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Exact Worst-Case TCAM Rule Expansion
Ori Rottenstreich, Rami Cohen, Danny Raz and Isaac Keslassy

Abstract—In recent years, hardware-based packet classification
has became an essential component in many networking devices.
It often relies on ternary content-addressable memories (TCAMs),
which can compare in parallel the packet header against a
large set of rules. Designers of TCAMs often have to deal with
unpredictable sets of rules. These result in highly variable rule
expansions, and can only rely on heuristic encoding algorithms
with no reasonable guarantees.

In this paper, given several types of rules, we provide new upper
bounds on the TCAM worst-case rule expansions. In particular,
we prove that a W -bit range can be encoded in W TCAM
entries, improving upon the previously-known bound of 2W − 5.
We further prove the optimality of this bound of W for prefix
encoding, using new analytical tools based on independent sets
and alternating paths. Next, we generalize these lower bounds to
a new class of codes called hierarchical codes that includes both
binary codes and Gray codes. Last, we propose a modified TCAM
architecture that can use additional logic to significantly reduce
the rule expansions, both in the worst case and using real-life
classification databases.

Index Terms—TCAM, Packet Classification, Range Encoding.

I. INTRODUCTION

A. Background

Packet classification is the key function behind many net-
work applications, such as routing, filtering, security, account-
ing, monitoring, load-balancing, policy enforcement, differenti-
ated services, virtual routers, and virtual private networks [4]–
[7]. For each incoming packet, a packet classifier compares
the packet header fields against a list of rules, e.g. from access
control lists (ACLs), then returns the first rule that matches the
header fields, and applies a corresponding action on the packet.

Today, hardware-based ternary content-addressable memo-
ries (TCAMs) are the standard devices for high-speed packet
classification [8], [9]. TCAMs are associative-memory devices
that match packet headers using fixed-width ternary arrays
composed of 0s, 1s, and ∗s (don’t care). For each packet,
TCAM devices can check all rules in parallel, and therefore
can typically reach higher line rates than software-based classi-
fication algorithms [4]–[6], [10]–[13]. For instance, the 55 nm
CMOS-based NL9000 TCAM device can run over 1 billion
searches per second on headers of up to 320 bits [8].

However, power consumption constitutes a bottleneck for
TCAM scaling [14]. Given the same access rate, a TCAM chip
can consume 30 times more power than an equivalent SRAM
chip with a software-based solution [15]. As a consequence,
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in the Cisco CRS-1 core router, classification and forwarding
constitute a third of all power consumption, the highest usage
of power together with the power management devices such as
fans, which constitute another third [16].

TCAM devices run each search in parallel on all their
entries, therefore their power consumption is proportional to
their number of searched entries. Unfortunately, this number of
entries is often larger than the number of classification rules.
This is because there are two types of rules: simple rules (exact-
and prefix-matches), which need a single entry per rule; and
range rules, which can need many entries per rule, thus causing
range expansion.

Today, TCAM power consumption is mostly and increasingly
due to range expansion. Typically, while range rules constitute
a minority of the rules, they also cause the majority of
the entries, and therefore the majority of the TCAM power
consumption [17]. In addition, there is evidence that the
percentage of range-based rules is increasing. For instance, a
comparison of two typical classification databases from 1998
and 2004 shows that the total percentage of range-based rules
has increased from 1.3% to 13.3%, including an emergence of
rules with two range-fields from 0% to 1.5% and an increase
in the number of diverse ranges [18]. Unfortunately, as the
number of range-based rules increases in an unpredictable way,
it is unclear whether it is possible to provide any reasonable
guarantee on the worst-case number of TCAM entries needed
to encode them.

The goal of this paper is to gain a more fundamental under-
standing of the worst-case number of TCAM entries needed
to encode a rule. Our objective is to provide upper bounds on
the worst-case rule expansion. We also try to develop lower
bounds on the rule expansion and examine the tightness of the
upper bounds. These bounds would characterize the theoretical
capacity of TCAM devices depending on the complexity of
the rules: e.g., single-field or multiple-field range rules, using
simple or complex ranges, either alone or in interaction with
other rules. We also ask whether these lower bounds on the
worst-case expansion can be improved using more general
codes such as Gray codes. In a sense, we want to help define
the TCAM capacity region.

B. Related Work

It is well-known that each range defined over a W -bit field
can be encoded in 2W − 2 entries for W ≥ 2 with an internal
expansion, i.e. an expansion that only uses entries from within
the range [19]. More generally, the product of d ranges defined
on d different fields of size W each can be internally encoded
in up to (2W − 2)d entries, which amounts to 900 TCAM
entries for d = 2 port range-fields of 16 bits each [4]. For
instance, assume that W = 3, and that we want to internally
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Fig. 1. External encoding of R = [1, 6].

encode the single-field range R = [1, 6] ⊆
[
0, 2W − 1

]
so

that packets in that range get accepted, while others get denied
(default action). Then we get the following 2W−2 = 4 TCAM
entries, not counting the last default entry:

001 → accept
01∗ → accept
10∗ → accept
110 → accept
(∗∗∗ → deny)


A first improvement of the 2W −2 result has relied on non-

prefix internal TCAM encoding and a connection to Boolean
DNF (disjunctive normal form) to show a 2W − 4 upper-
bound [?]. A second improvement has kept prefix encoding
but relied on Gray codes instead of binary codes to reduce the
worst-case internal range expansion from 2W−2 to 2W−4 for
W sufficiently large [17]. This result has since been improved
to 2W − 5 using a more complex encoding [21].

These results, however, do not consider the full potentiality
of TCAM encoding, and in particular the order of the entries.
For instance, Fig. 1 shows how the example above could be
encoded in only 3 TCAM entries using an external encoding
that exploits a different entry order. 000 → deny

111 → deny
∗ ∗ ∗ → accept


We can see that the range exterior (complementary) is

encoded first, and then the range itself is encoded indirectly
later. This encoding does not require any changes in the packet
header nor in the TCAM architecture. It makes use of the
inherent property of TCAMs of returning the action of the first
matching entry. First, a header from the range complementary
matches one of the first two entries as well as the last entry,
and therefore is denied. Likewise, a header within the range
matches only the last entry and is thus accepted. Likewise, in
this paper, we consider all possible TCAM entry orders when
providing worst-case bounds.

Besides the papers above, there is extensive literature on pro-
viding efficient heuristics for TCAM rule expansion. These rely,
for example, on redundancy removal, truth table equivalency,
additional bits, additional TCAM hardware, dynamic program-
ming, and topological transformation [4]–[6], [15], [22]–[29].
However, while these heuristics are often efficient, they often
focus on average-case instead of worst-case performance. In
addition, papers that are interested in worst-case performance
do not provide new worst-case bounds [30].

Lower bounds on encoding length have more rarely been
considered. If encoding is constrained to be internal, the worst-
case code length is known to be at least W [17]. Also, an
independent set of minterms in sum-of-products expressions is
presented in [31]. However, none of these consider external
encoding, and therefore they do not fully exploit TCAM
properties.

C. Contributions

This paper investigates worst-case rule expansions in
TCAMs.

In the first part, we consider single-field ranges of W -bit
elements and attempt to encode them using efficient guaranteed
upper bounds. We first consider W -bit extremal ranges of the
form [0, x], and prove that they can be encoded in g(W ) ≤⌈
W+1

2

⌉
TCAM entries, nearly half the best-known bound of

W entries [17].
Later, we consider regular ranges of the form [x1, x2], and

prove that they can always be encoded in f(W ) ≤W TCAM
entries. Therefore, for large W , this is nearly half the size of
the best-known binary bound for prefix TCAM encoding of
2W − 2 and best-known overall bound of 2W − 5 [19], [21].

We then introduce new analytical tools that are suited for
TCAM analysis. We first define the hull H(a1, . . . , an) of n
binary strings a1, . . . , an, and show that these strings match
a TCAM entry iff all the strings in their hull H(a1, . . . , an)
match this TCAM entry. We use this property to define an
independent set of n points using some specific hull-based
alternating path, and demonstrate that an independent set of
n points cannot be encoded in less than n TCAM entries,
given any arbitrary TCAM entries, in any order, and with any
corresponding actions.

Next, we use this strong property to prove that the upper-
bound on the expansion g(W ) of extremal ranges is tight. Since
our encoding only uses TCAM prefix entries, it is therefore
optimal both among prefix-based encodings and general en-
codings.

