseline scheme. The single
counter is replaced with an array of counters in the Hashed-
Counter and the Multiple-Counter schemes. While a packet
from a given flow is hashed to a single counter in the Hashed-
Counter scheme, it is hashed to k counters in the Multiple-
Counter scheme.

Finally, our last scheme, Bh Multiple-Counter attempts to
reduce flow blocking even further by using variable-increment
counters based on Bh sequences. All these schemes effectively
attempt to reduce hashing collisions between different flows
within the same switch flow. Note that in the worst case, even
if all hashes collide, all these scheme guarantee that they will
not perform worse than the currently common scheme, which
uses the same counter for all flows and therefore has the worst
flow blocking within any switch flow.

However, if a packet is delayed in a long queue, these
counter-based schemes cannot prevent it from affecting many
packets within its flow. Therefore, we suggest to use network
coding to reduce reordering delay. We introduce several
possible network coding schemes and discuss their effects on
reordering delays. In particular, we show the existence of a
time-constrained network coding that is not necessarily related
to channel capacity optimality.

Finally, using simulations, we show how the schemes can
significantly reduce the total resequencing delay, and analyze
the impact of architectural variables on the switch perfor-

mance. For instance, resequencing delays are reduced by up to
an order of magnitude using real-life traces and a real hashing
function.

Note that since they do not affect routing, our suggested
schemes are general and can apply to a variety of previously-
studied multi-stage switch architectures, including Clos, PPS
(Parallel Packet Switch), and load-balanced switch architec-
tures [2], [11]–[14]. They can also apply to fat-tree data center
topologies with seven stages [15]–[17], and more generally to
any network topology with inputs, outputs, and load-balancing
with reordering in-between. While we do not expand these
for the sake of readability, we believe that our schemes can
decrease resequencing delay in all these potential architec-
tures. (For instance, to avoid reordering, data center links are
currently oversubscribed by factors of 1:5 or more [15]–[17].
If reordering did not incur such a high resequencing delay,
it may be easier to efficiently load-balance packets and fully
utilize link capacities.)

D. Related Work

Resequencing schemes for switches are usually divided into
two main categories. First, counter-based schemes, which rely
on sequence numbers. For instance, Turner [18] describes an
implementation of a counter-based scheme that corresponds to
the Baseline scheme, as described later.

Second, timestamp-based schemes, which rely on times-
tamps deriving from a common clock. Henrion [19] introduces
such a scheme with a fixed time threshold. Turner [20] presents
an adaptive timestamp-based scheme with congestion-based
dyamic thresholds. However, while timestamp-based schemes
can be simpler to implement, their delays can become pro-
hibitive when internal delays are highly variable, as explained
in [20], because most packets experience a worst-case delay.
Therefore, we restrict this paper to counter-based schemes.

Several schemes for load-balanced switches [12], [13] at-
tempt to prevent any reordering within the switch. [2], [4],
[21] provide an overview of such schemes. In particular, in
the AFBR (Application Flow-Based Routing) as well as in [5],
[6] packets belonging to the same hashed flow, are forwarded
through the same route, thus preventing resequencing but also
changing the flow paths and obtaining low throughput in the
worst case. For instance, if there are a few large flows, the
achieved balancing is only partial.

Resequencing schemes have also been considered in net-
work processors. Wu et al. [22] describe a hardware mech-
anism in each flow gets its own counter. The mechanism
remembers all previous flows and sequentially adds new flows
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to the list of chains. It then matches a packet from an existing
flow with the right SRAM (Static Random-Access Memory)
entry using a TCAM (Ternary Content-Addressable Memory)
lookup. Meitinger et al. [10] are the first to suggest the
use of hashing for mapping flows into counters in network
processors in order to reduce reordering. They further discuss
the tradeoff between the large number of counters and the
possible collisions. However, all these works on network
processors only consider a single input and a single output,
and therefore do not consider the complexity introduced by
the N2 switch flows. In addition, the load-balancing might
be contained in network processors with stateful algorithms,
while it is not in switches.

Packet reordering is of course also studied in many addi-
tional networking contexts, such as the parallel download of
multiple parts of a given file [23], or in ARQ (Automatic
Repeat reQuest) protocols [24]. Recently, Leith et al. [25]
considered the problem of encoding packets with independent
probabilistic delays such that the probability that a packet can
be decoded within a given decoding deadline is maximized.

II. THE HASHED-COUNTER SCHEME

A. Background
A commonly used scheme for preserving switch flow order

is to keep a sequence-number counter for each switch flow.
In this scheme, denoted as the Baseline scheme, each packet
arriving at a switch input and destined to a switch output is
assigned the corresponding sequence number. As illustrated in
Figure 3(a), in each switch input, we keep N counters, one
for each switch output. Then, the switch output simply sends
packets from this switch input according to their sequence
number. Referring to the example of Table I, all the first six
packets A through F share the same counter as they belong
to the same switch flow. Assume that packet A gets sequence
number 1, B gets number 2, ..., and F gets number 6. Then
packet A can depart without waiting because its sequence
number is the smallest. Packet D, E and F need to wait for
packets B and C. In the end, the departure order is A, B,
C, D, E, F . Likewise, the packet G uses a different counter
since it belongs to a second switch flow.

It would seem natural to similarly preserve flow order by
keeping a counter for each flow. However, the potential number
of 232+32 (source, destination) IPv4 flows going through a
high-performance switch is too large to keep a counter for
each.

We could also devise a solution in which counters would
only be kept for the most recent flows. But such a solution
might be complex to maintain and not worth this cost and
complexity. For instance, a 10 Gbps line with an average
400 B packet size would have to keep up to 3 million flows
for the last second. If each flow takes 32 + 32 bits to store
the (source, destination) IPv4 addresses and 10 bits for the
counter, we would need more than 200 Mb of memory,
thus requiring expensive off-chip DRAM (Dynamic Random-
Access Memory).

Instead, the following algorithms rely on hashing to reduce
the number of needed counters by several orders of magnitude,
in exchange for a small collision probability.

B. Scheme Description

Figure 4(a) illustrates how the Hashed-Counter scheme is
implemented in the input port. N arrays of packet counters
exist in each input port. For a given output port, the Hashed-
Counter scheme uses an array of m counters, instead of a
single counter for the Baseline scheme.

