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Abstract12

Existing transport protocols in commodity datacenter networks struggle to provide low collective13

completion times (CCTs) to AI training collectives, as packet losses and retransmissions significantly14

degrade performance.15

We propose dcSim, an efficient transport that achieves low CCTs and practically lossless16

performance with commodity switches. In dcSim, each packet first employs a small simulation17

probe to traverse the network and explore congestion along a candidate path. Only packets whose18

simulation probes succeed are then transmitted, expecting to succeed as well. Evaluations confirm19

that dcSim achieves faster CCTs than existing schemes, with small queues and virtually zero packet20

loss. Finally, dcSim also excels in adverse conditions, including oversubscribed topologies.21
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1 Introduction28

Datacenters are increasingly designed for AI training. Large companies such as Google, Meta,29

OpenAI, AWS and Microsoft are planning to invest hundreds of billions of dollars to support30

AI workloads in their cloud infrastructure [35, 44, 7, 43, 20, 2, 45].31

Unfortunately, due to their computation/communication cycles, AI training applications32

are very bursty, and can incur significant packet drop rates in lossy datacenter networks [47,33

13, 46]. In addition, while AI training traffic patterns used to be more symmetric and34

predictable, recent mixture-of-experts (MoE) models exhibit unpredictable patterns that35

worsen packet drops [33, 32, 21, 22, 13, 30, 51].36

These packet drops harm AI training performance in two ways. First, they cause stragglers37

due to packet retransmissions, and therefore increase collective completion times (CCTs),38

i.e., the time for the last packet to complete in a collective communication algorithm like39

Ring All-Reduce or All-to-All [47, 34]. Second, packet losses can also increase the tail40

latency of RDMA, a common building block for AI training applications designed for lossless41

networks [36, 16, 38, 52, 13, 27].42
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Thus, there is a need to design transports that lower CCTs by making commodity lossy43

networks practically lossless. To fully exploit the network capacity, many solutions use44

per-packet load balancing, including oblivious packet spraying, such as in Alibaba Stellar [12,45

59, 18, 34]; adaptive packet spraying, such as in STrack, REPS, and the Ultra Ethernet46

Consortium specification [25, 9, 56, 47]; and adaptive routing, such as in NVIDIA’s Spectrum-47

X [1, 39, 57, 41, 50]. These solutions use several reliability mechanisms to handle losses, e.g.,48

NACK-based and selective-repeat mechanisms in extended RoCE-based protocols [16, 38, 52],49

or packet trimming [8, 42, 56, 27]. However, these schemes can experience poor performance50

when scaling [36, 27, 27]. Another approach, adopted by pHost [14] and dcPIM [10], is to51

rely on a matching algorithm where receivers grant tokens to senders. This approach is52

promising because it avoids losses due to receiver oversubscription, but it also lacks visibility53

into the network and is therefore vulnerable to oversubscribed networks and link failures.54

Additional schemes show great potential for avoiding losses, but require non-commodity55

hardware. Rateless erasure coding can mask losses but needs specialized NICs to be imple-56

mented at high rates [24, 36]. ExpressPass introduces a receiver-driven credit-based scheme57

that avoids losses, but it relies on switch modifications, e.g., to ensure symmetric paths, and58

cannot handle multi-path and link failures [11]. Harmony offers another promising direction:59

using reservations [3]. Harmony uses per-flow fixed-bandwidth reservations to eliminate60

congestion-related drops while achieving high utilization. Unfortunately, it also needs spe-61

cialized switches to participate in the reservation process, and struggles with low-rate and62

variable-rate flows that do not match the fixed reservation rates.63

To achieve our goal of a practically-lossless transport running in a lossy network with64

commodity hardware, we want to use reservations and solve two significant challenges that65

currently limit their effectiveness. First, the reservations need to be more flexible, with66

per-packet reservations that allow the flow path to change upon congestion. Second, they67

should be made with commodity switches and thus be implementable at any datacenter.68

We present dcSim, an effectively lossless transport mechanism that can achieve low CCT69

for AI training with commodity switches, while being resilient to adverse network conditions.70

It relies on two core ideas to address the reservation challenges. The first one is a conceptual71

shift. Assume we had a shadow simulation network that could run at exactly 1/100th the72

rate of our real network, with load-balanced Sim (simulation) packets that are also 10073

times smaller than our real-network Data packets. Then if each shadow Sim was sent in74

the shadow network at the same time as its corresponding Data in the real network, it75

would also experience the same propagation, transmission and queueing delays. We can76

exploit this shadow network as follows. As source hosts are about to send Datas, their77

corresponding Sims are sent instead in the shadow network and load-balanced across random78

paths. Some may be dropped at some congested buffer of size B that is already full of B79

other Sims. Others will reach their destination as their buffers were less congested, and an80

acknowledgment will get back to the source host. Then, a fixed time later, we only send the81

Datas that correspond to Sims that arrived, through the exact same path. We are intuitively82

guaranteed that the Datas will also arrive: if a Data is blocked at some buffer by B Datas,83

it means that its Sim would also have been blocked by their corresponding B Sims, which84

did not happen. As for any Datas with a blocked Sim, we simply send a new Sim to probe85

a new random path.86

The above concept is appealing, but not practical. The second key idea is to approximate87

the shadow Sim network by using dedicated buffers for Sims and Datas. Many commodity88

switches support partitioning their buffers based on different traffic classes. Now Sims and89