Then, we also prove that the upper bound on the range ex-
pansion fp(W ) is tight as well among prefix-based encodings,
hence proving optimality in this encoding class (but not among
non-prefix encodings).

Next, we show that our lower bounds on the general binary
encoding still hold for a new and more general class of codes,
including Gray codes [17].

Later, we prove that any union of k ranges of W -bit elements
can be encoded in at most k · (W +1) TCAM entries and then
improve this bound. Further, we show that our encoding bound
is asymptotically optimal as k → ∞.

Next, we consider multidimensional ranges and present an
upper bound on the expansion of a single multidimensional
range. The upper bound is linear instead of exponential in the
number of fields.

We would like to emphasize that all these bounds for the
encoding of a single one-dimensional range, a single multidi-
mensional range and a union of one-dimensional ranges are
satisfied in any conventional TCAM architecture and do not
require any additional logic or changes to the architecture.
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Finally, we conclude by illustrating the results of our sug-
gested schemes in the worst case as well as in the average
case.

In the Appendix, we also propose a modified TCAM archi-
tecture that can use additional logic to significantly reduce the
rule expansions for the encoding of a set of multidimensional
ranges. We also present additional simulation results based
on large synthetic classifiers generated by the ClassBench
benchmark tool [?] and using real-life classification databases.

We would like to stress that this paper does not attempt to
provide the best encoding scheme for any possible classification
database. Instead, it simply provides some insights of the worst-
case TCAM efficiency given simple classification rules.

Furthermore, note that our proposed encoding for a general
classification database (and not a single range) requires addi-
tional logic inside the TCAM. However, we are not the first
to suggest such changes. For instance, [23] and [24] suggest
additional logic for range matching and [33] for a parallel error
detection.

Paper Organization: We start with preliminary definitions
in Section II. Then, in Section III we prove upper bounds on the
range expansions of extremal ranges and general ranges later.
In Sections IV, V we present general analytical tools in order
to show that those upper bounds are tight. Next, in Section VI
we provide lower bounds given hierarchical codes. Later, in
Section VII we deal with the encoding of a union of ranges
and with multidimensional ranges in Section VIII. We evaluate
the suggested encoding schemes in Section IX. Last, in the
Appendix we suggest several TCAM architectures that enable
us to implement efficient encoding of a set of multidimensional
ranges and present additional simulation results.

II. MODEL AND NOTATIONS

A. Terminology

We first formally define the terminology used in this paper.
We initially assume a binary code expansion, and will later
revisit this assumption. For simplicity, whenever there will be
no confusion, we also do not distinguish between a W -bit
binary string (in {0, 1}W ) and its value (in [0, 2W − 1]).

Definition 1 (Header): A packet header x = (x1, . . . , xd) ∈
{0, 1}W is a W -bit string defined on the d fields (F1, . . . , Fd).
Each sub-string xi of length Wi represents field Fi, with∑
Wi =W .
Example 1: A header could typically consist of the follow-

ing d = 5 fields: (F1, . . . , F5) = (source IP address, destina-
tion IP address, source port number, destination port number,
and protocol type), of respective lengths (W1, . . . ,W5) =
(32, 32, 16, 16, 8) bits.

Definition 2 (Range Rule): The range rule Ri in field Fi

represents a set of allowed strings over {0, 1}Wi . It is defined
as an integer range [r1, r2], where r1 and r2 are Wi-bit integers
and r1 ≤ r2. A packet header sub-string xi ∈ {0, 1}Wi is said
to match Ri whenever xi ∈ [r1, r2].

In particular, the range rule Ri could be a prefix rule, with
a prefix r′ ∈ {0, 1}k of size k ∈ [0,Wi], r1 = {r′}{0}Wi−k,
and r2 = {r′}{1}Wi−k. It is an exact match with k =Wi and
r1=r2.

Typically, a rule defined on headers from Example 1 in-
cludes range rules in two fields: the source port field and the
destination port field.

Definition 3 (Rule): A classification rule R =
((R1, . . . , Rd) → a) is defined as the union of a
set of range rules (predicates) (R1, . . . , Rd) defined
over fields (F1, . . . , Fd), and an action (decision)
a ∈ A, where A is a set of legal actions (e.g.
A = {’accept’, ’deny’, ’accept with logging’}). A packet
header x = (x1, . . . , xd) matches a rule R iff each xi matches
Ri.

Definition 4 (Classifier): A classifier C = (R1, ..., Rn(C))
is an ordered set of n(C) classification rules. For each header
x ∈ {0, 1}W , let Rj =

(
(Rj

1, . . . , R
j
d) → aj

)
be the first rule

matched by x. Then the classifier effectively defines a classifier
function α : {0, 1}W → A that returns an action for each
header so that α(x) = aj . We assume that the last rule Rn(C)

is matched by all headers and returns a default action ad ∈ A,
and therefore the classifier is complete and α is always defined.

Definition 5 (TCAM entry): A TCAM entry S → a is de-
fined as the union of a TCAM rule S = (s1, . . . , sW ) ∈
{0, 1, ∗}W , where {0, 1} are bit values and ∗ stands for don’t-
care, and an action a ∈ A. A W -bit string b = (b1, . . . , bW )
matches S, denoted as b ∈ S, iff for all i ∈ [1,W ], si ∈ {bi, ∗}.

Definition 6 (TCAM Encoding Scheme): A TCAM encoding
scheme ϕ is said to map a function α to an ordered set of nϕ(α)
TCAM entries

(
S1 → a1, . . . , Sn → anϕ(α)

)
using a default

action ad ∈ A iff for any header x ∈ {0, 1}W , either the first
TCAM entry Sj → aj matching x satisfies α(x) = aj , or no
TCAM entry matches x and α(x) = ad. The number nϕ(α) of
non-default TCAM entries is called the expansion of encoding
scheme ϕ for the classifier function α.

In the Introduction, we saw an example of TCAM encoding
of a single-field range classifier function α, with α([1, 6]) =
’accept’ and α({0} ∪ {7}) = ’deny’. In the remainder of the
paper, we will always assume for simplicity that the default
action is ad = 0. Each single-field range R is uniquely
characterized by its range indicator function αR, which takes a
value of 1 on R and 0 outside R. We will use range to indicate
either R or its indicator function αR.

Definition 7 (Prefix Encoding Scheme): A TCAM prefix en-
coding scheme ϕ is a TCAM encoding scheme such that for
any TCAM entry S → a with S = (s1, . . . , sW ) ∈ {0, 1, ∗}W ,
if sj = {∗} for some j ∈ [0,W ], then sj′ = {∗} for any
j′ ∈ [j,W ].

We will denote as Φp the set of all prefix encoding schemes,
and the general set of encoding schemes including non-prefix
schemes as Φ, so that Φp ⊂ Φ.

B. Optimal Range Expansion Problem

We want to find a TCAM prefix encoding scheme ϕ ∈ Φp

that minimizes the worst-case TCAM prefix expansion nϕ(αR)
over all possible range functions αR. We first focus on prefix
encoding schemes, and later consider non-prefix schemes.
To do so, we will first define extremal ranges, then define
the TCAM-expansion minimization problem over all extremal
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ranges, before defining the TCAM-expansion minimization
problem over all possible ranges

Definition 8 (Extremal Ranges): Let us define two types of
extremal ranges over [0, 2W − 1].
(i) A left-extremal range RLE denotes a range of the form
RLE = [0, y] for some arbitrary value of y.
(ii) Likewise, a right-extremal range RRE denotes a range of
the form RRE = [y, 2W − 1] for some arbitrary value of y.

A non-extremal range R = [y1, y2] is a range such that 0 <
y1 ≤ y2 < 2W − 1. Therefore, a range is either left-extremal,
right-extremal, or non-extremal. We now want to define our
optimization problem, first over all range functions, then over
extremal ranges.

Definition 9 (Range Expansion): For any positive integer
W and any TCAM prefix encoding scheme ϕ ∈ Φp, the
range expansion of ϕ, denoted fϕ(W ), is the worst-case TCAM
expansion nϕ(αR) over all possible range functions αR, i.e.

fϕ(W ) = max
R⊆[0,2W−1]

nϕ(αR), (1)

We now want to optimize the range expansion over all possible
encoding schemes ϕ ∈ Φ. Then the range expansion f(W )
is defined as the best-achievable range expansion for W -bit
ranges given all encoding schemes, i.e.

f(W ) = min
ϕ∈Φ

(
max

R⊆[0,2W−1]
nϕ(αR)

)
. (2)

Likewise, we define fp(W ) as the best-achievable range ex-
pansion given all prefix encoding schemes ϕ ∈ Φp.