As shown in Figure 4(b), each incoming packet is hashed
to a specific counter based on its flow source and destination
IP addresses. The counter value is then incremented, and the
packet is assigned this value as its sequence number. For
instance, a packet A belonging to flow x is hashed to counter
i = h(x), and it is assigned sequence number 8+1 = 9. This
sequence number 9 is inserted into A, which is forwarded to
the middle switch element.

At the output resequencing buffer, the same hash function is
used as well. Therefore, it will yield the same counter index.
All packets hashing to the same counter will then leave in
order, as indicated by their sequence numbers.

Since the hash function is kept constant, all packets of the
same flow always use the same counter. Therefore, the switch
is flow order preserving.

Note that the Baseline scheme is a private case of the
Hashed-Counter scheme for m = 1. Intuitively, the Hashed-
Counter scheme splits all the flows that are part of a switch
flow into m sets of flows, and keeps the order within each set.
Therefore, a late packet will only delay packets within its set,
and not affect the packets of the other m−1 sets. Consider the
example in Table I again, and assume m = 4. Packet A, B,
E of flows x, u, and packet C, F of flows y, v are hashed to
two different counters, the forth and the second, respectively.
Likewise, packet D of flow z is hashed to the third counter.
At the output, packet E still needs to be buffered to wait
for packet B and packet F for packet C, as in the Baseline
scheme. However, packet D which is the first packet that uses
the third counter, does not necessarily need to be buffered till
any other packets’s arrival. Thus, it can depart from the switch
right after packet A. Therefore, the packet departure order is
different from their arrival order and only packets E,F are
blocked by the delayed packets B and C.

C. Output Resequencing Buffer

We now want to illustrate the operation of the output
resequencing buffer in the two schemes, i.e., Baseline and
Hashed-Counter scheme, by considering the example above.

1) Baseline Scheme: As shown in Figure 3(c), the Baseline
scheme is easy to implement in our example. All packets are
kept in a single linked list. When a packet arrives and is the
first one in the linked list, it is ready to depart. Since packet A
has departed, the next expected packet B has a counter value
of 2. Placeholders are used in the linked list for the missing
packets B and C. (Of course, real implementations might
be optimized by mixing linked lists and arrays and skipping
placeholders, but this is beyond the scope of this paper.)

2) Hashed-Counter Scheme: Figure 4(c) illustrates how the
Hashed-Counter scheme is implemented using m separate
linked lists. Each packet is hashed into its corresponding linked
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(a) Input port structure, closeup view of
Figure 1.

(b) Counter illustration for packet A from flow
x.

(c) Output resequencing structure.

Fig. 3. Baseline scheme

(a) Input port structure, closeup view of
Figure 1.

(b) Counter illustration for packet A from flow x. (c) Output resequencing struc-
ture.

Fig. 4. Hashed-Counter scheme

list depending on its flow. When a packet arrives and is the
first of its linked list, it is ready to depart.

In this example, flows y and v hash to the second linked list,
with a placeholder for delayed packet C and with packet F .
Flow z hashes to the third linked list. As the counter value of
D is the expected, D leaves immediately. Finally, flows x and
u hash to the last linked list, with a placeholder for delayed
packet B and with packet E.

III. THE MULTIPLE-COUNTER SCHEME

A. Scheme Description

While the Hashed-Counter scheme splits the flows into m
sets using m counters, we would like to use these counters
even more efficiently and split the flows into more sets. We
suggest to use several hash functions, while making sure that
the order is still preserved.

The implementation of the Multiple-Counter scheme is
illustrated in Figure 5(a), it is schematically the same as that
of the Hashed-Counter scheme. As shown in Figure 5(b),
the Multiple-Counter scheme also keeps an array of m coun-
ters for each pair of input and output ports. However, each
incoming packet is now hashed into k different counters
using k different hash functions of the flow ID (the case
k = 1 corresponds of course to the previous Hashed-Counter
scheme). All the k counter values are incremented and sent
with the packet. In this example, in the input port, the packet A
belonging to flow x is hashed to counters i1, i2, i3 using hash
functions h1, h2, h3 and is assigned the sequence numbers
3, 9, 4, respectively. The sequence numbers are inserted to A,
which then is forwarded to the middle switch element.

When packet A arrives at the output resequencing buffer,
it now needs to check the same k counters. In the case that
its counter value is the next expected one in at least one of
its k counters, we can deduce that P is the earliest packet of
its flow, and therefore that it can be released. This is because
any earlier packet P ′ of the same flow would have hashed to

the same k counters, and therefore would have had smaller
counter values in all counters. If the counter value of P is the
next expected one, it necessarily implies that P ′ has already
departed.

The Multiple-Counter scheme ensures that the switch is
flow order preserving. We now describe in greater detail the
resequencing buffer implementation.

B. Output Resequencing Buffer

As shown in Figure 5(c), the implementation of the
Multiple-Counter scheme is similar to that of the Hashed-
Counter scheme. However, there is a small tweak: each
packet actually belongs to several linked lists. Therefore, we
only represent packet pointers, while the real packets sit in
the packet buffer. Each arriving packet is hashed into its k
corresponding linked lists and places pointers in each. When
a packet arrives and is the first of at least one of its linked
lists, it is ready to depart.

We use k = 2 and refer again to the example in Table I
with additional assumptions. Specifically, we assume that flow
x (with A and B) uses counters {C2, C4}, flow y (with C)
uses {C2, C3}, flow z (with D) uses {C1, C4}, flow u (with
E) uses also {C1, C4}, and finally flow v (with F ) uses
{C2, C3}. Since D is the first packet in the linked list of
C1, it can leave immediately after its arrival. Later, when
E arrives, its counter value for C1 is the next expected and
therefore it can also leave immediately. Meanwhile, in the list
of C4, packets D and E are temporally kept with a special
mark. When the missing packet B in the list departs, the link
will be updated and the expected counter value then would be
set to 5. When F arrives, its counter value for C2, C3 are 4
and 2 while they expect a packet of counter value 2 and 1,
respectively. Therefore, it is not the first of any of the two
linked lists. It is placed in each, and a placeholder is added
for the missing packets of each counter. In addition, the real
packet F is inserted in the packet buffer.
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(a) Input port structure, closeup view of
Figure 1.