Datas coexist in the same network and share its capacity. Each Sim effectively implements90
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reservation on a given path for a place in the Data buffers that will be used when sending91

a Data some fixed time later. Intuitively, dcSim trades off a small portion of the network92

capacity to ensure a practically lossless network, and thus avoid a more significant loss of93

capacity due to Data losses.94

In evaluations, dcSim consistently outperforms existing schemes under several collective95

workloads. It exhibits better CCTs, higher utilization, no packet drops, minimal switch96

queueing, and negligible reordering. It shines even more under adverse conditions, such as a97

core-switch oversubscription, as it keeps low CCTs and zero drops while other algorithms98

suffer from high loss rates.99

Contributions. In summary, we make the following contributions.100

We introduce the new conceptual framework of simulating paths before sending packets.101

We design dcSim to follow this framework while being fully deployable on commodity102

datacenter networks.103

We show that dcSim achieves low CCTs using a practically lossless transport.104

We show that dcSim maintains high performance under challenging scenarios, including105

oversubscribed topologies and small switch queues.106

The dcSim source code is available online [53].107

2 dcSim Algorithm108

2.1 Design goals109

We design dcSim to achieve the following goals:110

1. No loss. dcSim should have a near-zero loss probability, despite running in a lossy111

commodity network. With zero data loss, there is no need to retransmit data, and forward112

progress is guaranteed.113

2. Low queueing. In modern datacenter networks, “queueing delays and buffer overflow114

are the root cause of unpredictability” [3]. dcSim should offer a low-queueing solution that115

enables flexibility to changing patterns.116

3. Per-packet load-balancing. dcSim should be able to offer per-packet load-balancing117

to fully utilize the network capacity and address challenging conditions such as failed or118

congested links.119

4. Several collectives. dcSim should be able to handle several concurrent collectives with120

many flows simultaneously fighting for a chunk of network capacity.121

5. Commodity switches. dcSim should not rely on any non-readily available switch feature.122

2.2 dcSim overview123

dcSim relies on a packet transmission approach that operates in two distinct phases for each124

Data packet from source S to destination D:125

NINeS 2026
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Figure 1 dcSim queueing mechanism

1. A simulation phase, during which a small Sim (simulation) packet is transmitted126

through a random path from S to D. At each commodity switch along the path, Sims are127

queued in a Sim queue, distinct from the Data queue for Datas. The Sim queue has strict128

priority over the Data queue, but its service is rate-limited in a way that allows Sims and129

Datas to leave in an alternating sequence and fully occupy the line, thus reaching an ideal130

utilization. Any Sim that arrives at the Sim buffer enters the queue if there is space, and is131

dropped otherwise. Once a Sim reaches D, D sends back a Sim-Ack to S.132

2. A data phase, during which the Datas are sent along the same path previously traversed133

by their counterpart Sims. To reduce reordering, dcSim associates to each successful Sim134

the first Data waiting in the queue. This Data is then sent RTT max time after the Sim135

was sent, where RTT max is a fixed datacenter-wide bound on the Sim RTT (cf. § 2.5). Let’s136

focus on a specific Sim0 and its corresponding Data0. Assume that Sim0 competes with137

other Sims for switch buffer occupancy, and manages to get through. Then when Data0138

later competes with other Datas, we expect it to have no more competitors than Sim0, and139

in fact it may have fewer competitors if some Sims got dropped in later switches. We thus140

expect Data0 to enter the switch buffers and later reach its destination without any drop.141

That is, we expect the Datas not to experience any drop, and in fact to experience slightly142

less congestion than their corresponding Sims.143

2.3 Switch queueing mechanism144

Overview. Fig. 1 illustrates the dcSim queueing mechanism, which is implemented at145

each switch output and at hosts. It consists of a priority arbiter that implements a strict146

priority without preemption between four queues, dedicated to the four data types in this147

paper: (i) Sims, (ii) Sim-Acks, (iii) Data-Acks and (iv) Datas. Sim-Acks and Data-Acks148

acknowledge reception of Sims and Datas, respectively. Sims (serviced at the highest priority)149

are rate-limited using a token bucket.150

The Sims, Sim-Acks, and Data-Acks are small packets of size ℓ (e.g., ℓ = 64 bytes),151

and their queues are stored in small buffers with up to B packets each (e.g., B = 12). Datas152

are larger packets of size L (e.g., L = 9 KB for jumbo packets),1 and their buffer size equals153

the remainder of the allowed buffer size. Since ℓ ≪ L, the queues for the small packets are154

extremely unlikely to cause starvation. The packet types can be differentiated in different155

1 Each Sim could also generally represent a set of k Data packets.
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ways, e.g., using 2 bits out of the 6-bit ToS field in the IP header. The line rate is assumed156

to be C throughout the datacenter network.157

Intuition with Sims and Datas. To set the token-bucket rate, we want to determine158

the ideal bit rates rSim for the Sims and rData for the Datas. We start with a simple159

case where there is only one switch in the network and we can neglect the Sim and Data160

acknowledgments. Assume that the flows are infinite with an infinite stream of Sims and161

Datas, such that the Sim and Data queues are never empty after the first Sim and Data162

appear. Also, let α = L
ℓ . For example, if L = 9 KB and ℓ = 64 B, then α ≈ 141. We163

intuitively want to satisfy two conditions:164

(1) We want to fully utilize the line capacity, i.e., rSim + rData = C.165

(2) We also want the two streams of packets to have the same packet rate, since each successful166

Sim triggers a later Data. Formally, rSim
ℓ = rData

L , yielding rData = α · rSim.167

Putting the two conditions together, we get168

rSim = C

α + 1 . (1)169

Thus, by setting a token bucket of rate C
α+1 and size B, we expect to achieve these two170

conditions. This is confirmed in the following theorem (all proofs are in § A).171

