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Abstract—When sending flows to arbitrary destinations, cur-
rent multihoming routers adopt simple congestion-oblivious
mechanisms. Therefore, they cannot avoid congested paths.

In this paper, we introduce 2SYN, the first congestion-
aware multihoming algorithm that works for any destination.
We explain how it dynamically selects a preferred path for
new connections, even given previously-unseen destinations. We
further demonstrate that it can be easily implemented in Linux.
Finally, in a real-world experiment with either LTE or a wired
link, we show how 2SYN dynamically adapts to the quality of the
connection and outperforms alternative approaches. Thus, 2SYN
helps companies better manage their networks by leveraging their
multihoming capabilities.

I. INTRODUCTION

To obtain a reliable Internet connection, companies are
increasingly abandoning their expensive MPLS (Multiprotocol
Label Switching) access, and using multihoming instead [1].
By correctly managing their multihomed network, companies
can leverage several low-cost commercially-available internet-
access links, such as LTE, DSL, cable, or fiber optics, to build
a high-performance and high-availability WAN transport [2].
As Fig. 1 illustrates, companies can use multihoming for
any arbitrary website destination D, including public SaaS
(Software as a Service) websites like Office365 or Workday.

To decide which of the outgoing WAN links should be
used, current multihoming routers adopt congestion-oblivious
algorithms: Either (1) a static failover algorithm, which uses a
preferred WAN link until it is disconnected, then uses a second
preferred link, etc.; or (2) a static load-balancing algorithm that
load-balances flows across the links [3]. This load-balancing
could be random or round-robin, uniform or weighted, but it
is always congestion-oblivious. Thus, a large proportion of the
connections are always at risk of suffering in a clogged or low-
speed link, even when another high-speed link is uncongested.

In this paper, we focus on TCP flows, as they constitute
the vast majority of corporate-oriented connections. When the
destination D belongs to the corporate network, the company
can implement congestion-aware algorithms, e.g., (1) replace
TCP by multi-path protocols like MPTCP (Multipath TCP) [2],
[4], [5], or (2) use SD-WAN (Software-Defined Wide Area
Network) to establish tunnels to D through each outgoing link,
monitor the tunnels, and then choose the best link for current
network conditions [6], [7]. However, we want our algorithm
to work for any arbitrary destination D, e.g., any SaaS website.
Nothing guarantees that D is configured to accept MPTCP,
or that D belongs to the corporate network. Therefore, these
restricted algorithms do not apply to the general case. The
goal of this paper is to provide a general congestion-aware
flow load-balancing algorithm given any arbitrary destination.

Fig. 1. Multihoming overview. 2SYN runs in the multihoming router.

Related work. As mentioned above, there are many solutions
for MPTCP [2], [4], [5] and SD-WAN [6], [7]. In particular,
RobE [5] sends SYNs over two parallel paths for an acceler-
ated MPTCP handshake mechanism, although it does not later
discard one of the SYN-ACKs. However, all these solutions
assume that we have control over the destination D. Other
works like CPR [8] and the IETF architecture for transport
services [9] deal with congestion-oblivious failover routing.
Contributions. We introduce the 2SYN algorithm. 2SYN
leverages the TCP 3-way handshake protocol to determine the
path with the best initial RTT. To do so, during the connection
establishment to D, the router sends a SYN through each of
the relevant router links. It then remembers the router link
through which it obtains the first SYN-ACK, and keeps using
it to route future packets while telling D to disregard the
other paths. We further implement 2SYN in Linux and discuss
its implementation tradeoffs. We also introduce alternative
approaches based on ML (machine-learning) algorithms and
explain why they appear inadequate.

We evaluate the performance of 2SYN both in a lab testbed
and in cross-continental transmissions. We show how it adapts
to differing path propagation or queueing delays. We also show
its resilience to a sudden bandwidth drop. Then, using long-
haul transmissions and comparing LTE and DSL links, we
confirm that 2SYN tends to pick the best link, and adapts
at connection time to artificial bandwidth drops or heavy
congestion. We further compare it to alternative static, random,
and ML-based approaches. We demonstrate how 2SYN can
outperform them and significantly decrease the average FCT
(Flow Completion Time) in a dynamic environment.

In summary, the main paper contributions are: (1) The
2SYN multihoming algorithm that dynamically avoids con-
gested paths when establishing the connection to any destina-
tion D. (2) The 2SYN implementation in Linux. (3) The real-
world experiments where 2SYN outperforms the alternative
static, random, and ML-based approaches.