(b) Counter illustration for packet A from flow x. (c) Output resequencing structure.

Fig. 5. Multiple-Counter scheme

Note that this implementation could be readily optimized
by using doubly-linked lists, and by pointing directly to the
packets instead of using copies. Thus, each packet would
contain 2k pointers, i.e. two pointers per linked list. It could
also be optimized by skipping departed packets in the linked
list. All these considerations, however, are beyond the scope
of this paper.

IV. THE Bh Multiple-Counter SCHEME

A. Bh sequences

Fig. 6. Bh Multiple-Counter scheme in the input, packet A from flow x.

While all previous schemes (Baseline, Hashed-Counter
and Multiple-Counter) increment their counters by one upon
packet arrival, we now want to introduce flow-based variable
increments to distinguish between flows even further.

Note how schemes increasingly distinguish between flows
and prevent inter-flow blocking: starting from the Baseline
scheme, we replace a single flow counter by m hashed flow
counters to obtain the Hashed-Counter Scheme. Then we
replace a single hash function by k hash functions to obtain the
Multiple-Counter Scheme. Last, we now distinguish between
flows by changing the counter increments, as described below.

To do so, we introduce the Bh Multiple-Counter scheme. In
this scheme, we keep an array of m pairs of counters in each
input for each output, as illustrated in Figure 6. The scheme is
based on Bh sequences [26]. Intuitively, a Bh sequence is a set
of integers with the property that for any h′ ≤ h, all the sums
of h′ elements from the set are distinct. Therefore, given a sum
of h′ elements, we can determine whether an element of the
Bh sequence is a part of the sum. Recently, it was suggested
to use Bh sequences in another network application [27].

Definition 1 (Bh Sequence): Let D = {v1, v2, ..., vℓ} ⊆
N∗ be a sequence of positive integers. Then D is a Bh

sequence iff all the sums vi1 + vi2 + · · · + vih with 1 ≤
i1 ≤ · · · ≤ ih ≤ ℓ are distinct, i.e. all the sums of exactly
h elements from D have different values.

It is easy to see that a Bh sequence has the following property:
Observation 1: If D = {v1, v2, ..., vℓ} is a Bh sequence

then all the sums vi1 + vi2 + · · · + vih′ with 1 ≤ i1 ≤ · · · ≤
ih′ ≤ ℓ for h′ ∈ [1, h] are distinct as well.

Example 1: Let D = {v1, v2, v3, v4} = {1, 2, 5, 7} ⊆ N∗.
We can see that all the 10 sums of 2 elements of D are

distinct: 1+1 = 2, 1+2 = 3, 1+5 = 6, 1+7 = 8, 2+2 = 4, 2+
5 = 7, 2+7 = 9, 5+5 = 10, 5+7 = 12, 7+7 = 14. Therefore,
D is a B2 sequence. However, since 1+1+7 = 9 = 2+2+5,
D is not a B3 sequence.

B. Scheme Description

As illustrated in Figure 6, the scheme uses two sets of k
hash functions based on the flow ID: first, {h1, . . . , hk}, with
range {1, . . . ,m}, where the output of each hash function
points to a pair of counters. And {g1, . . . , gk}, with range
{1, . . . , ℓ}, where the output of each hash function corresponds
to a variable increment. At each switch input, each incoming
packet P is hashed again into k different array entries. using
the hash functions h1(P ), . . . , hk(P ) of the flow ID. At each
array entry hi(P ), there is a pair of counters. The first counter
with fixed increments, denoted by c1(i), is incremented by
one. The second counter, c2(i), is incremented by the element
vgi(P ) of the Bh sequence D. The values of the k pairs of
counters are then sent with the packet.

The counters are initialized as follows. At the switch input,
in each pair of counters, both counters are first set to zero.
At the output, the first counter in each pair is set to one
(according to the value of the corresponding counter of the
first packet). The second counter is initialized to zero. This is
the expected value of the second counter in the first packet
minus the corresponding variable increment.

When this packet P arrives at the output resequencing
buffer, it now needs to check the same k pairs of counters.
For each pair of counters in hi(P ), let d1(i) be the difference
between the first counter of this packet and its expected value
at the output. We also denote by d2(i) the difference between
(a) the second counter value of the packet minus its variable
increment, and (b) the expected value as indicated by the
second counter at the output. To calculate d1(i), d2(i) we
consider the counter values at the output before being updated
by the current packet P .

As in the Multiple-Counter scheme, if the first counter of
the packet is the next expected one, i.e. d1(i) = 0, we can
deduce that P is the earliest packet of its flow, and therefore
that it can be released. If d1(i) ∈ [1, h], we also consider the
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Fig. 7. Output resequencing structure for Bh Multiple-Counter scheme.

value of d2(i). This difference d2(i) equals the sum of the
variable increments of the earlier delayed packets from the
current pair of input and output ports. Since these variable
increments are based on the Bh sequence D, by definition of
the Bh sequence, we can determine whether d2(i) is composed
of vgi(P ). If this is not the case, we can release P even though
there are d1(i) > 0 earlier delayed packets that used this array
entry. This is because any earlier packet P ′ of the same flow
would have hashed to this pair of counters, and would have
incremented this second counter by the same value vgi(P ).

We now consider again the previously suggested example
from Table I with additional assumptions on the variable
increments. Now, each of C1, . . . , C4 is a pair of counters.
Specifically, we are concentrating at C2 and assume that flow
x (with A, B) increments its variable increment counter of
by 2. Flow y (with C) increments it by 7 and flow v (with
F ) increments it by 5. As in the previous scheme, when F
arrives, its fixed increment counter values for C2, C3 are 4
and 2 while they expect a packet of counter value 2 and
1, respectively. Therefore, F is not the first of any of the
two linked lists. We now consider the values of the pair of
counters C2. After having been updated by the packets A, B,
C and F , the value of the variable increment counter of F
is vgi(A) + vgi(B) + vgi(C) + vgi(F ) = 2 + 2 + 7 + 5 = 16.
Due to the missing packets B ∈ x,C ∈ y, at the output the
value of the corresponding counter before being updated by
the current packet F is only 2 (after having been updated
only by packet A). Thus, we have that d1(2) = 4−2 = 2 and
d2(2) = (16− vgi(F ))− 2 = (16− 5)− 2 = 9.