▶ Theorem 1 (Ideal Sim and Data rates). Under the assumptions above,172

(i) The total rate converges to C.173

(ii) The Sims and Datas converge to a perfect alternating sequence.174

Final scheme. The token bucket above provides a rate of C
α+1 to Sim packets, where the α175

factor accounts for the Datas and the 1 accounts for the Sims. However, it neglects the rate176

of Sim-Acks and Data-Acks. These are harder to account for, as the rates of Sim-Acks177

and Data-Acks depend on flows that go in the reverse direction. In addition, the Data-Ack178

rate is lower as dcSim only sends back a Data-Ack every large number of Datas (e.g., 16),179

leveraging the lack of packet losses. Since we are interested in AI collectives, we expect a180

mostly symmetric pattern in which the Sim-Ack rate is close to the Sim rate. Therefore, we181

heuristically set the token bucket rate at182

C

αData + 1Sim + 1Sim−Ack + 0.1Data−Ack
= C

α + 2.1 . (2)183

Evaluations show that performance is not sensitive to small variations of this heuristic factor.184

2.4 dcSim description185

This section details the various stages of dcSim, while using the example of Fig. 2 to illustrate186

each stage.187

➀ Sending Sim packets. At each source host S and for each flow, let nSim denote the188

number of outstanding Sim and Sim-Ack packets in the network, i.e., the number of sent189

Sim packets for which S has neither received a Sim-Ack nor timed out. Also, let nData190

denote the number of Data packets waiting in the host to be sent. Then S always maintains191

the inequality192

nSim ≤ nData, (3)193

NINeS 2026
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Figure 2 Example of dcSim operation.

i.e., it makes sure that there are no more outstanding Sims (and Sim-Acks) in the network194

than available Datas waiting to be sent. As previously explained in § 2.3 and illustrated in195

Fig. 1, S maintains a Sim buffer of size B that is serviced using a token-bucket policy. S196

then adds Sims to the Sim queue whenever (i) there is space in the Sim buffer, i.e., the Sim197

queue size is below B and (ii) there are enough Datas to send a Sim (Equation (3)).198

We have a degree of freedom in selecting the flows from which to first add Sims. We199

select flows in round-robin for fairness, but could also have chosen to prioritize flows with the200

smallest remaining size [5]. Specifically, if there are several collectives and S knows about the201

collective ID of each of its flows (i.e., roughly speaking, it knows what sets of flows started202

together), it schedules the next Sim by checking the next collective ID in round-robin order,203

then choosing a Sim for the next available flow within this collective in round-robin order. If204

not, it simply picks flows in round-robin order.205

Each new Sim is allocated a random path to the destination D. Since the datacenter206

network relies on commodity switches that use ECMP routing, this random-path allocation207

is widely implemented by allocating a unique random source port to each Sim [23, 9, 25].208

dcSim checks that this source port is distinct from that of currently used Sims. The source209

port changes the flow five-tuple of the Sim, and therefore it alters its ECMP hashed value at210

each switch, ultimately changing its path.211

Upon transmitting a Sim on the line, S (i) records the Sim transmission time, which212

will also be used to send a Data after a fixed delay; (ii) starts a timeout mechanism; and213

(iii) increments nSim. S also increments nData when (i) receiving a new Data from the214

operating system or (ii) a sent Data times out without a received Data-Ack.215

Example. In Fig. 2, assume that at time t at source S, two Data packets arrive at the216

queue for destination D, so nData = 2. S immediately sends two Sim packets: Sim1 with a217

random source port that leads to the red path after ECMP hashing, then Sim2 with another218

random source port that leads to the green path. Thus nSim = nData = 2.219

➁ Switching Sim packets. At each switch, Sim packets go through the buffer mechanism220

described in § 2.3. If they encounter a full Sim buffer due to simulated congestion, they are221

dropped. Else, they reach the destination D.222
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Example. In Fig. 2, the Sim buffer of the leftmost core switch is full, therefore it drops223

Sim1. In contrast, Sim2 traverses the uncongested green path.224

➂ Sending Sim-Ack packets. When D receives a Sim, it immediately sends back a225

Sim-Ack to S. As usual, the Sim-Ack destination port and IP address are the Sim source226

port and IP address. Since ECMP hashing is not symmetric, the Sim-Ack can take an227

arbitrary path after ECMP hashing of its 5-tuple, until it reaches S.228

Example. In Fig. 2, D receives Sim2 and sends Sim-Ack2 back to S through the blue path.229

➃ Sending Data packets. When a source S receives a Sim-Ack for some Sim, it immedi-230

ately associates the Sim to the first of the Data packets waiting in S to be sent. S updates231

232 {
srcPortData = srcPortSim

tData = tSim + RTT max
(4)233

where the first line implies that the Data will take the same path as its corresponding Sim,234

and the second line means that the Data is scheduled to be transmitted after a fixed delay235

RTT max (defined in § 2.5) following the transmission time of its Sim. S also decrements236

nSim and nData. When sending the Data, S also sets a large timer and keeps the Data in a237

side buffer, so that in the rare event that the Data times out without an acknowledgment, it238

will be inserted back at the head of the queue of Data packets waiting to be sent.239

Example. In Fig. 2, S receives Sim-Ack2. Thus, it associates Sim2 with Data1, the first240

Data in the queue. If Sim2 was sent at time t, then Data1 is later sent at time t + RTT max241

along the same green path. In addition, as detailed later, Sim1 times out and a new Sim242

with a new random path can be sent instead.243

Note that this example illustrates well why the association between Data and Sim244

packets is not made at the creation of the Sim packets, as would be intuitive. If Data1 were245

associated to Sim1, then after Sim1 is dropped, it would need to wait for a timeout and then246

generate a new Sim, while the following Data2 packet in the queue would be released upon247

the arrival of Sim-Ack2. This could cause severe reordering in the system.248

➄ Sending Data-Ack packets. D sends a Data-Ack back to S every large number of249