Definition 10 (Extremal Range Expansion): Define the left-
extremal range expansion g(W ) and right-extremal range ex-
pansion g′(W ) as the best-achievable range expansion given all
encoding schemes ϕ ∈ Φ for left-extremal and right-extremal
ranges, respectively. Then,

g(W ) = min
ϕ

max
y: 0≤y≤2W−1

nϕ(α[0,y]), (3)

g′(W ) = min
ϕ

max
y: 0≤y≤2W−1

nϕ(α[y,2W−1]). (4)

Likewise, define gp(W ) and gp
′(W ) over all prefix encoding

schemes ϕ ∈ Φp.

III. RANGE EXPANSION GUARANTEES

A. Upper-Bound on the Extremal Range Expansion

We now want to provide range expansion guarantees by
proving upper bounds on the range expansions of extremal
ranges first, and general ranges later. To do so, we first prove
that left-extremal and right-extremal ranges have the same
range expansion.

Lemma 1: The left-extremal and right-extremal range ex-
pansions are the same, i.e. for all W ∈ N∗, g(W ) = g′(W ).

Proof: For any y ∈ [0, 2W − 1], the value obtained when
inverting the bits in the binary representation of y is y′ =
(2W − 1) − y. In particular, for y = 0 we get y′ = 2W − 1.
Therefore, a left-extremal range RLE = [0, y] is transformed
into a right-extremal range RRE = [(2W − 1) − y, 2W − 1],
and vice-versa. Consequently, given W -bit binary strings, the
bit inversion defines a bijection between the set of left-extremal
ranges and the set of right-extremal ranges.

Let (S1 → a1, . . . , Sn → an) denote the n TCAM entries
encoding a left-extremal range. Then, by inverting the {0, 1}
symbols in each Si, we get n TCAM entries encoding the cor-
responding right-extremal range. Therefore, we have g′(W ) ≤
g(W ), and likewise g(W ) ≤ g′(W ), hence the result.

We now want to find g(W ). To do so, we will first prove the
following lemma on range shifting. The lemma shows that if
we shift a range R ⊆ [0, 2W −1] by a positive multiple of 2W ,
then the range expansion of the shifted range does not need
more TCAM entries, because we only need to add a prefix to
the TCAM expansion of R.

Lemma 2: Consider a W -bit range R = [y1, y2] ⊆ [0, 2W −
1], a w-bit value x ∈ [0, 2w − 1], and a shifted range R′ =
[x · 2W + y1, x · 2W + y2] ⊆ [0, 2W+w − 1]. Then the range
expansion of the shifted range R′ is no more that that of R.

Proof: Let (S1 → a1, . . . , Sn → an) denote the TCAM
entries encoding R, where each Si is of length W . For each i ∈
[1, n], let S′

i = {x}·Si denote the (w+W )-bit concatenation of
x and Si. Then (S′

1 → a1, . . . , S
′
n → an) has the same number

of TCAM entries and encodes R′ (Definition 6).
Example 2: For W = 3, as shown in the Introduction, the

range R1 = [1, 6] can be encoded with the three TCAM entries
(000 → 0, 111 → 0, ∗ ∗ ∗ → 1) using default action 0.
Likewise, the range R′ = [17, 22] = [2 · 23 + 1, 2 · 23 + 6]
can be encoded by simply adding the prefix 10 to all three
TCAM entries: (10000 → 0, 10111 → 0, 10 ∗ ∗∗ → 1).

We are now ready to characterize g(W ). We first find an
upper-bound on g(W ) by constructing an encoding scheme,
and then later show that this upper-bound is actually tight. The
following result improves by a factor of nearly two the best-
known bound of W [17].

Theorem 1: For all W ∈ N∗, the extremal range expansion
satisfies the following upper-bound:

g(W ) ≤
⌈
W + 1

2

⌉
. (5)

Proof: By Definition 10 of g(W ), we only need to exhibit
an encoding scheme ϕ that manages to encode each left-
extremal range RLE = [0, y] ⊆ [0, 2W − 1] using at most⌈
W+1

2

⌉
non-default TCAM entries. Let’s do it by induction on

W ∈ N∗.
Induction basis: For W = 1, the only left-extremal ranges

are RLE
1 = [0, 0] and RLE

2 = [0, 1], which are respectively
encoded by (0 → 1) and (∗ → 1), i.e. in at most

⌈
1+1
2

⌉
= 1

TCAM entry each.
For W = 2, there are four left-extremal ranges: RLE

1 = [0, 0]
is encoded as (00 → 1), RLE

2 = [0, 1] is encoded as (0∗ → 1),
RLE

3 = [0, 2] is encoded as (0∗ → 1, 10 → 1), and RLE
4 =

[0, 3] is encoded as (∗∗ → 1), i.e. in at most
⌈
2+1
2

⌉
= 2 TCAM

entries each.
Induction step: Let’s now assume that the result is correct

until W − 1, and prove it for W . We will show that

g(W ) ≤ 1 + g(W − 2), (6)

which suffices to prove the result, since it would imply that

g(W ) ≤ 1 +

⌈
(W − 2) + 1

2

⌉
=

⌈
W + 1

2

⌉
.
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Consider the left-extremal range RLE = [0, y] ⊆ [0, 2W − 1].
We will cut the W -bit range [0, 2W − 1] into four equal sub-
ranges of size 2W−2, and show that no matter the sub-range
to which y belongs, RLE can be encoded in 1 + g(W − 2)
TCAM entries, thus proving Equation (6).

(i) If y ∈ [0, 2W−2−1], then RLE can be seen as a (W−2)-
bit left-extremal range, which can be encoded in g(W − 2)
entries.

(ii) If y ∈ [2W−2, 2W−1 − 1], then we first encode
the sub-range [0, 2W−2 − 1] using a single TCAM entry
({00}{∗}W−2 → 1), and then by Lemma 2, we can encode
the remaining sub-range [2W−2, y] by adding at most g(W−2)
TCAM entries (using the {01} prefix for all entries). Thus, we
use a total of at most 1 + g(W − 2) TCAM entries.

(iii) Likewise, if y ∈ [2W−1, 2W−1 + 2W−2 − 1], then we
first encode the sub-range [0, 2W−1− 1] using a single TCAM
entry ({0}{∗}W−1 → 1), and then by Lemma 2 we encode the
remaining sub-range [2W−1, y] by adding at most g(W − 2)
TCAM entries, thus using at most 1+g(W−2) TCAM entries.

(iv) Last, if y ∈ [2W−1 + 2W−2, 2W − 1], we actually first
encode the complementary range [y + 1, 2W − 1], which by
Lemma 1 can be done in up to g′(W − 2) = g(W − 2)
TCAM entries. To do so, for each TCAM entry we use
its complementary action. Then, we add the TCAM entry
({∗}W → 1) to encode the range, thus using again at most
1 + g(W − 2) TCAM entries. Since the four cases imply
Equation (6), we finally get the result by induction.

We can actually obtain a stronger result by showing that
the worst-case extremal range expansion gp(W ) over all prefix
encoding schemes ϕ ∈ Φp satisfies the same upper bound.

Theorem 2: For all W ∈ N∗, gp(W ) satisfies

g(W ) ≤ gp(W ) ≤
⌈
W + 1

2

⌉
. (7)

Proof: We note that we only used TCAM prefix entries in
the proof of the previous theorem, and therefore the encoding
scheme ϕ used in the proof satisfies ϕ ∈ Φp. All other
arguments stay the same, and in particular Lemma 1 and
Lemma 2 are still valid within Φp, hence gp(W ) ≤

⌈
W+1

2

⌉
.

Last, since Φp ⊂ Φ, g(W ) ≤ gp(W ) by definition.

B. Upper-Bound on the Range Expansion

We now want to find an upper-bound on the range expansion
f(W ) by constructing an efficient encoding scheme. We will
later show that this upper-bound is actually tight for prefix
encoding schemes.