Since d1(2) = 2 ≤ h, we can determine that the sum
d2(2) = 9 must be composed of exactly two elements of D
which are 2 + 7. Since the relevant variable increment of the
flow v is 5, we can deduce that there are not any missing
packets of the flow v and the packet F is the earliest packet
of its flow and can be released. Since otherwise, we must have
that d2(2) is composed of 5.

C. Output Resequencing Buffer

The implementation of the output resequencing buffer in
this scheme is similar to the implementation of the Multiple-
Counter scheme, besides one change. The decision whether a
packet P can be released is based on the values of d1(i), d2(i)
and vgi(P ). To implement this scheme, we suggest the use of a
predetermined two-dimensional binary table based on the Bh

sequence D. The value of the table in entry (i, j) equals one
iff a sum j can be composed of exactly i elements of D. We
can see that the sum d2(i) can be composed of vgi(P ) and
other d1(i)− 1 elements of D iff the sum d2(i)− vgi(P ) can
be composed of exactly d1(i) − 1 elements of D. Therefore,
in order to determine if P can be released we access the table

TABLE II
SCHEME COMPARISON

Scheme Collision
Probability

Memory
Size/input
(coun-
ters)

Packet
overhead
Size
(counters)

Packet processing
complexity in re-
sequencing buffer

Baseline 1 N 1 1 list
Hashed-
Counter

1/m m ·N 1 1 hash, 1 list

Multiple-
Counter

1(
m
k

) m ·N k k parallel × { 1
hash, 1 list}

Bh

Multiple-
Counter

1(
m
k

)
·ℓk

2m ·N 2k k parallel × {2
hash, 1 list, 1 table
lookup}

at entry (d1(i)−1, d2(i)−vgi(P )). Since (d1(i)−1) ≤ (h−1)
we must have that (d2(i)−vgi(P )) ≤ (h−1) ·max(D) = (h−
1) ·vℓ. Thus, the size of this table can be at most max(d1(i)−
1) ·max(d2(i) − vgi(P )) ≤ (h − 1)2 · vℓ. For h = 2 and the
Bh sequence D = {v1, v2, . . . , vℓ} = {1, 2, 5, 7}, we have a
total number of (h − 1)2 · vℓ = 12 · 7 = 7 memory bits. As
illustrated in Figure 7, in order to determine whether we can
release packet F in the example above, we access the table at
entry (d1(i)−1, d2(i)−vg1(F )) = (2−1, 9−5) = (1, 4). The
bit value of zero means that the value of 9− 5 = 4 cannot be
composed of exactly one element of D and therefore F can
be released.

V. PERFORMANCE TRADE-OFF OVERVIEW

Table II provides an overview of the properties of the four
schemes. It is to give some intuition on the trade-offs involved.

It first shows the collision probability, i.e. the probability
that two arbitrary packets of a given switch flow use exactly
the same counters (with the same variable increments in
the Bh Multiple-Counter scheme). For simplicity, it assumes
that each switch flow consists of an infinity of flows of
negligible size and uses uniformly-distributed hash functions.
While two packets of a switch flow necessarily collide in
the Baseline scheme, since they all share the same counter,
their collision probability drops down to 1/m in the Hashed-
Counter scheme, because they choose uniformly at random
among m counters. In the Multiple-Counter scheme, there are(
m
k

)
different choices of the subset of k counters, and therefore

a collision probability of 1

(mk )
. Thus, the collision probability

is significantly smaller. For the Bh Multiple-Counter scheme,
collision happens when all the k choices from the Bh se-
quencing are the same. Consequently, the collision probability
is further reduced to 1

(mk )·ℓk
. Note, as discussed in more detail

in Section VII-B, that these collision probabilities are not
necessarily precisely equal to the probabilities that a given
packet is delayed, by a late packet from another flow.

On the other hand, the second column shows that the
Hashed-Counter, Multiple-Counter and Bh Multiple-Counter
schemes incur an increase in the number of counters by factors
of either m or 2m. Also, the third column shows that the
Multiple-Counter and Bh Multiple-Counter schemes increase
packet overhead. For instance, for k = 2, a cell size of 128B
and a counter size of 3B. The Multiple-Counter scheme adds
6 − 3 = 3B = 2.3% overhead, and the Bh Multiple-Counter



8

scheme adds 12 − 3 = 9B = 6.9% overhead. While this
overhead is small in front of typical switch speedups (e.g.
2X, and up to to 5X), a switch designer would still need to
take it into account.

The last column illustrates schematically the processing
complexity needed to insert a packet in the resequencing
buffer. The Baseline scheme only needs to search through one
list to find the packet position. Likewise, the Hashed-Counter
scheme finds the correct list using a single hash function, then
goes through the list. However, the Multiple-Counter scheme
needs to do so for k lists accessed in parallel. In addition, the
Bh Multiple-Counter scheme needs another hash function and
k parallel table lookups to understand the variable-increment
information.

Incidentally, note that these complexity measures might be
misleading. For instance, the size of the Baseline scheme list
is on average more than m times larger than the lists of the
Hashed-Counter, Multiple-Counter and Bh Multiple-Counter
schemes, since their total resequencing buffer size is smaller
and they have m lists. Even though finding the largest of k
elements on k parallel lists takes more time on average than
finding a single one, in practice, the factor m actually makes
it significantly easier to reach high access speeds with the
Hashed-Counter than with the Baseline scheme.

VI. NETWORK CODING

A. Coding Against Rare Events

While the counter schemes above can reduce reordering
delay, the (worst-case) total packet delay is necessarily lower-
bounded by the (worst-case) queueing delay. This is because
the total delay of a packet is composed of its queueing delay
and its reordering delay. If the first packet in a flow of 100
packets is delayed in an extremely long queue, then all the
other packets will have to wait for it and suffer as well.
Therefore, reordering delay is vulnerable to rare events.

To solve this problem, we suggest to consider an intriguing
idea: using network coding to reduce reordering delay. While
network coding has been often used in the past, it has mainly
been destined to address packet losses, and reordering has
often only been a minor side effect [28], [29]. We suggest here
to use it exclusively to reduce reordering delay by addressing
the vulnerability to rare events. Interestingly, we will show
that in some sense, the total delay of a packet can be smaller
than its queueing delay — because network coding enabled
the switch output to reconstruct and send it before it actually
arrived to the output.