Datas (e.g., 16), leveraging the non-existent loss rate in the network (with some minimum250

frequency, e.g., once every 3 propagation RTTs). (This is not illustrated in Fig. 2.)251

Timeouts. When S receives a Data-Ack, it deletes the Data. Else, as mentioned, if a252

Data times out, it is put back in the queue of Datas waiting to be sent. In addition, if a253

Sim timer expires, it decrements nSim, enabling the transmission of a new Sim.254

Example. In Fig. 2, when the timeout for Sim1 that was set in ➀ expires at t + RTT max, S255

assumes that Sim1 is lost and decrements nSim. A new Sim with a new random path can256

then be sent to D.257

NINeS 2026
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(a) Sim queues at t (b) Sim at t + δ (c) Sim at t + 2δ
(d) Data at
t + RT T max

(e) Data at
t + δ + RT T max

Figure 3 Counterexample showing why Datas may be dropped in multi-stage networks. In (a),
the right-side switch Sim buffer is full. In (b), after one slot, only one Sim can access it. The Sim
for A enters, so the Sim for B is dropped. In (c), after another slot, the Sim for C enters as well.
RT T max later, in (d), A and C send the corresponding Data packets. But one slot later, in (e),
again only one Data can access the limited Data queue. No matter which one, the other Data gets
dropped even though its Sim went through.

Data management. To summarize, S needs to manage four Data queues, as Datas can258

be in four states: (1) at first, waiting for a Sim to be sent; then (2) after receiving a Sim-Ack,259

waiting for a green light to transmit RTT max after the Sim; then (3) queued in the Data260

queue and ready to be transmitted, potentially waiting for other Datas or Sims currently261

being transmitted; as well as (4) with a copy stored in a side buffer in case a Data-Ack262

does not come back on time and the timeout expires.263

2.5 dcSim computation of RTT max264

We want to compute the fixed delay RTT max between the time S transmits a Sim and the265

time it transmits its corresponding Data. RTT max is an upper bound on the Sim RTT,266

i.e., the time it takes for a Sim then Sim-Ack to get from S to D then back to S. It is a267

significant parameter, as it delays the transmission of Datas to ensure synchronization, i.e.,268

to make sure that Datas experience the same lack of congestion as their corresponding Sims.269

To compute RTT max, let RTT p denote the maximum propagation and processing time in270

the datacenter network, and let H denote the maximum number of hops for Sims from S to271

D or for Sim-Acks from D to S. Then we obtain:272

▶ Theorem 2. The Sim round-trip time is no more than273

RTT max = RTT p + 2H · ℓ

C
· ((B + 1) · α + 2.1B + 1) (5)274

Typically, we would expect this upper bound RTT max to be within 1 − 1.5× the propagation275

RTT for 1.5 KB Data packets, but it can be larger for larger packets.276

Example. Assume that H = 6 hops in a three-level fat-tree topology, RTT p = 7.8 µs,277

C = 800 Gbps, L = 1.5 KB, ℓ = 64 B, and B = 12 pkts. Then α = 1,500
64 = 23 and278

RTT max = 1.32 RTTp = 10.3 µs.279

3 dcSim Properties280

In this section, we present fundamental results about dcSim properties. First, we show that281

in dcSim, counter-intuitively, Sims may traverse a buffer even though their corresponding282

Datas will not. This goes against the fact that there are no more Datas than Sims, and283

therefore the expectation that Datas will experience less congestion. Second, we prove that284

the token bucket of size B tokens for Sims can be reduced to a size of two tokens only without285

hurting the property that Sims and Datas can alternate at full rate.286
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3.1 The limits of emulation287

We now want to demonstrate that while in a single switch buffer, Sims and Datas can288

converge to an ideal schedule where Sims and Datas alternate without drops and the link289

becomes fully utilized (Theorem 1), this does not hold in general in a datacenter network.290

Counterexample. Let’s provide intuition for why we cannot generalize results from a single291

switch to the whole network. As explained in § 2.2, a Sim denoted Sim0 may compete with292

other Sims for a place in the Sim queue. However, these other Sims may be dropped in later293

switches, completely changing the timing and effectively canceling the effects of reservation.294

Thus, when the Data0 corresponding to Sim0 arrives after RTT max, it may not need to295

compete with other Datas anymore, because their Sims were dropped. Hence, it may quickly296

exit the switch and arrive earlier than Sim0 at the next switch. However, the next switch297

may currently be congested, leading to Data0 being dropped.298

Fig. 3 illustrates a counterexample, assuming the Data buffer can only hold B packets299

like the Sim buffer. It follows a switch buffer slot-by-slot, where each slot of duration δ300

corresponds to the time between tokens in the Sim token-buffer mechanism (i.e., δ = L+2.1ℓ
C ,301

following Equation (2)). It shows that while the Sim for source host C goes through the302

switch seamlessly, its Data actually needs to be dropped.303

Data buffer size. In practice, the above counterexample means that we can only expect304

a practical near-zero loss rate, not a deterministic zero-loss guarantee. For example, in305

evaluations (§ 4), we found that if the Data buffer can hold about 2× as many packets as306

the Sim buffer, then we could not see a single Data loss, no matter the traffic pattern and307

the network oversubscription.308

3.2 Token bucket size309

Since Sims have higher priority in the switches, they have precedence over all other traffic310

classes. However, because of the non-preemption, they will be delayed if a Data is currently311

being sent. Still, they can at most be delayed by the time L
C to send a Data. The following312

theorem shows that if we want to reach an alternating sequence of Sims and Datas at line313

rate as proved in Theorem 1 (and under the same assumptions), we cannot use a token-bucket314

size of 1, as it would reduce the Sim rate, while any size above 2 is fine.315

▶ Theorem 3 (Token bucket). To achieve an alternating sequence of Sims and Datas at line316

rate, it is necessary and sufficient to have a token-bucket size of at least 2.317