The open-source code of 2SYN is available online [10].
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Fig. 2. Key steps of the 2SYN algorithm.

II. THE 2SYN ALGORITHM

A. 2SYN algorithm
We introduce 2SYN, a congestion-aware load-balancing al-

gorithm for a multihoming router R. The router R is connected
to k different WAN links (e.g., DSL or LTE), so each flow
from S to D can take k different possible paths. We define a
flow using its 5-tuple, and only consider TCP flows.
Key idea. 2SYN tries to choose the path with the shortest
initial RTT by leveraging the TCP 3-way handshake protocol.
When opening a TCP connection, it sends a SYN on each path,
and only keeps the connection on the path through which it
receives the first SYN-ACK, while canceling the other paths.
Initialization. We assume that 2SYN manages an AF (Active
Flow) table, which lists the current active flows that pass
through the multihoming router. AF is initially empty. Then,
as illustrated in Fig. 2, 2SYN performs the following steps:
1. Duplicate SYN. As shown in Fig. 2(a), for every new TCP
flow, i.e., for every new SYN that reaches the router R from
some source S within the corporate branch, 2SYN duplicates
this SYN to the k paths. As in the case without 2SYN, since
there are several router links with distinct ISPs, the 2SYN
router performs NAT (Network Address Translation) to replace
the source IP address of each SYN by the IP address of the
corresponding router link. For example, in Fig. 2(a), the source
IP address of the top SYN is IP1(R) instead of IP (S).
2. Wait for the first SYN-ACK. Later, the destination D
receives the k SYNs. Since each SYN has a different source IP,
D treats them as k independent new-flow requests. Therefore,
as Fig. 2(b) illustrates, it sends a SYN-ACK for each of these
flows along their respective paths.
3. Pick a path and cancel the other paths. When the first
SYN-ACK reaches the router, 2SYN chooses the correspond-
ing link as the preferred link for this flow. (1) As shown in
Fig. 2(c), 2SYN sends RST messages to D via the other k−1
links, causing D to cancel them. (2) 2SYN updates the routing
table to route the remaining packets through the chosen link,
and adds the flow to the AF table.
4. Flow completion. 2SYN then waits for the flow to complete
in its selected path (starting with a FIN or RST flag from S or
D). When the flow completes (or a timeout expires), 2SYN
removes it from the AF table and deletes its rule from the
routing table.

While we described the algorithm for the general case of k
paths, we focus on k = 2 in the remainder for simplicity.

B. 2SYN implementation in Linux

A recent report unpacked 89% of the measured home
routers and found that all of them were based on Linux [11].
Given this Linux ubiquity, we develop a proof-of-concept
implementation of 2SYN in Linux [10]. For any packet that
reaches the router, 2SYN uses iptables to check whether
it is a SYN packet for a new TCP flow from S to D.
Specifically, given any packet with a SYN flag, it checks
whether its flow satisfies the following four conditions: (1) It
does not already have a specific rule in the Linux routing
table, (2) it is a TCP flow, (3) it comes from a pre-defined
router interface corresponding to the corporate branch, and
(4) it is not destined to a pre-defined corporate gateway router
through an existing tunnel. If all conditions are satisfied, 2SYN
uses iptables to automatically duplicate the SYN packet to all
outgoing router interfaces and update the corresponding source
IP. Else, it is routed with the standard Linux route rules.

We use the Python Scapy API [12] to monitor traffic. To
accelerate packet processing, Scapy API filters packets using
BPF (Berkeley Packet Filter) [13] and only monitors packets
with set SYN, SYN-ACK, FIN and RST flags. When a SYN
arrives, 2SYN knows that it needs to wait for its first SYN-
ACK. Then, when the first SYN-ACK arrives, it adds the flow
to the AF table and the Linux routing table. Finally, with a
FIN or RST, 2SYN removes the flow from both the AF table
and the Linux routing table.

In addition, we implemented the option to redefine a flow as
a (source IP, dest. IP) pair, neglecting ports and protocol. This
allows sharing routing decisions among flows with the same
(source IP, dest. IP) pair, reducing SYN duplication rates at
the cost of a more complex table management.