Consider the switch architecture, as shown in Figure 1, and
assume for simplicity that all packets have the same size.
To implement network coding, in each input port, we add
one packet buffer per switch flow, i.e. a total of N2 packet
buffers in all input ports. Then, for each switch flow, we keep
computing the running XOR (exclusive or) function of the
previous packets. After a given number of slots (or packets),
we send a redundant protection packet that contains this XOR
of the previous packets, and re-initialize the XOR computation.

Figure 8 illustrates an example of use of the protection XOR
packet. In the input port, the XOR packet X is generated using

Fig. 8. Network coding example

the previous three packets A, B and C, i.e. X = A ⊕ B ⊕
C. Packet A is delayed by a relatively long time so that it
arrives to the output port last. Without XOR packet, packets
B and C should wait for A to arrive in order to depart the
switch. However, when using network coding, packet A is
simply recovered by taking the XOR function of B, C and
X , because of the simple identity

B ⊕ C ⊕X = B ⊕ C ⊕A⊕B ⊕ C = A.

As we can see, packets A, B and C can depart the switch
before the original packet A even arrives at the output. Thus,
in this example, the XOR packet mainly helps reducing A’s
queueing delay — and we do not really care about its impact
on channel capacity, as in typical network-coding examples.

To further reduce the total delay, more XOR packets can be
generated. However, there is no free lunch. The XOR packets
will increase the traffic load in the switch, which will result in
higher packet queueing delay in the central stage. Therefore,
there should exist an optimal point beyond which XORs no
longer help.

To implement the network coding, in each input port, we
keep one packet buffer per each output port. In this packet
buffer we keep the cumulative XOR of the packets of the
current switch flow which might include packets of several
flows. The total number of all packet buffers in all input ports
is clearly N2.

Since for each recovered packet, we would like also to ob-
tain the values of the corresponding counters, the packet buffer
should also keep the cumulative XOR of the corresponding
counters of the packets, in addition to their data. Thus the
required memory size for each pair of input and output port
is the sum of the cell size and the total size of the counters
assigned to a single packet. This memory overhead is smaller
when the fixed size of the cells is smaller.

After a delayed packet is recovered, when it finally arrives
at the output it is simply dropped. We can observe that such a
situation occurred based on the counters at the switch output.

B. Network Coding Schemes

There are several possible network coding schemes to
decide when the protection XOR packets should be sent. First,
as shown in Figure 9(a), a simple coding scheme is to generate
the XOR packets every H slots by taking the XOR of the
packets in the last H slots, where H = 3 in the figure. The
XOR packet is then inserted following the last of the H slots,
and covers the H slots. These H + 1 resulting slots make up



9

(a) Coding every 3 slots

(b) Coding every 2 packets

(c) Cumulative coding every 3 slots in mega-frames of 12 slots

Fig. 9. Network coding schemes

a frame. In its header, the protection XOR packet contains the
sequence numbers of the first and last packets in the frame, so
that the output will be able to know what packet it is supposed
to protect.

However, it can practically be further improved in two di-
rections. First, if the traffic load of the flow is light, the number
of packets in a frame could be low, and the frame could even
be empty. Therefore, the contribution of XOR packets does
not justify the high relative overhead and additional delay
caused by these XORs. It would make more sense to insert
protection XOR packets every L packets instead of every H
slots. Figure 9(b) illustrates such a scheme with L = 2, where
the blank boxes stands for the regular packets and dark boxes
for protection XOR packets. The scheme overhead is clearly
L+1
L = 1 + 1

L .
Interestingly, another possible improvement to the first

scheme could be to use XORs that protect a variable number
of slots, e.g. with cumulative coding. For instance, frames
could be grouped into large mega-frames. Within each mega-
frame, every H slots, the protection XOR packet cumulatively
covers not only the last H slots, but the whole time since
the start of the mega-frame, excluding other XOR packets.
Therefore, there is a global coding instead of a mere local
coding. Figure 9(c) illustrates this cumulative coding scheme
with a mega-frame consisting of three frames, each frame
having H = 3 regular slots and one protection slot.

This last scheme is interesting in that it illustrates an
interesting coding tradeoff. On the one hand, we would like
the coding to be efficient, so in some sense we could like to
wait as much as possible until the end of the mega-frame and
then use several protection packets, e.g. using a simple Reed-
Solomon or Hamming code with fixed packet dependencies.
However, if we only release the protection packets at the end
of the mega-frame, the coding becomes useless, because the
protected packets will probably have already arrived at the
output. Therefore, the protection scheme needs some form
of time-constrained coding, in the sense that the protection
packets need to be close to the packets they protect. That’s why
the schemes displayed above are more effective for reordering

delay than more complex schemes that might be closer to the
Shannon capacity bounds.

VII. PERFORMANCE ANALYSIS

A. Delay Models

We now want to model the performance of the schemes
under different delay models. We assume a simple Bernoulli
i.i.d. in a slotted time, so that the probability of having a packet
arrival for a given switch flow at a given slot is equal to p.
We analyze the performance of the schemes based on several
delay models for the queueing delay TQ, which is experienced
by each packet in the middle switch elements.

First, we will consider a Rare-Event delay model in which
TQ is either some large delay T with probability ϵ, or 0 with
probability 1 − ϵ. This delay distribution models the impact
of low-probability events in which some packets experience
very large delays, and these delays impact other packets. For
instance, this could be the case of a middle element with a
significant temporary congestion. It could also model a failure
probability of ϵ for middle elements, with a timeout value T
at the output resequencing buffer and a negligible queueing
time. After time T , an absent packet is declared lost, and the
following packets can be released.

We then consider a General delay model with an arbitrary
cumulative distribution function F of the queueing delay TQ,
so that FQ(i) = Pr(TQ ≤ i). Then, we apply the analysis to
a geometric delay model, such that the delay is geometrically
distributed, i.e. FQ(i) = Pr(TQ ≤ i) = 1 − ρ(i+1). The
Geometric delay model will help us get some intuition on
the reordering delay in a switch with load ρ.