4 dcSim Evaluation318

We evaluate dcSim through extensive simulations, which reveal the following key results vs.319

other algorithms:320

Zero loss. Throughout the evaluations with a regular Data buffer size, dcSim experiences321

zero loss.322

Higher Utilization. dcSim achieves a 12% increase in utilization with an all-to-all323

traffic pattern. Moreover, dcSim maintains a negligible reordering size.324

Lower CCT. dcSim achieves up to 10% lower CCT under a mix of five all-to-all-v325

collectives. It still outperforms other algorithms while varying the packet sizes, buffer326

sizes, flow sizes, collective sizes, and number of collectives.327

NINeS 2026
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Oversubscribed network. dcSim shines under adverse conditions. In an oversubscribed328

scenario with only half the core switches, its CCT is 45% that of other algorithms, and it329

experiences no losses while their loss rates are typically above 10%.330

4.1 Setup331

Algorithms. We implement dcSim in the dcPIM simulator [55], and evaluate it against332

dcPIM, pHost and pFabric.2 The dcSim source code is available online [53].333

Topology. We employ a 3-layer fat-tree topology [4] with a switch radix k = 8, resulting334

in a network consisting of 128 end-hosts, 32 edge switches, 32 aggregation switches, and 16335

core switches. All links are configured with 800 Gbps bandwidth, as commercially available336

today [40], and jumbo frames of 9 KB. We use the simulator default settings for the other337

parameters: each link propagation delay is set to 200 ns, and each switch is configured with338

a buffer size of 500 KB per port and a processing latency of 450 ns, yielding a zero-load339

RTT of 7.8µs. For dcSim, we set a constant Sim buffer size of B = 12 packets, reflecting our340

goal of keeping low queueing occupancies. When evaluating small buffer sizes below 250 KB341

(equivalent to 28 Data packets), we reduce B proportionally to the buffer size, ensuring that342

the Sim and Data buffer sizes decrease in lockstep.343

Oversubscribed topology. We also test the algorithms using an oversubscribed (blocking)344

topology [54] where half the core switches are removed.345

Collectives. We focus on collective communication patterns that are representative of AI346

training workloads, and add the functionality to the simulator. A collective is defined as a347

set of flows that begin transmission simultaneously. We implement the following collectives:348

(1) Permutation. The permutation pattern models a ring all-reduce collective algorithm.349

Each sender sends a single flow to a single receiver, and each receiver receives a single flow350

from a single sender, yielding a total of n flows when there are n hosts in the collective. Each351

single collective always uses all the hosts (n = 128).352

(2) All-to-all. The all-to-all pattern models tensor parallelism. All hosts in the collective353

send a flow to all other hosts, yielding n(n − 1) flows per collective of size n. We also evaluate354

an infinite all-to-all workload where each flow has an infinite size.355

(3) All-to-all-v. The all-to-all variable (all-to-all-v) pattern models mixture of experts (MoE)356

traffic [33, 32, 21, 22, 13, 30, 51]. It is similar to all-to-all, but can be highly unbalanced.357

To model it, each packet from each sender chooses a random receiver out of the n − 1 other358

hosts in the collective.359

(4) Set of all-to-all-v. To reflect several competing MoE collectives or tenants, we also360

focus on a set of several collectives of different sizes that operate in the same datacenter361

network, as competing collectives are known to be hard to service [49, 32, 26, 58]. We define362

a baseline set as using all-to-all-v with 5 collectives, with collective sizes randomly selected363

2 dcPIM has been shown [10] to have superior performance vs. Homa [37], Aeolus [19], NDP [17, 48] and
HPCC [29] in various settings, therefore we do not repeat comparisons against these algorithms.
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(a) Utilization (b) Packet drops (c) Packet reordering

Figure 4 Single all-to-all collective with infinite flows.

from the set {8, 16, 32, 64}, possibly with hosts sharing several collectives, and flow sizes of364

2× bandwidth-delay product (BDP). We then vary these parameters to study their impact.365

Metrics. We measure the: (1) Collective completion time (CCT), i.e., the time at which366

the last packet of a collective reaches its destination. When there are several collectives, we367

average over all CCTs. (2) Packet loss rate. (3) Total queueing delay, i.e., the total time368

from the transmission time at the source host to arrival time at the destination host for data369

packets. (4) Reordering size, i.e., the number of data packets per measurement interval that370

arrive at the destination with non-maximal sequence number. We measure it because in the371

selective-repeat algorithm and in practical hardware implementations, when there is high372

reordering, the difference between the sent and received orders of several packets can exceed373

the transmit window, thus throttling throughput and leading to network underutilization.374

(5) Utilization, i.e., the quantity of data received in a time interval, divided by the total link375

capacity of the hosts.376

We run each simulation 20 times and plot the average result, together with the standard377

error of the mean (SEM) as error bars.378

4.2 Performance evaluation379

Infinite all-to-all. Fig. 4 illustrates the performance of dcSim compared to dcPIM, pFabric380

and pHost in an infinite all-to-all traffic pattern. The network utilization of dcSim remains381

higher than in the other algorithms by at least 14% (Fig. 4(a)). The lower utilization of382

pFabric may be due to its high level of packet drops. dcSim also impressively achieves 0%383

loss and 0% packet reordering at all times (Figs. 4(b) and 4(c)). dcSim’s low reordering384

throughout the evaluations may be due to two main reasons. First, its lower queueing delay,385

as seen in several evaluations. Second, the fact that when sending a burst of Sims through386

several paths then receiving the Sim-Acks back, Datas are later selected in the order in387

which Sim-Acks were received, e.g., the first Data is sent on the shortest path. It makes it388

less likely for a later Data to pull ahead. In contrast, dcPIM and pHost are able to remain389

lossless, but decrease their sending rate as they detect congestion in the network, based on390

received token packets.391

Single permutation and single all-to-all. Fig. 5 illustrates the CCT with either a single392

permutation or a single all-to-all collective for different flow sizes. The flow sizes are presented393

as multiples of BDP, where BDP represents 87 packets. As expected, for all algorithms,394

CCT increases when the flow size increases. dcSim completes faster than dcPIM, pFabric395
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(a) Permutation (b) All-to-all

Figure 5 Single permutation or all-to-all collective with different flow sizes.