Theorem 3: For all W ∈ N∗, the worst-case range expansion
satisfies the following upper-bound:

f(W ) ≤W. (8)

Proof: Let’s prove this by induction on W ≥ 1.
Induction basis: For W = 1, all non-empty ranges are ex-

tremal, therefore the result follows by Theorem 1. In addition,
for W = 2, all non-empty and non-extremal ranges are either
single points, or [1, 2], which can be encoded in two entries.

Induction step: Now let W ≥ 3, and assume the claim is
true until W −1. Consider any range R ⊆ [0, 2W −1], and cut

it into four possibly-empty sub-ranges, that correspond to its
intersection with the four consecutive sub-spaces of size 2W−2

of the space [0, 2W − 1] of size 2W : R = R1 ∪R2 ∪R3 ∪R4,
with R1 = R ∩ [0, 2W−2 − 1], R2 = R ∩ [2W−2, 2W−1 − 1],
R3 = R∩ [2W−1, 2W−1+2W−2− 1], and R4 = R∩ [2W−1+
2W−2, 2W − 1]. We want to show that R can be encoded in at
most W TCAM entries. Distinguish between several cases:

(i) If R = R1∪R2 ⊆ [0, 2W−1−1], i.e. R3 = R4 = ∅, then
by induction R can be encoded in at most W − 1 entries.

(ii) Else if R = R3∪R4 ⊆ [2W−1, 2W −1], i.e. R1 = R2 =
∅, then this is just a shifted version of the previous case and,
by Lemma 2, R can be encoded in at most W − 1 entries.

(iii) Else |R2| > 0 and |R3| > 0, because R is a range.
Let’s distinguish between two similar sub-cases. (a) If R4 = ∅,
then R = (R1 ∪ R2) ∪ R3. (R1 ∪ R2) is a right-extremal
range on [0, 2W−1 − 1], and by Lemma 1, can be encoded in
g(W − 1) TCAM entries. Further, R3 is just a shifted version
of a left-extremal range, and by Lemma 2, can be encoded
in g(W − 2) TCAM entries. (b) Likewise, if R1 = ∅, then
R = R2 ∪ (R3 ∪R4), R2 can be encoded in g(W − 2) TCAM
entries, and (R3 ∪R4) in g(W − 1) TCAM entries. Therefore
in both sub-cases, by Theorem 1, R can be encoded in up to

g(W − 1) + g(W − 2) ≤
⌈
W

2

⌉
+

⌈
W − 1

2

⌉
=W

TCAM entries. Note that in both sub-cases, the TCAM en-
tries can be merged because the construction in the proof
of Theorem 1 is prefix-based and limited to the range sub-
space, therefore there are no conflicts between the entries
corresponding to two distinct range sub-spaces.

(iv) Last, if all |Ri| > 0 for i ∈ [1, 4], then we use 2 different
techniques according to the parity of W .

If W is even, we encode R in a very similar way to what we
did in the previous case. (R1∪R2) is a right-extremal range on
[0, 2W−1 − 1] and, by Lemma 1, can be encoded in g(W − 1)
TCAM entries. Further, (R3 ∪R4) is just a shifted version of
a left-extremal range and, by Lemma 2, can be encoded in
g(W − 1) TCAM entries. Again there are no conflicts and by
Theorem 1, R can be encoded in up to

g(W − 1) + g(W − 1) ≤ 2 ·
⌈
W

2

⌉
=W

TCAM entries.
If W is odd, we first encode the range complementary,

and then use an additional TCAM entry with action 1
({∗}W → 1) to encode the remaining range. To encode
the range complementary, we encode the left-extremal range(
[0, 2W−2 − 1] \R1

)
in g(W−2) entries, and the shifted right-

extremal range
(
[2W−1 + 2W−2, 2W − 1] \R4

)
in g(W − 2)

entries as well (using Lemma 2 on shifts and Lemma 1 on
right-extremal ranges). Again there are no conflicts between
the entries. Therefore R can be encoded in up to

2g(W − 2) + 1 ≤ 2

⌈
W − 1

2

⌉
+ 1 ≤W

entries, and considering all cases, f(W ) ≤W .
As for extremal ranges, we also get the corresponding

stronger result on prefix encoding schemes.
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Theorem 4: For all W ∈ N∗, fp(W ) satisfies

f(W ) ≤ fp(W ) ≤W. (9)

Proof: We note that we only used TCAM prefix entries in
the proof of the previous theorem, and therefore the encoding
scheme ϕ used in the proof is also in Φp. All other arguments
stay the same and are valid within Φp. Last, since Φp ⊂ Φ,
f(W ) ≤ fp(W ) by definition.

IV. HULL, INDEPENDENCE, AND ALTERNATING PATHS

We now want to introduce new general analytical tools that
will help us analyze the minimum number of TCAM entries
needed to encode a classifier function. Intuitively, given any
range that we need to encode, we will want to exhibit n points
that are independent in some sense, and prove that they cannot
be encoded in less than n TCAM entries.

First, we define the hull of a set of W -bit strings in the W -
dimensional string space (this hull is also known as the isothetic
rectangle hull, minimum bounding rectangle, or minimum axis-
aligned bounding box in different contexts).

Definition 11 (Hull): Let (n,W ) ∈ N∗2, and consider n
strings a1, . . . , an of W bits each, with ai = (ai1, . . . , a

i
W )

for each i ∈ [1, n]. Then the hull of {a1, . . . , an}, denoted
H(a1, . . . , an), is the smallest cuboid containing a1, . . . , an in
the W -dimensional string space, and is defined as

H(a1, . . . , an) = {x = (x1, . . . , xW ) ∈ {0, 1}W |
∀j ∈ [1,W ], xj ∈ {a1j , . . . , anj }}. (10)

We can now relate the hull of a set of points to the TCAM
entries that they jointly match.

Proposition 1: Let (n,W ) ∈ N∗2, and consider n strings
a1, . . . , an of W bits each. Then a1, . . . , an match the same
TCAM entry iff all the strings in the hull H(a1, . . . , an) match
this TCAM entry.

Proof: On the one hand, by Equation (10) defining the
hull, we always have {a1, . . . , an} ⊆ H(a1, . . . , an). There-
fore, if all strings in H(a1, . . . , an) match a TCAM entry, so
does any ai.

On the other hand, assume that a1, . . . , an match a TCAM
entry S → a, with S = (s1, . . . , sW ) ∈ {0, 1, ∗}W . Then
by Definition 5 of TCAM entry matching, for all i ∈ [1, n]
and for all j ∈ [1,W ], sj ∈ {aij , ∗}. Now consider x =
(x1, . . . , xW ) ∈ H(a1, . . . , an). Then by Equation (10), for
all j ∈ [1,W ], xj ∈ {a1j , . . . , anj }. Therefore, for each bit j,
either all aij are equal, and xj obviously matches sj like all aij ,
or some of them are distinct, and then sj = ∗, so xj matches
sj again.

Using the definition of the hull, we now define independent
sets of points, and then show that an independent set of n points
cannot be encoded in less than n TCAM entries. Therefore, this
result enables us to simply exhibit an appropriate independent
set of points whenever we want to prove a lower bound on the
expansion of a classifier function.

Definition 12 (Alternating Path and Independent Set): Let
n and W be positive integers, and let α : {0, 1}W → {0, 1}
be a classifier function. Then an alternating path An of
size n is defined as an ordered set of 2n − 1 W -bit strings

10 110100

RLE

Fig. 2. Alternating path: RLE requires at least two TCAM entries using any
encoding scheme.

An = (a1, . . . , a2n−1) that satisfies the following two
conditions:
(i) Alternation: For i ∈ [1, 2n− 1],

α(a1) = α(a3) = · · · = α(a2n−1) = 1, and

α(a2) = α(a4) = · · · = α(a2n−2) = 0. (11)

(ii) Hull: For any i1, i2, i3 such that 1 ≤ i1 < i2 < i3 ≤ 2n−1,

ai2 ∈ H(ai1 , ai3). (12)

In such an alternating path, (a1, a3, a5, . . . , a2n−1) is an inde-
pendent set of size n.

Example 3: As shown in Fig. 2, let W = 2, n =
2, and consider the left-extremal range RLE = [0, 2] =
{{00}, {01}, {10}} . Let a1 = 2 = {10}, a2 = 3 = {11},
and a3 = 1 = {01}. Then A2 = (a1, a2, a3) is an alternating
path of size 2 and (a1, a3) is an independent set, because they
satisfy the two conditions:
(i) Alternation: a1 ∈ RLE , a2 ̸∈ RLE , a3 ∈ RLE .
(ii) Hull: a2 ∈ H(a1, a3), i.e. {11} ∈ H({10} , {01}), because
it shares its first bit with a1 and its second bit with a3.