In these models, we only take into account the queueing
delay TQ in the middle elements and the resequencing delay
TRS in the resequencing buffer. Therefore, the total delay is
TT = TQ+TRS . We neglect the propagation delays, as well as
the additional queueing delays in the inputs and outputs. We
also assume uniformly-distributed hash functions. For the sake
of readability, the performance of the Bh Multiple-Counter
scheme is brought forward here only for part of the delay
models.

B. Delay Distributions

1) Rare-Event delay model: We now want to analyze
the Baseline, Hashed-Counter, Multiple-Counter and Bh

Multiple-Counter schemes. Note that the performances of the
Hashed-Counter, Multiple-Counter and Bh Multiple-Counter
schemes depend on the flow size distribution. For instance, if
a switch flow consists of a single large flow, then there is no
point in adding counters to distinguish between flows. We have
also developed a full model based on the flow sizes. However,
for the sake of readability, we will only present below the
much simpler case in which all flows have negligible size.

In Delay Model 1, TQ has one of two possible values.
It is equal to 0 w.p. 1 − ϵ, and to T w.p. ϵ. The queueing
delay is chosen at random independently for each packet. If
TQ = T , we say that the packet is delayed. Using this delay
model, the total delay TT = TQ + TRS has an upper bound
of T . The reason is that the queueing delay is either 0 or T .
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Therefore, T time slots after its arrival at the switch input, it is
guaranteed that a packet arrives to the output. In addition, due
to the upper bound of T on the queueing delay, all its earlier
packets are also guaranteed to reach the output no later than
that time. More generally, the higher TQ the smaller TRS , and
in particular in this delay model if TQ = T then necessarily
TRS = 0.

We present the CDF (Cumulative Distribution Function)
function of TT for the different counting schemes. To calculate
this function, we have to know the probability of the arrival
of another packet of the same flow in the current input-output
pair, in each of the previous T − 1 time slots. For simplicity,
we assume that this probability, denoted by ps, is independent
in the time difference of the two packets. According to the
assumption that all flows have negligible size and packets are
arbitrarily assigned a flow from the possible set of flows, we
have that ps ≈ 0.

Since the total arrival for this pair is Bernoulli distributed
with probability p, we deduce that the probability of an arrival
of a packet of a different flow is pd = p− ps ≈ p.

The first theorem is about the Rare-Event delay model. As
mentioned earlier, in this delay model, the worst-case delay is
T , and therefore we always have Pr(TT ≤ T ) = 1.

Theorem 1 (Rare-Event delay model): (i) Using the
Baseline scheme, for i ∈ [0, T − 1],

Pr(TT ≤ i) = (1− ϵ) · (1− pϵ)(T−i−1). (1)

(ii) Using the Hashed-Counter scheme, for i ∈ [0, T − 1],

Pr(TT ≤ i) = (1− ϵ) · (1− p

m
· ϵ)(T−i−1). (2)

(iii) Using the Multiple-Counter scheme, for i ∈ [0, T − 1],

Pr(TT ≤ i) = (1− ϵ) · [1− (1− pT−i−1
k )k] (3)

with pk = (1− p · ϵ · k
m ).

(iv) Using the Bh Multiple-Counter scheme, for i ∈ [0, T −1],

Pr(TT ≤ i) = (1− ϵ) · [1− (1− ph,k,T−i−1)
k] (4)

with ph,k,t =
∑h

j=0

(
t
j

)
(pϵ k

m · ℓ−1
ℓ )j(1− pϵ k

m )
(t−j)

.
Proof: (i) The probability for a given packet not to

experience a queueing delay of T is 1 − ϵ. In that case, its
reordering delay will be at most i if it doesn’t need to wait
for earlier delayed packets beyond i slots. Assume that our
packet arrived at time t. An earlier packet that arrives at time
t− (T − i) + 1 and is delayed by T slots will arrive at time
t − (T − i) + 1 + T = t + (i + 1), causing our packet to
wait for i+1 slots and therefore miss the time constraint of i.
Therefore, to reach this time constraint, any of the T − i− 1
slots between time t− (T − i) + 1 and time t− 1 (included)
should either not receive a packet, or not encounter delay. The
probability of this event occurring is (1− pϵ)(T−i−1).
(ii) This is the same result as above, given a uniformly-
distributed hash function and therefore a probability 1/m of
having another packet share the same counter.
(iii) In the Multiple-Counter scheme, a packet can leave the
switch if at least one of its counters is in order. Therefore,
the reordering delay exceeds i if the reordering delay in all
counters exceeds i, hence the exponent of k. Further, a given

counter is shared with a given other packet with a probability
of k/m, since this other packet uses k counters out of m. The
remainder of the formula is then the same as above.
(iv) In the Bh Multiple-Counter scheme, a packet can leave
the switch if in at least one of its counters there are at most
h earlier missing packets and each of them does not use the
same value from the Bh sequence D as the current packet.
As explained in the previous scheme, in a time slot we have
a delayed packet that uses a specific counter w.p. pϵ k

m . Since
|D| = ℓ, a specific element of D is not used w.p. ℓ−1

ℓ as
above.

2) General delay model: In Delay Model 2, TQ is dis-
tributed according to a general distribution function F , which
holds FQ(i) = P (TQ ≤ i). For example, this delay might be
distributed as the distribution of the delay of Geom/Geom/1
queue with Bernoulli distributed arrival with probability p and
Bernoulli distributed service with probability q, in each time
slot. Using this delay model, the resequencing delay TRS , and
the total delay TT = TQ + TRS are not bounded from above.
Let denote by T j

Q, the queueing delay of the packet that entered
the system at time t = j. We also denote FQ(i) = P (TQ ≤ i).
Here, a packet that enters its input port in time t = t0, waits
(at most) for TT = i if this packet and all the other previous
packets with the same hashing values that appeared in their
input node, arrive to their output node no later than time
t = t0 + TT = t0 + i.

The next two theorems provide exact models of the per-
formance of schemes given a General delay model and a
Geometric delay model.

Theorem 2 (General delay model): (i) Using the Base-
line scheme,

Pr(TT ≤ i) = FQ(i) ·
∞∏
j=1

(1− p · (1− FQ(i+ j))). (5)

(ii) Using the Hashed-Counter scheme,

Pr(TT ≤ i) = FQ(i) ·
∞∏
j=1

(
1− p

m
· (1− FQ(i+ j))

)
. (6)

(iii) Using the Multiple-Counter scheme,

Pr(TT ≤ i) = FQ(i) · (1− (1− pk,i)
k), (7)

with pk,i =
∏∞

j=1

(
1− p · k

m · (1− FQ(i+ j))
)
.