(a) CCT (b) Loss rate (c) Total queueing delay (d) Reordering size

Figure 6 Single all-to-all-v collective with different average flow sizes.

and pHost in all experiments, except for an half-BDP size in the permutation traffic. This396

evaluation is the least congested of all. Under 1 BDP, dcPIM does not activate its full397

algorithm for small flows, and therefore simply sends the flows without any control packets.398

dcSim’s focus is on larger flows for AI training, but it could adopt the same behavior for399

small flows by sending them at a lower priority without using Sim packets. Above 1 BDP,400

the dcPIM algorithm is activated, worsening the CCT. On the other hand, with the heavier401

all-to-all traffic (Fig. 5(b)), the non-activation of dcPIM for short flows of size 0.5 × BDP402

increases dcPIM’s CCT even beyond that of pFabric and pHost.403

Single all-to-all-v. Fig. 6 presents the results of running a single all-to-all-v collective as a404

function of different average flow sizes. Since flow sizes vary, we only consider their average,405

and express it again as a multiple of BDP. dcSim uniformly achieves lower CCTs, with an406

average improvement of 12.5%, together with a zero loss rate and reordering size, and a small407

queueing delay.408

Several all-to-all-v. Fig. 7 presents an evaluation with five concurrent collectives of random409

sizes. Performance is largely similar to a single all-to-all-v, with a non-zero yet negligible410

reordering size. Given the lower total load, dcPIM’s queueing delay also gets lower and411

similar to dcSim. pHost achieves the lowest queueing delay due to its conservative schedule,412

which comes at the cost of a higher CCT.413
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(a) CCT (b) Loss rate (c) Total queueing delay (d) Reordering size

Figure 7 Five all-to-all-v collectives with different average flow sizes.

(a) CCT (b) Loss rate (c) Total queueing delay (d) Reordering size

Figure 8 Adverse scenario with an oversubscribed network using half the core switches, given
five all-to-all-v collectives.

Oversubscribed all-to-all-v. Fig. 8 illustrates an adverse scenario with an oversubscribed414

network in the baseline scenario of five all-to-all-v collectives. We effectively halve the number415

of core switches by retaining only the odd-indexed switches and reducing the rate of the416

remaining one to 1% of their initial rate. dcSim excels in this case, with markedly better417

performance than the other algorithms. The simulation phase enables dcSim to detect and418

avoid congested paths by dropping Sim packets early, thereby preventing subsequent Data419

packet losses. In contrast, dcPIM schedules end-to-end links between two hosts but cannot420

identify whether one path is better than another, since it has no visibility inside the network.421

Some aggregation switches are much more congested than others, therefore load-balancing422

cannot be made blindly. Once congestion is detected, dcPIM reduces the total sending rate423

to limit losses, but then does not utilize the full network capacity.424

4.3 Sensitivity analysis425

We now perform a sensitivity analysis for the topology parameters by varying a single426

parameter each time.427

Packet size. Fig. 9(a) compares the CCT when using some of the most common Data428

packet sizes in datacenter networks: 1.5 KB (Ethernet), 4 KB (RDMA), or 9 KB (Jumbo).429

As expected, for all algorithms, the CCT is lower when L is higher, i.e., larger packets help430

with bulky transfers. While we used 9 KB as the default packet size in our evaluations,431

dcSim actually outperforms other algorithms even more for lower packet sizes.432

Underbuffering. Fig. 9(b) illustrates the impact of reducing the switch buffer sizes. dcSim433

is resilient to this reduction, and results are largely similar to previous evaluations.434
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(a) Packet size (b) Buffer size (c) Number of collectives

(d) Max collective size (e) Clock drift

Figure 9 Sensitivity analysis to topology parameters

Number of collectives. Fig. 9(c) varies the number of all-to-all-v collectives. dcSim keeps435

outperforming, and outperforms even more at high loads with many collectives.436

Max collective size. Fig. 9(d) illustrates the impact of the maximum collective size, given437

five random all-to-all-v collectives. dcSim keeps outperforming in all cases.438

Clock drift. We rely on an RTT max delay given by an internal clock. We evaluated the439

resilience of our system to clock drift using a methodology similar to that employed in440

Firefly [28]. Fig. 9(e) demonstrates that the impact on CCT remains negligible, with a441

performance degradation of less than 1% even under a static drift of 40 PPM.442

4.4 dcSim properties443

Correlation of Sim and Data. Fig. 10(a) illustrates the correlation in a random last-hop444

switch between the rate of Sim packets and the rate of Data packets with shifted times, in445

order to verify that the rate of Data packets corresponds indeed to the earlier rate of Sim446

packets. We consider a last-hop (edge switch → host) switch queue to reduce the impact447

of Sims that may be later dropped. The correlation achieves a maximum value of 0.77,448

confirming that the Data rate indeed reflects the Sim rate, even though the match is not449

entirely perfect. In addition, the corresponding time lag is 0.86 RTT max. The intuition for a450

lag lower than RTT max is that the Sim drops along the path lead to lower queueing delay451

for the Datas, which reach the last-hop queue faster.452
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(a) Correlation (b) Dynamic behavior

Figure 10 Sims vs. lagged Datas at the last hop. (a) Correlation between the Sim and time-
shifted Data rates. (b) Dynamic behavior of Sim queue and time-shifted Data queue.