Lemma 3: Let n be a positive integer, and (a1, . . . , a2n+1)
be an alternating path of size n + 1. Then removing any two
successive elements in the alternating path yields an alternating
path of size n.

Proof: Removing elements ai and ai+1 yields
(a1, . . . , ai−1, ai+2, . . . , a2n+1) for any i ∈ [1, 2n]. Then
the two conditions defined above for the alternating path still
hold. First, odd elements should still yield action 1, and even
elements action 0. Second, for any three elements in the list,
the middle element is still in the hull of the other two, since it
was already there before the removal of the two elements.

Theorem 5: A classifier function with an alternating path of
size n cannot be encoded in less than n TCAM entries.

Proof: The proof is by induction on n.
For the induction basis, we can see that for n = 1, we need

to encode at least one element with a non-default action of 1,
therefore we need at least one TCAM entry.

For the induction step, we assume that we cannot encode a
classifier function with an alternating path of size n in less than
n TCAM entries, and want to show it for n+1 as well. To do
so, we assume, by contradiction, that we can encode a classifier
function with an alternating path An+1 = (a1, . . . , a2n+1) of
size n+1 in less than n+1 TCAM entries. Then we consider
the first TCAM entry S → a (as defined in Definition 6). In the
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full proof, presented in [34] for space reasons, we distinguish
several cases according to the number of elements from An+1

that are matched by this TCAM entry. We show that each of
them leads to a contradiction according to Lemma 3.

V. RANGE EXPANSION OPTIMALITY

A. Extremal Range Expansion Optimality

Thanks to the tools developed above, we can now prove the
following theorem, which shows that the upper-bound g(W ) ≤⌈
W+1

2

⌉
proved in Theorem 1 is tight, and therefore that our

iterative encoding scheme reaches the optimal extremal range
expansion.

Theorem 6: The bound in Theorem 1 is tight, and therefore
for all W ∈ N∗, the extremal range expansion is exactly

g(W ) =

⌈
W + 1

2

⌉
. (13)

Proof: We have to show that g(W ) ≥
⌈
W+1

2

⌉
.

The case of W = 1 is trivial. To distinguish between the
two left-extremal ranges RLE

1 = [0, 0] and RLE
2 = [0, 1], it is

clear that we need at least one TCAM entry.
Assume W ≥ 2. First, notice that for each even value of

W ∈ N∗, the upper-bound is the same for g(W ) and g(W +

1), and is equal to
(
W
2 + 1

)
, i.e.

⌈
W+1

2

⌉
=

⌈
(W+1)+1

2

⌉
=(

W
2 + 1

)
. Therefore, to prove the tightness of the upper-bound,

it is sufficient to do it for the positive even values of W .
More specifically, for each positive even value of W , we

simply need to exhibit a left-extremal range RLE(W ) ⊆
[0, 2W−1] that cannot be encoded in less than

(
W
2 + 1

)
TCAM

entries. As a consequence, this left-extremal range RLE(W )
would also suffice to prove the tightness of the upper-bound
for W + 1, because RLE(W ) ⊆ [0, 2W − 1] ⊆ [0, 2W+1 − 1],
and

⌈
(W+1)+1

2

⌉
= W

2 + 1.
Therefore, we assume that W ≥ 2 is even. Define W -bit

string c(W ) = 1010...10 = {10}W
2 with the binary value of

c(W ) =

W
2 −1∑
k=0

2 · 22k =
2

3

(
2W − 1

)
. (14)

Consider the left-extremal range RLE(W ) =[
0, 23

(
2W − 1

)]
=

{
{0}W , . . . , c(W )

}
⊆ [0, 2W − 1].

In the full proof, presented in [34] for space reasons, we
show that given RLE(W ) we can obtain an alternating path
of size W

2 + 1. To do so, we define a1 = {01}W
2 , and

construct the alternating path (a1, . . . , aW+1) by flipping
each time the ith bit of ai to obtain ai+1. We show that the
odd-indexed elements are in RLE(W ) while the even-indexed
are not, proving the alternation property. We also show that
1 ≤ i1 < i2 < i3 ≤ W + 1, ai2 ∈ H(ai1 , ai3), and the
hull property is satisfied as well. Then, the result follows by
Theorem 5.

B. Range Expansion Optimality

The next theorem shows that the upper bound on the range
expansion fp(W ) from Theorem 4 is actually tight among
all TCAM prefix encoding schemes, and therefore their prefix

encoding scheme is optimal among all prefix encoding schemes
for the worst-case range expansion.

Theorem 7: For all W ∈ N∗, the optimal range expansion
among all prefix encoding schemes is exactly

fp(W ) =W. (15)

Proof: We have proved earlier, using an alternating path,
that the expansion of extremal ranges on spaces of size 2W−1

is g(W − 1) =
⌈
W
2

⌉
.

We first assume that W is odd. We define
R1 =

[
1
3

(
2W−1 − 1

)
, 2W−1 − 1

]
, R2 =[

2W−1, 2W−1 + 2
3

(
2W−3 − 1

)]
. We then build a

hard-to-encode W -bit range R = R1
∪
R2 =[

1
3

(
2W−1 − 1

)
, 2W−1 + 1

3 · 2W−2 − 2
3

]
⊆ [0, 2W − 1]

composed of a shifted right-extremal range R1 of size
c(W − 1) and a shifted left-extremal range R2 of size
c(W − 3).

The first range R1 is included in the sub-space [0, 2W−1 −
1] of size 2W−1 and the second range R2 in the sub-space
[2W−1, 2W−1 + 2W−3 − 1] of size 2W−3. Therefore in R1

we can build an alternating path of size g(W − 1), and in R2

another one of size g(W − 3).
There are two approaches we can use in order to encode

R. We can either encode the range itself or encode the
complimentary range first and then add the entry (∗W → 1).
In the full proof, presented in [34] for space reasons, we show
that using prefix encoding, no matter which way is chosen, we
would then need a total number of (at least) W TCAM entries.

If W is even, similar considerations can show that the range
R =

[
2
32

W−1 − 1
3 ,

4
32

W−1 − 2
3

]
⊆ [0, 2W − 1] cannot be

encoded in less than W prefix TCAM entries.
Similarly to the equality g(W ) = gp(W ), we conjecture that

we have the same equality here, i.e. that non-prefix expansions
cannot obtain a better range expansion than prefix expansions.

Conjecture 1: For all W ∈ N∗, f(W ) = fp(W ) =W .

VI. RANGE EXPANSION WITH HIERARCHICAL CODES

We saw in the Introduction that encoding internally using
binary prefixes can be done in 2W −2 entries per rule, but can
be improved using Gray codes and similar codes to 2W−4 and
2W − 5 entries per rule, respectively [17], [21]. It is natural to
ask whether our lower bounds on the general binary encoding
still hold with different codes, such as a Gray code.

We show that counter-intuitively, Gray codes do not reduce
the worst-case expansion. We first define a general class of
hierarchical codes that includes both binary codes and Gray
codes, and then prove that they satisfy the exact same results
on extremal range expansion and range expansion, respectively.

Let a code σ : {0, 1}W → {0, 1}W be a bijection that
transforms a binary W -bit string representation into another
W -bit string, and let Σ denote the set of all such codes.
We first provide some useful definitions, and then prove that
hierarchical codes satisfy several equivalent properties.

Definition 13 (Suffix Distance): The suffix distance dS(a, b)
between two W -bit strings a and b is

dS(a, b) =W−max{j ∈ [0,W ]| (a1, . . . , aj) = (b1, . . . , bj)}.
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Definition 14 (Prefix Set): A prefix set S ⊆ {0, 1}W is a set
of all elements that share the same prefix, i.e. a W -bit string
a ∈ {0, 1}W and an index j ∈ [0,W ] exist such that

S = {a1, . . . , aj} {0, 1}W−j
.

Theorem 8 (Hierarchical Codes): For any σ ∈ Σ, the fol-
lowing three properties are equivalent:
(i) σ is a graph automorphism on the tree representation, i.e.
it preserves all subtrees in the tree structure;
(ii) σ preserves prefix sets, i.e. if S is a prefix set, then σ(S)
is a prefix set as well;
(iii) σ preserves the suffix distance, i.e. dS(σ(a), σ(b)) =
dS(a, b).
We will denote by ΣH the set of all codes satisfying these
properties, and call them hierarchical codes.