Proof: (i) In the General delay model, a packet arriving at
time t experiences a total delay of at most i iff it satisfies two
independent conditions. First, its queueing delay is at most i,
w.p. (with probability) FQ(i). Second, none of the previous
packets have been delayed beyond time t + i, and therefore
no earlier packets prevent it from leaving. Since an earlier
packet arrives at slot (t − j) w.p. p, and in that case is only
delayed beyond t+ i w.p. (1− FQ(i+ j)), the result follows
by multiplying all the probabilities that there is no late packet
from slot (t− j) over all such possible slots.
(ii) The result follows again directly from above when con-
sidering a single counter out of m.
(iii) The proof is again exactly the same as in the previous
theorem, and follows from the previous result.
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3) Geometric delay model: Now we focus on the perfor-
mance evaluation under a private case of the General delay
model with exponential delay. In this case, we have a queuing
delay of TQ = i w.p. (1 − ρ) · ρi for i ≥ 0. Therefore,
FQ(i) = P (TQ ≤ i) = 1 − ρ(i+1). The results for this case
are summarized in the following theorem.

Theorem 3 (Geometric delay model): (i) Using the
Baseline scheme,

Pr(TT ≤ i) = (1− ρ(i+1)) ·
∞∏
j=1

(
1− p · ρ(i+j+1)

)
. (8)

(ii) Using the Hashed-Counter scheme,

Pr(TT ≤ i) = (1− ρ(i+1))
∞∏
j=1

(
1− p

m
· ρ(i+j+1)

)
. (9)

(iii) Using the Multiple-Counter scheme,

Pr(TT ≤ i) = (1− ρ(i+1)) · (1− (1− pk,i)
k), (10)

with pk,i =
∏∞

j=1

(
1− p · k

m · ρ(i+j+1)
)

Proof: The results follow from the previous theorem using
the expression of the geometrically-distributed delay model.

VIII. SIMULATIONS

We fully developed from scratch a switch simulator that
can run several use-cases, including the geometric delay
model, the Clos switch and the data center switch. To better
mimic the practical network behavior, we further added a
possibility of feeding the flow source with real-life traces [30].
Simulations for each use-case are conducted as described
below. Throughout this section, delays are brought in units
of time-slots. In the simulations, we rely on real-life 64-bit
mix hash functions [31]. In addition, for the evaluation of
the Bh Multiple-Counter scheme, we use the Bh sequence
D = {v1, v2, . . . , vℓ} = {1, 4, 8, 13} which is a Bh sequence
for h = 3.

A. Geometric Delay Model Simulations

We run simulations for the geometric delay model discussed
in Section VII-B. In the simulation, the number of flows
equals 219, so that the assumption that the probability that
two arbitrary packets share the same flow is negligible still
holds. We generate the switch flow using Bernoulli i.i.d traffic
with arrival rate p = 0.77, the parameter of geometric delay
ρ = 0.88, and the number of total counters m = 10. In
the Multiple-Counter scheme and the Bh Multiple-Counter
scheme, we use k = 2 hash functions.

Figure 10(a) depicts the simulation results, compared with
the theoretical results from (8), (9) and (10). The simulation
results match the theoretical results quite well. Furthermore,
we can see that changing the ordering guarantee from switch-
flow order preservation to flow order preservation significantly
decreases the average and standard-deviation of both delays.
Using the Hashed-Counter scheme, the average total delay
is drastically reduced from 19.09 to 9.35 time slots, an
improvement of 51%. In the Multiple-Counter scheme the

(a) CDF of the total delay (in time slots) for the geometric delay
model (based on simulation and Theorem 3).

(b) Mean resequencing delay for the geometric delay model as a
function of the number of total counters (based on simulation).

Fig. 10. Geometric delay model

average total delay is reduced again by additional 8.3% to
8.58 without any additional memory.

Figure 10(b) shows the average resequencing delay as a
function of the number of counters m. The Hashed-Counter
and the Multiple-Counter scheme significantly reduce the re-
sequencing delay of the Baseline scheme which is not affected
of course by the value of m. For instance, for m = 10, the
average resequencing delay for the Baseline, Hashed-Counter
and Multiple-Counter schemes is 11.7315, 2.0312 and 1.2442,
respectively. Furthermore, for m = 80, the delay of the
Hashed-Counter scheme is 0.2731 while the Multiple-Counter
scheme reduces it to only 0.0302.

B. Switch Simulations

We now run simulations with the switch structure from
Figure 1. Therefore, the delay experienced in the middle
switch elements does not follow a specific delay model as
above, but is instead incurred by other packets. We always
keep N = 4 and M = 8, yielding N2 = 16 switch flows
going through MN2 = 128 different paths. We set the
number of total counters to m = 20 for the Hashed-Counter
and Multiple-Counter schemes. For the Bh Multiple-Counter
scheme we set m = 10 to account for the larger memory
requirements. We also assume a uniform traffic matrix. The
presented results are based on simulations.

We start by comparing the performance of hash-based
counter schemes by using 4096 flows per (input, output) pair,
i.e. a total of 4096 · 16 = 65, 536 flows. The total load is
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(a) Comparison of the switch to the geometric delay model. (b) Mean resequencing delay for the switch as a function of the traffic
load.

(c) PDF of resequencing buffer size for the switch. (d) CDF of the resequencing delay for a switch, using a real-life trace.

Fig. 11. Switch simulation results

set to p = 0.95. Each flow is generated using Bernoulli i.i.d.
traffic of parameter p/65, 536. In the Multiple-Counter and Bh

Multiple-Counter schemes, we have k = 2.

Figure 11(a) compares the results of the switch simulations
to the theoretical results from (8), (9) and (10), similarly
to Figure 10(a). For the Baseline scheme the optimal fit
was reached using ρ = 0.11, and for the Hashed-Counter
scheme and Multiple-Counter scheme using ρ = 0.091. The
discrepancy between the theory and the simulation can be
explained when we consider that in the switch simulations
the assumption that the flows are mice of negligible size does
not hold.