Figure 11 dcSim loss rate as a function of BData
B

.

In addition, Fig. 10(b) shows the dynamic behavior of the Sim and (lagged) Data queues.453

They clearly tend to move together consistently, indicating that it is not unreasonable to454

assume in general that if the Sim buffer is not congested, then neither should the Data455

buffer.456

Data buffer. Fig. 11 shows the impact of the Data buffer size on the loss rate, given a457

constant Sim buffer size that can hold B = 12 Sim packets. Let BData denote the number of458

Datas that can fit in the Data buffer size. Then the figure shows that for459

BData

B
≥ 2, (6)460

there is no loss, i.e., if the Data buffer can fit 24 Datas, no Data will be lost despite the high461

load of five all-to-all-v collectives. While the lossless threshold is not at an ideal BData

B = 1462

that would correspond to an exact emulation, it is still an impressive result that the network463

can run lossless with so little buffering.464

Async dcSim. dcSim sends each Data packet RTT max after its corresponding Sim was465

sent. We introduce an Async dcSim version that acts impatiently and immediately sends the466

Data packet after a Sim-Ack arrives at the source. Async dcSim is intriguing, because on467
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(a) CCT (b) Loss rate (c) Total queueing delay (d) Reordering size

Figure 12 Async dcSim vs. original dcSim.

(a) CCT (b) Loss rate (c) Total queueing delay (d) Reordering size

Figure 13 Fractional dcSim vs. baseline dcSim and Async dcSim

the one hand, it loses the theoretical synchronization, but on the other, it is more reactive to468

changes in network conditions.469

Fig. 12 shows how the CCT of Async dcSim is slightly lower than the CCT of the regular470

dcSim. Its loss rate is also 0%, and its queueing delay is lower by up to 24%, as it is more471

likely to quickly exploit a low queue size. However, since it is not synchronized anymore,472

its number of reordered packets becomes much higher, indicating a higher disparity in the473

queue sizes between different paths. Thus, this Async version offers different tradeoffs for474

the datacenter operator.475

Fractional dcSim. dcSim waits RTT max to send Data packets, where RTT max is com-476

puted according to the worst-case formula of Theorem 2. Motivated by the findings in Async477

dcSim, we analyze the impact on system performance of only waiting for a fraction of the478

worst-case RTT max. More specifically, we send the Data packet at the later of (1) this479

fractional delay following the Sim transmission and (2) the Sim-Ack arrival time.480

Fig. 13 compares this fractional dcSim for several fractional RTT max values against481

the original dcSim and Async dcSim. It shows that the CCT of the fractional dcSim is482

marginally lower than for the baseline dcSim, while its packet loss remains at 0%. In addition,483

its queueing delay decreases. However, packet reordering increases, maybe because we are484

slowly losing the guarantee provided by RTT max. We observe that queueing and reordering485

behavior remain comparable to the baseline dcSim from RTT max down to 0.85 RTT max,486

while the behavior converges towards that of Async dcSim as RTT max is further reduced.487

5 Related Work488

Table 1 provides a qualitative comparison of dcSim against existing transport paradigms, as489

detailed below.490
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Type
Handles
network

congestion

Practically
lossless

Handles
low-rate

flows

Uses
commodity

switches

Load balancing (Oblivious
spraying, REPS) ✓ ✗ ✓ ✓

Credits (ExpressPass) ✗ ✗ ✓ ✓
Scheduling (dcPIM, pHost) ✗ ✗ ✓ ✓
Reservation (Harmony) ✓ ✓ ✗ ✗

Simulation probe (dcSIM) ✓ ✓ ✓ ✓

Table 1 Comparison of datacenter transport designs.

Per-packet load-balancing. Many solutions use per-packet load balancing with commodity491

switches [12, 59, 18, 34, 25, 9, 8, 56, 47, 1, 39, 57, 41, 50]. They rely on diverse reliability492

mechanisms [16, 38, 52, 8, 42, 56]. However, the RoCE-like recovery schemes can experience493

poor performance with high per-flow rates, and trimming-based schemes can degrade with494

many flows [36]. Such load-balancing schemes can also suffer from the interaction with495

congestion control [15].496

Receiver-driven credits. ExpressPass [11] introduces a receiver-driven credit-based scheme497

that attempts to avoid losses, but it relies on switch modifications, e.g., to ensure symmetric498

paths, and cannot handle multi-path and link failures. Additional credit-based algorithms,499

like Homa [37], Aeolus [19] and FlexPass [31], often have little visibility into the network.500

Scheduling. pHost [14] shifts scheduling decisions to end hosts using Request-to-Send (RTS)501

and token-based coordination, avoiding switch modifications. It can be seen as implementing502

a single stage of matching. While simpler to deploy, its coordination mechanism can incur503

overhead under bursty or high fan-in patterns. dcPIM [10] replaces log(n) matching rounds504

from classical PIM with constant-time matching, achieving high utilization and scalability.505