Proof: We start by proving (i) ⇒ (ii). Consider the
subtree corresponding to the prefix set S. Since σ is a graph
automorphism, its image is a subtree with the same size. This
subtree corresponds to another prefix set S′.

Next, we show that (ii) ⇒ (iii). If dS(a, b) = d, then the
minimal size of a prefix set that contains both a and b is 2d. Let
denote by S such a set. By property (ii), we have that σ(S)
is a prefix set of the same size (2d) that contains both σ(a)
and σ(b). Therefore, dS(σ(a), σ(b)) ≤ d = dS(a, b). In order
to see that dS(σ(a), σ(b)) = dS(a, b), we show that assuming
that dS(σ(a), σ(b)) < dS(a, b) leads towards a contradiction.
We first observe that by property (ii) we must also have that
if σ(S) is a prefix set, then S is a prefix set as well, since the
total number of prefix sets is S and σ(S) is equal. Therefore,
assuming property (ii), we can deduce that σ−1 preserves prefix
sets as well. If dS(σ(a), σ(b)) < d = dS(a, b), there exists a
prefix set S′ of size smaller than 2d that contains both σ(a) and
σ(b). From the corollary above we have that σ−1(S′) is a prefix
set smaller than 2d that contains both a and b. Contradiction.

Last, we prove that (iii) ⇒ (i). We use the equality between
the suffix distance and half the distance in the tree between the
corresponding leaves. Therefore, by property (iii) we have that
the distance in the tree between any two nodes is also preserved
under σ. Thus, again using the connection between the distance
in the tree and the minimal size of a tree that contains two
points, we must have that σ preserves all subtrees in the tree
structure and is a graph automorphism.

Example 4: We want to show that both the binary code and
the Gray code have these three properties. For the binary code,
σ is the identity function and therefore preserves all subtrees in
the tree structure, the prefix sets and the suffix distance. Thus,
it satisfies these three properties.

For the Gray code we prove that it has property (i) by
induction. For W = 1 the Gray code is the same as the
binary code, and thus has the same properties. By the induction
hypothesis, we assume that all the subtrees of size smaller than
2W−1 are preserved under the code. For a general W , from the
reflection property of the Gray code, the values of [0, 2W − 1]
are assigned first to the left subtree of size 2W−1 and later to
the right one. Thus, the two subtrees of size 2W−1 are also
preserved, and the Gray code satisfies property (i) and the two
others by their equivalence.

TABLE I
EXAMPLE OF 2 ADDITIONAL CODES. ϕ IS HIERARCHICAL, ψ IS NOT.

000 001 010 011 100 101 110 111
ϕ 011 010 001 000 100 101 110 111
ψ 000 010 100 110 111 101 011 001

Example 5: For W = 3, we present two additional codes,
ϕ, ψ ∈ Σ, defined in Table I. We show, by checking that the
properties are satisfied, that ϕ ∈ ΣH while ψ /∈ ΣH .

We start with ψ. For a = 000, b = 111, we have
dS(a, b) = dS(000, 111) = 3. However, dS(ψ(a), ψ(b)) =
dS(ψ(000), ψ(111)) = dS(000, 001) = 1 Therefore, ψ does
not satisfy property (iii) and ψ is not an hierarchical code.

Next, we examine the code ϕ. To show that it preserves
prefix sets and satisfies property (ii), we consider all the
possible prefix sets that contain more than one element. There
are four prefix sets of size two: S1 = {00} {0, 1} , S2 =
{01} {0, 1} , S3 = {10} {0, 1} , S4 = {11} {0, 1} and two
prefix sets of size four: S5 = {0} {0, 1}2 , S6 = {1} {0, 1}2.
We can see that ϕ maps S1 to S2, S2 to S1 and S3, S4, S5, S6

to themselves. Finally, the only prefix set of size 2W , ({0, 1}W )
is mapped, of course, to itself. Thus, ϕ satisfies property (ii)
and is a hierarchical code, i.e. ϕ ∈ ΣH .

Given a hierarchical code σH ∈ ΣH , define gH(W ) and
fHp (W ) for this code as g(W ) and fp(W ) were defined for
the binary code, respectively. Then we obtain:

Theorem 9: In any hierarchical code σH ∈ ΣH , the extremal
range expansion and prefix-based general range expansion have
the same lower bounds as with a binary code:

gH(W ) ≥
⌈
W + 1

2

⌉
= g(W ), (16)

fHp (W ) ≥W = fp(W ). (17)

Proof: We start by proving the first part of the theorem.
As explained earlier in this paper, it is enough to prove the
theorem when W is even. The proof is by induction on W and
follows the proof of Theorem 6. For each W , we exhibit an
extremal range RLE and an alternating path of size

⌈
W+1

2

⌉
and show that given any hierarchical code σH ∈ ΣH , RLE

cannot be encoded in less than
⌈
W+1

2

⌉
TCAM entries. To do

so, we use the notation c(W ) = 2
3

(
2W − 1

)
from Theorem 6

and consider the extremal range RLE = [0, c(W )]. Let α be
the indicator function of RLE , and for a bit value b let b′ be
the bit value 1− b.

Induction basis: We start with the case of W = 2. Here
R = [0, c(2)] = [0, 2]. Without loss of generality, the code σH

is of the form: σ(00) = (b1, b2), σ(01) = (b1, b
′
2), σ(10) =

(b′1, b3), σ(11) = (b′1, b
′
3). Here α((b1, b2)) = α((b1, b

′
2)) =

α((b′1, b3)) = 1, α((b′1, b
′
3)) = 0. There are two possible cases:

If b2 = b3, we look at σ(01), σ(10) and σ(11). We define
A2 = (a1, a2, a3), for a1 = σ(01) = (b1, b

′
2), a

2 = σ(11) =
(b′1, b

′
3) and a3 = σ(10) = (b′1, b3). Then A2 = (a1, a2, a3) is

an alternating path of size 2 and
{
a1, a3

}
is an independent

set, because it satisfies the two needed conditions:
(i) Alternation: a1 ∈ RLE , a2 ̸∈ RLE , a3 ∈ RLE .
(ii) Hull: a2 = (b′1, b

′
3) = (b′1, b

′
2) ∈ H((b1, b

′
2), (b

′
1, b3)) =

H(a1, a3), because a2 shares its first bit with a3 and its second
bit with a1.
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If b2 ̸= b3, we look at σ(00), σ(10) and σ(11). We define
A2 = (a1, a2, a3), for a1 = σ(00) = (b1, b2), a2 = σ(11) =
(b′1, b

′
3) and a3 = σ(10) = (b′1, b3). Then, A2 = (a1, a2, a3) is

again an alternating path of size 2.
Induction step: For a general even value of W , we have

RLE(W ) = [0, c(W )] = [0, 2W−1+c(W−2)]. We can see that
RLE(W ) = [0, 2W−1−1]∪ [2W−1, 2W−1+c(W −2)] = R1∪
R2, where R2 is a shifted version of RLE(W−2), and observe
that 2W−1 < c(W ) < (2W−1+2W−2). By property (ii) of the
hierarchical code σH , we must have that the first two bits in
the W -bit string of the code of the points in [2W−1, 2W−1 +
c(W − 2)] ⊆ [2W−1, 2W−1 + 2W−2 − 1] are equal. Further,
if we denote them by (b1, b2), then all the points with code
that starts with the first two bits (b1, b

′
2) belong to [2W−1 +

2W−2, 2W−1] ⊆ (RLE(W ))c. Further, all the points with code
that starts with the first bit {b′1} belong to [0, 2W−1 − 1] ⊆
RLE(W ). Let (a1, . . . , aW−1) with ai = (ai1, a

i
2, . . . , a

i
W ) be

the alternating path for RLE(W − 2). We build the alternating
path (b1, . . . , bW+1) as follows: We first define bi = (b1, b2)a

i

for i ∈ [1,W − 1]. We get the next point by flipping the second
bit of bW−1 to have bW = (b1, b

′
2, a

W−1
1 , aW−1

2 , . . . , aW−1
W ).

To get the last point we flip in addition the first bit, bW+1 =
(b′1, b

′
2, a

W−1
1 , aW−1

2 , . . . , aW−1
W ).