Figure 11(b) plots the average resequencing delay in the
switch as a function of the traffic load p. As the load increases
and the delays become larger, the impact of the Hashed-
Counter scheme, Multiple-Counter scheme and Bh Multiple-
Counter scheme becomes increasingly significant. The Bh

Multiple-Counter scheme results in the lowest resequencing
delay. For instance, at high traffic load, p = 0.99, the
Multiple-Counter scheme achieves a 24.2% reduction of the
resequencing delay obtained by the Hashed-Counter scheme
while the Bh Multiple-Counter scheme further reduces it by
additional 16%.

Figure 11(c) shows the PDF (Probability Density Function)
of the number of packets, which are blocked from exiting
the resequencing buffers for the Hashed-Counter, Multiple-
Counter and Bh Multiple-Counter schemes. The hash-based

schemes vastly improve the average number of waiting packets
in the Baseline scheme i.e, the Baseline scheme has an average
of 22.47 packets per time slot, while the Hashed-Counter
scheme has approximately 5. The Multiple-Counter scheme
reduces this number to 4.6 packets per time slot, and finally
the Bh Multiple-Counter scheme has only 4.07 packets per
time slot.

C. Switch Simulations Using Real-Life Traces

We now conduct experiments using real-life traces recorded
on a single direction of an OC192 backbone link [30]. We use
a real hash function [31] to match each (source, destination)
IP-address flow with a given counter bin. In the Multiple-
Counter and Bh Multiple-Counter schemes, we have k = 2.

As expected, Figure 11(d) shows how the Hashed-Counter
scheme drastically reduces the resequencing delay on this real-
life traffic, from 1 to 0.1. Again, the reduction in total delay
is more modest, from 2.4 to 1.5 time slots.

D. Network Coding Simulations

Figure 12 presents simulation results of the CDF of the
total delay for the Rare-Event delay model with the parameters
T = 100, ϵ = 0.01. We assume a traffic load of p = 0.95 and
that the flows of the packets are uniformly distributed among a
set of 4096 possible flows. The network coding parameter was
L = 10, i.e. a protection XOR packet was inserted every 10
packets. In order to have a fair comparison, we assumed that
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(a) CDF of the total delay without coding. (b) CDF of the total delay with coding. (c) CDF of the total delay + exit delay without
coding.

Fig. 12. CDF of the total delay and the total delay + exit delay for the rare-event delay model with and without network coding. The results are based on
simulations.

when the network coding is used and the load is increased
by factor L+1

L , T is increased by the same factor. Thus,
the maximal queueing delay is 110. Figure 12(a) presents the
CDF of the total delay without using the network coding and
Figure 12(b) shows the CDF with coding.

CDF of 0.9 is achieved in the Baseline without coding
only for a total delay of 90. For Baseline with coding and
for all other schemes, this CDF is achieved even for delay
of 0. Without network coding, the mean of the total delay
for the Baseline, Hashed-Counter, Multiple-Counter and Bh

Multiple-Counter schemes was 36.12, 3.33, 1.53 and 1.14,
respectively. Using the network coding, the mean delay was
significantly reduced to 3.30, 0.41, 0.23 and 0.17. An im-
provement by approximately an order of magnitude.

In the delay models from Section VII and in the simulations
so far, we have assumed that a packet can leave the switch
immediately when the packet is available at the switch output
and in order. In practice, in many switches at most one packet
might leave the same switch output in a single time slot. Thus
a packet that is ready to leave the switch at the same time
as a second packet, might experience additional delay. We
denote this delay by exit delay and assume that the switch gives
precedence to packets with earlier arrival time. Figure 12(c)
presents the CDF of the sum of the total delay and the exit
delay in the Rare-Event delay model (without network coding).
The mean of this sum of delays for the Baseline, Hashed-
Counter, Multiple-Counter and Bh Multiple-Counter schemes
was 94.00, 6.64, 2.50 and 1.52, respectively. With network
coding the means were reduced to 42.24, 1.30, 0.54 and 0.37,
respectively. (We do not present the full CDF for this case
with network coding due to space limits.)

E. Data Center Simulations Using Real-Life Traces

We also perform simulations on a 5-stage data center
structure described in [17]. The input ports are fed with a real-
life trace as in Section VIII-C. The total number of counters
in the Hashed-Counter scheme and Multiple-Counter scheme
is m = 20 while for the Bh Multiple-Counter scheme we have
m = 10. In the Multiple-Counter scheme and Bh Multiple-
Counter scheme, the number of multiple counters is k = 2.

Figure 13 illustrates the simulation results of the resequenc-
ing delay. As expected, Hashed-Counter scheme noticeably
reduces the resequencing delay, from 16.3 to 6.73 time slots. In

Fig. 13. CDF of the resequencing delay for a data center, using a real-life
trace (based on simulation).

this data-center simulation, the improvement from the Hashed-
Counter scheme to the Multiple-Counter scheme is more
significant. The average resequencing delay is decreased from
6.73 to 3.30 time slots (a 51.0% improvement). The reason is
that as the packet goes through more stages of switch elements,
the variance of the queueing delay is larger and the reordering
caused by other flows becomes more severe. This delay can be
improved furthermore by the Multiple-Counter scheme. As in
the previous simulations, the best results are obtained by using
the Bh Multiple-Counter scheme, for which the resequencing
delay is only 1.84 time slots.

IX. CONCLUSION

In this paper, we provided schemes to deal with packet
reordering, an emerging key problem in next-generation switch
designs. We argued that current packet order requirements for
switches are too stringent, and suggested only requiring flow
order preservation instead of switch-flow order preservation.

We then suggested several schemes to reduce reordering.
We showed that hash-based counter schemes can help prevent
inter-flow blocking. Then, we also suggested schemes based
on network coding, which are useful against rare events with
high queueing delay, and identified a time-constrained coding
problem. We also pointed out an inherent reordering delay
unfairness between elephants and mice, and suggested several
mechanisms to correct this unfairness. We finally demonstrated
in simulations reordering delay gains by factors of up to an
order of magnitude.
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In future work, we intend to further investigate the opti-
mality of our schemes. We intend to find whether there are
fundamental lower bounds to the average delay caused by
reordering in a switch, given any possible scheme.
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