However, it does not have visibility within the network.506

Priorities. pFabric [5] is a seminal design that prioritizes packets from flows with the507

smallest remaining size. In contrast, dcSim adopts a round-robin policy.508

Non-commodity hardware. Additional schemes show potential for avoiding losses, but re-509

quire non-commodity hardware. HPCC [29] uses in-network telemetry to provide fine-grained,510

real-time congestion feedback for precise end-host rate control, but relies on programmable511

switch support and accurate timestamping, which may not be universally available. Rate-512

less erasure coding can mask losses but needs specialized NICs to be implemented at high513

rates [24, 36]. Harmony [3] relies on per-flow fixed-bandwidth reservations to eliminate514

congestion-related drops while achieving high utilization, but needs specialized switches to515

participate in the reservation process, and struggles with low-rate and variable-rate flows516

that do not match the fixed reservation rates.517

Lossless networks. Large lossless networks have been deployed in datacenter networks [6]518

and constitute an alternative to lossy networks.519
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6 Conclusion520

In the paper we introduced dcSim, a novel transport algorithm that achieves low CCTs521

and practically lossless performance with commodity switches. dcSim relies on a paradigm522

shift, by simulating the result of going through a path before doing it. In dcSim, each523

packet first employs a small simulation probe to traverse the network and explore congestion524

along a candidate path. Only packets whose simulation probes succeed are then transmitted,525

expecting to succeed as well. Evaluations confirmed that dcSim achieves faster CCTs and526

higher utilization than existing schemes, with small queues and virtually zero packet loss.527

Finally, evaluations showed how dcSim remains effective under adverse conditions that are528

highly challenging and cause many losses in other algorithms.529
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A Proofs695

Proof of Theorem 1. Consider first a case where there are no Datas, starting from a time696

t = 0 where many Sims appear. As illustrated in Fig. 14 (without Data), the token bucket697

first releases a batch of Sims until it has no more tokens, then releases the following Sims698

periodically as in a simple leaky bucket. These next Sims are sent every ℓ
C

α+1
= ℓ+L

C , allowing699

for the transmission of an ℓ-sized Sim and then for an interpacket gap equivalent to an700

L-sized Data.701

Now, assume we also get the first Data RTT max after the Sim (bottom row of Fig. 14).702

The start is the same. However, after RTT max, a Data arrives at the Data queue. It will703

be serviced either immediately (if there is no currently serviced Sim) or just as the Sim704

departs. Then, when the Data departs, (a) there is a Sim in the Sim queue by assumption,705

and (b) since the Data lasts L
C time, at least L+ℓ

C has passed since the last Sim used its706

token, so there is also a token for the Sim packet. Thus, a Sim packet is serviced. Since we707

assumed that there are always Data packets in the queue after the first one, it is followed708

by a Data packet. And so on periodically. Since the Sim packet is serviced exactly at the709
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rate of the token bucket, tokens do not accumulate and there is never more than one token710

available between the end of a Data packet and the start of the next one.711

As a result, Sims and Data are serviced in an alternating sequence, and they full occupy712

the line, i.e., their total rate is C. ◀713

Proof of Theorem 2. The sum of the time it takes for a Sim to get from S to D and the714

time for its corresponding Sim-Ack to get from D to S, is equal to the sum of the total715

(1) propagation time, (2) transmission time and (3) queueing time.716

1. Propagation time. The total propagation round-trip time is at most RTT p.717

2. Transmission time. The Sim and then the Sim-Ack cross 2H hops. The transmission718

time at each hop is ℓ
C , yielding a total of 2H · ℓ

C .719

3. Queueing time. A Sim entering the Sim buffer encounters at most B − 1 Sims in the720

queue. If it is the first Sim in the queue, it will leave in at most ℓ·(α+2.1)
C + L

C , where the first721

term accounts for the maximum time it takes for the token bucket to allow departure, and722

the second term accounts for the maximum time a non-Sim packet may block the Sim packet723

(non-preemption), following Equation (2). Since it finds up to B − 1 Sims in the queue upon724

arrival, it will leave in at most B·ℓ·(α+2.1)
C + L

C . Accounting for 2H hops and using L = α · ℓ,725

we get an upper bound of 2H · (B+1)·α·ℓ+2.1B·ℓ)
C .726

Finally, after summing all three terms,727

RTT max = RTT p + 2H · ℓ

C
· ((B + 1) · α + 2.1B + 1) (7)728

◀729

Proof of Theorem 3. (i) First, let’s explain why a token bucket of size 1 does not work.730

We saw that Sims can be delayed by at most T = L
C time when a lower-priority Data is731

currently being transmitted. When using a bucket of size 1, it may set a worst-case pattern732

where after each Sim is sent, the next Sim (1) first waits for the token-bucket gap time of733

T ′ = ℓ
C

α+2.1
= L+2.1ℓ

C (using L = α · ℓ); (2) then whenever this next Sim is ready to receive the734

token, a Data just starts transmission and delays it for another T . Thus, the time between735

two Sims will be up to T + T ′, yielding only about half the needed line rate.736

(ii) If the token bucket size is 2, assume that at least one Sim is in the Sim queue. Then737

while a first Sim may wait for some Data transmission to complete and then expects to738

receive its token, the token for the next Sim can still keep coming. Note that T ′ = L+2.1ℓ
C >739

L+ℓ
C = T + ℓ

C . Thus, after the first Sim departs, the second one will not have received its740

token yet in such a case. Therefore, there is no lack of token for the Sim behind it, proving741

that two tokens are sufficient. In other words, once there are several Sims in the queue and742

assuming an infinite stream of Sims, then after an initial period the Sims will not differentiate743

between two tokens and any higher number, e.g., B ≥ 2.744

Note that if the queue is empty, a token bucket of size 2 may lead to a small burst of 2745

Sims. It is still better than a burst of B Sims. Also, if we had a small buffer of one Sim in746

front of the Sim queue and before the arbiter, we could have used a token bucket of size 1,747

or a simple leaky bucket. This is the small cost of relying on a commodity switch. ◀748
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