By the last observations we can see that (b1, . . . , bW+1) is
an alternating path of size W

2 + 1. In the full proof, presented
in [34] for space reasons, it satisfies the Alternation condition
as well as the Hull condition.

We can now deduce that (b1, . . . , bW+1) is an alternating
path of size W

2 + 1 and by Theorem 5 we have the result.
The proof of the second part of the theorem is

similar to the proof of Theorem 7. For instance, if
W is odd we consider again the W -bit range R =[
1
3

(
2W−1 − 1

)
, 2W−1 + 1

3 · 2W−2 − 2
3

]
⊆ [0, 2W − 1]. In the

full proof, we show that by the result of the first part, using
only prefix encoding, a total number of W TCAM entries are
required for the encoding of the range R, also in this general
hierarchical code.

VII. UNION OF RANGES

We have shown that any range can be encoded using
fp(W ) = W entries. However, it is not straightforward that
encoding k ranges would also be possible in roughly kW
ranges. For instance, if we encode some range R1 using
external encoding, i.e. by first encoding its complementary
(R1)c, we might encompass another range R2 ⊆ (R1)c, and
therefore yield a wrong encoding. A simple apparent solution
is to encode R2 first, but then we might need to encode it using
its complementary (R2)c first. This is again a problem because
R1 ⊆ (R2)c. Here is a simple example of such a phenomenon.

Example 6: Assume we want to encode k = 2 ranges of
W = 4-bit strings. Let R1 = [0, 11] = {{0000} , . . . , {1011}}
and R2 = [15, 15] = {1111}. We want to encode R1∪R2. Then
R1 can be encoded as (11 ∗ ∗ → 0, ∗ ∗ ∗∗ → 1), neglecting the
last default entry. Likewise, R2 can be encoded as (1111 → 1).
However, directly combining the entries would yield (11∗∗ →
0, ∗ ∗ ∗∗ → 1, 1111 → 1), which actually encodes R1 and
not R1 ∪ R2. Instead, a correct encoding would have been
(1111 → 1, 11 ∗ ∗ → 0, ∗ ∗ ∗∗ → 1).

010 011001 110100 101 111000

1 2 3 4 5 6 7

R2R1

0

(a)

010 011001 110100 101 111000

1 2 3 4 5 6 7

R1R2

0

R2

(b)

Fig. 3. Union of two ranges. Fig. 3(a) presents a union of two non-adjacent
ranges that yields two non-default intervals. Fig. 3(b) presents a union of two
adjacent ranges that yields three non-default intervals, each of them with the
same resulting action.

The example shows there might be a problem when the
encoding of a range defines treatment for values that appear
outside it but inside other ranges. Note that this problem does
not occur when the ranges are in different halves of the W-
bit range, since we can rely on prefix-based encoding. Further,
it does not occur if one of the two ranges is included in a
prefix sub-space and the second does not intersect it. In such
a case, the prefix of that sub-space may be used to avoid a
detrimental effect of the first encoding on the second, so we
can first encode the first range and later the second.

We want to generalize Theorem 4, which states that any
single range can be encoded in W entries, not including the
default one. We will consider a set of k distinct ranges, defined
in the same way as [30]. Namely, by a range, we mean a
non-default interval with the same resulting action. Therefore,
although two non-adjacent ranges can cut the space of all
2W elements into five intervals (successively corresponding
to default, then first range, then default, then second range,
and default again), we consider these as two ranges only. On
the other hand, if a first rule is strictly contained within a
second rule but has priority, then the two rules create three
ranges (successively corresponding to the second, first, and
again second rule).

Example 7: For W = 3, we consider the case of two ranges
R1, R2 defined with corresponding actions ’accept’ and ’log’.
Let ’deny’ be the default action. As shown in Fig. 3(a), the
range R = R1 ∪ R2 = [1, 3] ∪ [5, 6] is considered as two
ranges only since R1, R2 are non-adjacent ranges. However,
as shown in Fig. 3(b), if R = R1 ∪R2 = [3, 4]∪ [1, 6]. R1 has
priority over R2 and R1 is strictly contained within R2, there
are three ranges.
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k1 2 k-1

k1 2 k-1

k1 2 k-1

Case 1

Case 2

Case 3

Fig. 4. Three types of unions of k ranges defined in Definition 15.

The next theorem follows directly from a tighter result
presented below in Theorem 11. To prove Theorem 11, we
will first establish several lemmas based on the different types
of range unions.

Theorem 10: For all W ∈ N∗ and k ∈ N, any k ranges of
W -bit elements can be encoded using prefix encoding in at
most k(W + 1) TCAM entries.

For any range Ri, we define its bit size W i as its number
of meaningful bits, i.e the number of bits that can vary in the
string representation of the elements of Ri, corresponding to
the maximum possible suffix distance within Ri. As usual, we
refer to W as the total number of bits in the definition in each
of the ranges, i.e. they are all defined over a sub-space of size
2W . From now on, we assume that each range Ri is defined
with a corresponding action ai.

In the following lemma, we give an upper bound on the
expansion of the union of two distinct ranges.

Lemma 4: Let R1 and R2 denote two ranges of respective
bit sizes W 1 and W 2. We consider their union R1 ∪R2.
1. If R1, R2 are both extremal ranges, their union can be
encoded in at most g(W 1) + g(W 2) TCAM entries.
2. If only R2 is an extremal range, their union can be encoded
in at most f(W 1) + g(W 2) + 1 TCAM entries.
3. If both R1 and R2 are not extremal ranges, their union can
be encoded in at most f(W 1) + f(W 2) + 2 TCAM entries.
All results can rely on prefix encoding.

For space reasons, the tedious proof of this lemma is not
brought here and is presented in [34].

We now provide a definition that defines three possible types
of a union of k disjoint ranges. It is illustrated in Fig. 4.

Definition 15 (Range-union types): Let a general k-union
of disjoint ranges denote a union of the form

∪k
i=1R

i =∪k
i=1 [y

i
1, y

i
2], where (∀i ∈ [1, k])(yi1 ≤ yi2) ∧ (∀i ∈ [1, k −

1])(yi2 < yi+1
1 ) and Ri is assigned with an arbitrary action ai.

a. Let a k-union with two extremal ranges denote a k-union
where y11 = 0 and yk2 = (2W − 1).
b. Let a k-union with an extremal range denote a k-union where
y11 ̸= 0 and yk2 = (2W − 1).
c. Let a k-union with no extremal ranges denote a k-union
where y11 ̸= 0 and yk2 ̸= (2W − 1).

We now present the main theorem of this section. In its
proof, presented in [34] for space reasons, we consider the
expansion of each the different unions of k disjoint ranges
from Definition 15.

Theorem 11: For all W ∈ N∗ and k ∈ N, any k ranges{
Ri

}
1≤i≤k

of W -bit elements can be encoded in at most∑k
i=1 (W

i + 1) TCAM entries.
Last, we prove the asymptotic optimality of this theorem.

2
R

1
R R

(a)

R

(b)

Fig. 5. Two-dimensional rangeR = (R1, R2). Fig. 5(a) presents the encoding
of the two-dimensional range R using an internal encoding, yielding an
expansion which is exponential in the number of fields. Fig. 5(b) demonstrates
the encoding of R using the suggested encoding which yields a linear
expansion.

Theorem 12 (Asymptotic Optimality): In the general case,
as k → ∞,
(i) any k ranges of W -bit strings can be encoded in at most
k · (W − log k + o(log k)) TCAM entries.
(ii) there are k ranges of W -bit strings that cannot be encoded
using prefix encoding in less than k · (W − log k + o(log k))
TCAM entries.

Proof: First, let’s prove (i). Given three distinct ranges,
at most one can have W significant bits, and at most two can
have W − 1 significant bits, because at most one range can
cross the cut in the middle of the element space. Likewise,
given seven ranges, at most one can have W significant bits,
two can have W − 1 significant bits, and four can have W − 2
significant bits. Summing up for the case of k elements, we
have

∑k
i=1 (W

i + 1) ≤ k + kW −
∑l

i=1 i · 2i, for l such that
k =

∑l
i=0 2

i = 2l+1 − 1, i.e. l = log(k + 1) − 1. Using the
formula (for r ̸= 1),

∑n
i=1 i · ri = r−rn+2

(1−r)2 − (n+1)rn+1

1−r , this
upper bound equals k+kW − ((2−2l+2)+ ((l+1) ·2l+1)) =

k+kW−(2+(l−1)·2(l+1)) = k·(W+1− (l−1)·2(l+1)+2
k ). Using

the value of l, we have k · (W + 1 − (log(k+1)−2)(k+1)+2
k ) =

k · (W +3− k·log(k+1)+log(k+1)
k ) = k · (W +3− log(k+1)−

log(k+1)
k ) = k · (W − log(k) − o(log(k))). We can see that

k elements can get a maximum average number of significant
bits that decreases as log k · (1 + o(1)).