C. Overhead

Router overhead. To minimize the computation overhead, our
2SYN implementation delegates to the Linux router both the
path routing computation and the SYN duplication operation,
both with negligible time. The only non-negligible computa-
tion overhead is in updating the Linux routing table, either
to add a new flow or to remove a completed flow. Using
our simple Python Scapy implementation, it takes some 4 ms
on average. In addition, adding and removing entries in the
AF table is done in an O(1) negligible time by using the
hash-table data structure. Using BPF, the 2SYN algorithm
processes only packets with the SYN, SYN-ACK, FIN, and



RST flags, so even for high flow rates, the processing time is
negligible compared to the update time of the Linux routing
table. We checked with mpstat [14] the CPU usage overhead
when processing a sudden burst of 100 parallel SYN arrivals.
At peak time, the CPU overhead is 3%.
Traffic overhead. For each new TCP flow, 2SYN creates one
additional SYN (i.e., two SYNs instead of one), one SYN-
ACK, and one RST (for the non-selected path). This appears
to be negligible in practice.
Destination overhead. For each new flow, we send an ad-
ditional SYN to D, and cancel it with a RST after one
RTT. Thus, we roughly increase the number of half-open
connections at D by RTT/FCTD, where FCTD denotes the
average FCT as seen by D. Assuming a median FCTD of
about 100 RTTs (the median flow lasts about 6 sec. [15]), the
overhead is around 1%, which seems reasonable.
NAT overhead. In 2SYN, the NAT overhead is negligible:
we translate 2 SYN/SYN-ACK messages per flow instead of
1, and proceed with other packets without change.

III. ALTERNATIVE APPROACH

We suggest an alternative lightweight ML-based approach,
assimilating the problem to a Multi-Armed Bandits (MAB)
problem. In the MAB setting, k slot machines offer random
rewards, drawn from k unknown distributions. The goal is to
maximize the cumulative reward by selecting machines wisely.
Similarly, in our routing problem, the k paths represent slot
machines, offering different FCTs. We aim to choose the path
with the lowest FCT (highest reward), balancing exploitation
(choosing paths with historically low FCTs) and exploration
(sampling less-traveled paths). We consider three standard
MAB algorithms: ϵ–greedy, Upper Count Bound (UCB), and
Thompson sampling (see Burtini et al. [16]). For instance, for
some small ϵ > 0, ϵ–greedy chooses the historically-optimal
path with a probability of 1 − ϵ, and explores other paths
uniformly at random otherwise. These MAB algorithms are
lightweight, do not require dedicated hardware (e.g., GPUs),
and do not need pre-training for each possible D.
Limitations. MAB algorithms suffer from several limitations.
First, the analogy between slot machines and paths is mis-
leading: Choosing a path reduces its future performance due
to the increased congestion. This differs from the usual MAB
setting. Second, as we illustrate in the experiments (Sec. IV),
the path properties can vary with time in a non-stationary
way, while MAB algorithms are not very reactive, which hurts
future connections. Lastly, we would need to maintain a large
database of flows with their past performances for each D.

IV. EXPERIMENTS

A. Lab experiments

We first evaluate 2SYN in a lab testbed, then in real-world
conditions. In the following lab testbed experiments, we start
by studying the impact of propagation delay and queueing
delay. Then, we study the resilience to bandwidth drops.

(a) Different propagation delays (b) Different queueing delays

Fig. 3. Paths with different delays. Average FCT in a 1-MB file download
using (a) different propagation delays, and (b) different queueing delays.

Setting. We use five Linux servers with Ubuntu 20.04. As
in Fig. 1, they emulate the source S (iPerf3 client), the
multihoming router, the two paths using two servers (path
routers), and the destination D (iPerf3 server).
Tools. In all experiments, we use the iPerf3 (version 3.9) [17]
network measurement tool to run the tests, download/upload a
file and measure the average FCT. We also use the NetEm [18]
network emulation tool to control the RTT and bandwidth of
each path. The buffer size of each path router of bandwidth
BW is set to RTT ·BW .
Algorithms. We compare four different algorithms. The first
always chooses the first path, and the second chooses the
second path. The third chooses the path randomly with equal
probabilities. The last algorithm is 2SYN.
Impact of propagation delay. For each WAN path, we set
the same bandwidth of 300Mbps, but a different propagation
delay: 120ms for the first path and 80ms for the second. Then,
we measure the FCT to download a 1 MB file from D (a
100 MB file download yielded similar results). We repeat the
experiment 20 times and measure the average download time.
Fig. 3(a) illustrates the results. 2SYN always chooses the best
path with the lowest propagation delay, providing FCTs that
are comparable to those of path 2.
Impact of queueing delay. We now set both paths with the
same bandwidth of 300Mbps and RTT of 120ms, but add
background TCP traffic (five flows with a limit of 100 Mbps
per flow) to path 1. We measure the average download time
for a 1 MB file, using 20 experiments. Fig. 3(b) shows that
2SYN manages to choose the path with less congestion, again
providing FCTs comparable to those of path 2.
Resilience to bandwidth drop. In Fig. 4, we download 100-
MB files 20 times in a row. We reduce the bandwidth of path 2
from 300 Mbps to 30 Mbps after downloading 40% of the files,
while that of path 1 remains constant at 100 Mbps. Fig. 4(a)
shows how the throughput varies with time for all algorithms.
The throughput oscillates due to TCP’s slow start for each new
flow. Significantly, 2SYN chooses the high-bandwidth path for
the first connections, while after the bandwidth drop, it adopts
the other path for new connections. Fig. 4(b) shows that it
achieves a lower FCT than any constant-path algorithm.