To prove (ii), when k = 2l, we cut the space of 2W into k
sub-spaces of 2W−l elements each, and apply Theorem 7 on
each subspace to get a lower-bound on the encoding of each
range in log(2W−l) =W − l =W − log k entries, with a total
number of k · (W − log k) entries. Using prefix encoding, we
can see that the ranges cannot be encoded together.
Due to this relatively complicated encoding of a union of
ranges, the rule update might be complicated. We leave this
issue for future work.

VIII. MULTIDIMENSIONAL RANGES

A. Exponential Number of TCAM Entries

Our objective is to find an encoding scheme of a classifica-
tion rule R = ((R1, . . . , Rd) → a) defined over d fields, given
that we already have some encoding schemes for each range
rule Ri in field (dimension) Fi, where i ∈ [1, d]. While the
result is well-known when using internal Binary-Prefix encod-
ing, the following theorem deals with any encoding, including
external encoding that starts with encoding the complimentary
range.
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Theorem 13: Given a classification rule R =
((R1, . . . , Rd) → a) and d encoding schemes {ϕi}di=1 of
the ranges {Ri}di=1 with expansions {nϕ1(R1), . . . , nϕd

(Rd)},
(i) R can be encoded in at most n =

∏d
i=1 nϕi(Ri) TCAM

entries;
(ii) in particular, given d′ ≤ d fields with range rules, R can
always be encoded in W d′

TCAM entries.
For space reasons, the proof of the first part of the theorem

is not brought here and is presented in [34]. The second part
directly follows Theorem 3 and the first part.

Example 8: Consider a general range of two W -bit fields
R = (R1, R2), presented in Fig. 5(a). For i = 1, 2 let r′i be the
expansion of Ri using our improved encoding scheme. R can
be encoded in r′1 · r′2 ≤ f(W )2 ≤W 2 TCAM entries.

B. Linear Number of TCAM Entries
The main drawback of encoding a hyper-rectangle with

d dimensions is the curse of dimensionality, i.e. the typical
exponential dependency in the number of fields d. We show
here how to encode a hyper rectangle with a linear dependency
in d.

Example 9: Consider again the range R from Example 8. As
illustrated in Fig. 5(b), we can first negatively encode the four
striped regions, using an internal encoding of the corresponding
four one-dimensional extremal intervals (using at most 4W
entries [19]), and then add a default positive entry (using one
entry), thus yielding a linear expansion upper-bound of 4W+1.
More generally, we get the following tighter upper-bound:

Theorem 14: Any classification rule R of d fields can be
encoded in at most d · (2W − 2) + 1 TCAM entries without
any additional logic.

Proof: We remind that an extremal W -bit range R can be
internally encoded in at most W TCAM entries [19]. Further,
if the extremal W -bit range R is not a shifted version of one
of the ranges [0, 2W − 2], [1, 2W − 1] then R can be internally
encoded in at most W − 1 TCAM entries.

For a general d-dimensional rule R, we assume that its i-th
dimension range is Ri = [a, b]. We also assume that a ̸= b.
Otherwise, Ri is an exact match and its encoding does not
require any additional TCAM entries besides the encodings of
the other dimensions. We define RLE = [0, a−1] and RRE =
[b+1, 2W − 1] such that RLE

∪
Ri

∪
RRE = [0, 2W − 1]. We

want to show that we can internally encode the extremal ranges
RLE , RRE in a total number of 2W − 2 TCAM entries. We
consider 3 possible cases:

(i) If a ≤ 2W−1 − 1 and b ≥ 2W−1, i.e. RLE ⊆ [0, 2W−1 −
1], RRE ⊆ [2W−1, 2W − 1], then RLE , RRE are (W − 1)-
bit ranges and therefore each of them can be encoded using
internal encoding in at most W − 1 TCAM entries.

(ii) Else if b < 2W−1 , i.e. Ri ⊆ [0, 2W−1 − 1], then the
(W − 1)-bit range RLE holds RLE ̸= [0, 2W−1 − 2] and can
be encoded in at most W − 2 TCAM entries. By internally
encoding RRE in at most W TCAM entries, we have a total
number of at most 2W − 2 TCAM entries.

(iii) Else a > 2W−1 − 1 and Ri ⊆ [2W−1, 2W − 1]. We
internally encode RRE ̸= [2W−1+1, 2W −1] in at most W−2
TCAM entries and RLE in at most W TCAM entries, having
a total number of at most 2W − 2 TCAM entries.
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Fig. 6. Range expansion distribution over all possible ranges for W = 8.

Therefore, after encoding negatively the range complimen-
tary for each field, we add the last default entry with a positive
action and have at most d · (2W − 2) + 1 TCAM entries.

C. Linear Number of TCAM Entries with Additional Logic

The above results for multidimensional ranges assume that
the classifier has only one classification rule. In the Appendix
we suggest hardware changes that enable us to efficiently
encode k > 1 classification rules, as stated in the following
theorem.

Theorem 15: Let C = (R1, ..., Rk) be a classifier with k
classification rules defined over d fields. Using additional logic,
C can be encoded in at most k · d ·W TCAM entries.

IX. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of our approach
on both real-life and synthetic packet classifiers. We also com-
pare the suggested scheme with known encoding algorithms
and in particular SRGE [17].

A. Worst-Case Range Expansion (Theorem 3)

Figure 6 presents the range expansion distribution over all
the ranges in [0, 2W − 1] with W = 8 bits. The worst-case
expansion of the well-known internal Binary-Prefix approach
is 2W−2 = 14 (with negligible probability), while it is W = 8
in our suggested scheme, thus confirming Theorem 3.

B. Average Range Expansion

Figure 7 shows the average range expansion in the Binary-
Prefix encoding and in our suggested scheme. First, Fig. 7(a)
shows for W ∈ [1, 16] the average expansion of a uniformly-
distributed range in [0, 2W − 1]. For instance, for W = 2
the average expansion is calculated among the 10 different
ranges in [0, 3]. In both schemes the average expansion is 1.3
since in both of them only the ranges [0, 2], [1, 2], [1, 3] require
two entries while the other seven ranges can be encoded in
one entry. For W = 16, the average Binary-Prefix expansion
is approximately 13.00 and the improved expansion is only
9.44. The average expansion for W = 8 can be deduced
from the range expansion distribution in Figure 6. Likewise,
Fig. 7(b) shows for W ∈ [1, 8] the average range expansion
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Fig. 7. Average expansion of ranges. Fig. 7(a) presents the average range
expansion for a one-dimensional range in [0, 2W − 1] for W ∈ [1, 16].
Fig. 7(b) presents the average range expansion for a two-dimensional range in
[0, 2W − 1]× [0, 2W − 1] for W ∈ [1, 8].

of a two-dimensional range in [0, 2W − 1] × [0, 2W − 1]. We
encode any given range in the most efficient scheme among
the two suggested schemes presented in Section VIII-A and in
Section VIII-B. For example, for W = 8, the average Binary-
Prefix expansion is 36.56 and using our scheme it is reduced
to only 13.96.

X. CONCLUSION

This paper is unique in that it deals with the fundamental
capacity region of TCAMs. In the paper, we presented new
upper-bounds on the TCAM worst-case rule expansions. In
particular, we proved that a W -bit range can be encoded
in W TCAM entries using prefix encoding, improving upon
the previously-known bound of 2W − 5. We also introduced
fundamental analytical tools based on independent sets and
alternating paths, and used these tools to prove the tightness
of the upper bounds. We then showed that the developed
expansion lower bounds hold in any hierarchical code and
provided asymptotically optimal upper bounds for the encoding
of a union of ranges.

In addition, we suggested several modified TCAM archi-
tectures that provide clear tradeoffs between better range ex-
pansion guarantees with less TCAM active entries and more
complex logic within the TCAM. Last, we showed that it is
possible to encode ranges using a number of TCAM entries
that increases only linearly instead of exponentially with the
number of fields.
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