B. LTE vs. DSL experiments

Setting. We download or upload files to public SpeedTest
servers in England [19], with our source S at the Technion,



(a) Throughput over time (b) FCT

Fig. 4. Resilience to bandwidth drop. Path 1 has a constant bandwidth of
100 Mbps, while that of path 2 suddenly drops from 300 Mbps to 30 Mbps.

(a) Links without issues (b) Links with bandwidth drop

Fig. 5. LTE (path 1) vs. DSL (path 2). Average FCT for the download of
web-search files.

Israel. We connect our source router to (1) a standard cell
phone with a 4G LTE connection; and (2) a wired internet
link that is throttled to 100Mbps for download and 10Mbps
for upload, based both on the median offered DSL package
across all providers and on the median measured broadband
bandwidth [20]. We run two workloads: (1) sending a large file
of 30MB for 20 times, or (2) sending web-search application
traffic with a distribution of 62% for small files (< 100KB),
18% for medium files (100KB−1MB), and 20% for large files
(> 1MB) [21]. We test three scenarios: one without issues;
one with a bandwidth drop in the middle of transmission,
modeling a sudden path router or ISP problem; and one with
a sudden congestion increase caused by additional users in
the middle of transmission. We get 2 transfer modes × 2
workloads × 3 scenarios, i.e., 12 experiments. We find that
all results are similar, and show 4 typical ones.
Links without issues. Fig. 5(a) shows how in all cases, 2SYN
keeps choosing the better DSL link as expected.
Links with bandwidth drop. Fig. 5(b) illustrates a case where
we arbitrarily drop the DSL download bandwidth to 5Mbps
after 40% of the files are sent. 2SYN recognizes when the
DSL bandwidth drops and switches to the LTE path for new
flows. Its performance is better than sticking to any path.
Links with heavy congestion. Fig. 6 shows the impact of
setting a significant congestion after 40% of the files are sent,
by adding ten TCP flows to the DSL link to model congestion
from other users. 2SYN quickly abandons the congested DSL
link, thus yielding the best performance.

C. Why not use ML?

We compare 2SYN to the MAB ML algorithms (Sec. III)
in the lab testbed. We set the bandwidth to 200Mbps for the

(a) Web search: download link (b) 30 MB file: upload link

Fig. 6. LTE (path 1) vs. DSL (path 2) with sudden congestion, due to other
users on the DSL link.

(a) Without bandwidth drop (b) With bandwidth drop

Fig. 7. 2SYN vs. MAB ML algorithms. (a) With constant settings, MAB
algorithms learn the best path and achieve results similar to 2SYN. (b) When
bandwidth drops, 2SYN outperforms MAB algorithms since it adapts faster.

first path and 300Mbps for the second. We send traffic on five
(source, dest.) pairs (Si, Di), thus forming five learners.

Fixed settings. At first, for each pair, we send 10-MB files
50 times in a row. After a short time, the MAB algorithms
correctly classify the path with the lowest bandwidth. Fig. 7(a)
illustrates how they converge to near-optimal results.

Bandwidth drop. We now set the same initial bandwidth, but
after 40% of the files are sent, we drop the bandwidth of path
2 from 300Mbps to 100Mbps. We send 20 files in a row, with
a size of 200MB per file. Fig. 7(b) shows that 2SYN clearly
outperforms the MAB algorithms. The main reason is that the
MAB algorithms base each decision on the path history, and
therefore are less resilient to changes in the path conditions,
while 2SYN adapts much more quickly. Real-time congestion-
aware observations outperform history-based learning.

V. CONCLUSION

This paper has introduced 2SYN, a lightweight congestion-
sensitive algorithm that can help companies efficiently man-
age their multi-homed networks. It has presented a Linux
implementation of 2SYN. Then, using lab and real-world
experiments, it has shown how 2SYN can adapt to various
network conditions and outperform alternative algorithms.
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