
CloudPilot: Flow Acceleration in the Cloud
Kfir Toledo1,2, David Breitgand2, Dean Lorenz2, Isaac Keslassy1

1 Technion 2 IBM Research Haifa

Abstract— TCP-split proxies have been previously studied as
an efficient mechanism to improve the rate of connections with
large round trip times. These works focused on improving a single
flow. In this paper, we investigate how strategically deploying
TCP-split proxies in the cloud can improve the performance of
geo-distributed applications entailing multiple flows interconnect-
ing globally-distributed sources and destinations using different
communication patterns, and being subject to budget limitations.

We present CloudPilot, a Kubernetes-based system that mea-
sures communication parameters across different cloud regions,
and uses these measurements to deploy cloud proxies in optimized
locations on multiple cloud providers. To this end, we model
cloud proxy acceleration and define a novel cloud-proxy placement
problem. Since this problem is NP-Hard, we suggest a few efficient
heuristics to solve it. Finally, we find that our cloud-proxy
optimization can improve performance by an average of 3.6×
for four different use cases.

I. INTRODUCTION

Motivation. Over the last few years, the fearsome competi-
tion among cloud providers has led them to spend billions
on expanding their global presence by building data-centers
worldwide and laying out high-speed lines to interconnect
them [1]–[3]. Clients can now build on-demand cloud overlay
networks comprising cloud nodes in different regions to route
application traffic through the cloud rather than through the
public internet [4]–[11].

Several studies [7]–[11] show how we can increase the
rate of a flow by using cloud-based TCP-split proxies. As
Fig. 1 shows, this method splits a single TCP flow into several
connections with shorter round trip time (RTT). By reducing
the RTT for each connection, the overall transmission rate is
improved.

While the above works focus on accelerating single flows,
it is unclear how to strategically deploy a limited set of cloud-
based TCP-split proxies to improve the performance of global
geo-distributed applications, with sources and destinations that
need to exchange large amounts of data. Such applications
include distributed databases, batch file exchanges, VM mi-
grations, and CDNs [12]–[14] (§III). The goal of this paper
is to introduce CloudPilot, a Kubernetes-based system that is
designed to optimize proxy placement and deploy the proxies
to serve these applications.

Contributions. We make the following contributions.

Use cases. We start by showing how geo-distributed applica-
tions can be modeled using four topological use-cases (§III).

CloudPilot. We develop and deploy CloudPilot, a Kubernetes-

(a) Direct connection (b) One-proxy acceleration (c) Two-proxy acceleration

Fig. 1: Connection types between host and destination.

based system that helps accelerate geo-distributed applica-
tion traffic. Using communication parameters measured across
different cloud regions, CloudPilot deploys TCP-split cloud
proxies across multiple cloud providers to optimize the ap-
plication transfer performance. We later present our proxy
acceleration model for a single flow, and validate it using real-
world CloudPilot-based measurement experiments (§IV). The
open-source CloudPilot code is available online [15].

Proxy placement optimization. We explain how a natural
metric of performance in geo-distributed applications is the
total FCT (Flow Completion Time), which we define to be
the total time required to complete all necessary data transfers
in a round of computation. We formally define a cloud-proxy
placement problem to optimize this total FCT and prove that it
is NP-hard (§V). Hence, we propose two families of heuristics
algorithms to solve the problem: the flow-greedy algorithms,
which greedily consider first the flows whose performance
can most improve; and the proxy-greedy algorithms, which
greedily establish first the proxies that can most improve
performance (§VI).

Evaluations. We evaluate our proposed heuristics both through
extensive simulations with parameters measured from actual
cloud providers, and through real-world CloudPilot-based
cloud-proxy deployments. We find that our heuristic algo-
rithms achieve significant FCT acceleration. For example,
spending 50c-per-flow to transfer 2GB-flows on Google cloud
decreases the total FCT by factors of 2.7, 3.6, 3.9 and 4.3
for four different application use-cases. We also find that
counter-intuitively, FCT acceleration significantly improves as
last-mile bandwidth increases, especially beyond 100Mbps,
heralding an increased impact for CloudPilot with the last-
mile fiber-optics deployment (§VII).

II. RELATED WORK

TCP splitting. [16]–[18] show that TCP splitting can improve
rate in different environments, such as mobile and satellite.

Cloud overlay network. Several works show that forwarding
using cloud proxies without TCP splitting capability provides
little to no improvement [4], [9], [10]. Later research shows
the benefit of using TCP splitting in the cloud overlay net-
work. [7]–[9] show that using a single TCP splitting proxyISBN 978-3-903176-48-5 ©2022 IFIP

can achieve up to 3× improvement over a direct internet
connection. [9] also suggests using Multi Path-TCP (MP-TCP)
to increase performance. However, MP-TCP is not always
supported by communicating parties. [10], [11] show we can
achieve better performance by using two TCP-splitting proxies
with large buffers, one close to the source and one to the
destination. In addition, they implement several improvements
for the TCP splitting, like TCP turbo start, which can also be
implemented in our system and further increase its perfor-
mance. However, they only consider isolated flows and not a
full system. Several recent works also analyze in more detail
the performance of cloud communications [1]–[3], [19].
Geo-distributed applications. Most research on the perfor-
mance improvement of geo-distributed applications focuses on
load-balancing mechanisms over direct TCP connections [20]–
[24]. Our work complements these efforts by introducing TCP
splitting, obtaining further significant performance gains.
Caching proxy placement. Several papers study the place-
ment of cache proxies [25], [26] and HTTP-gathering prox-
ies [5]. The TCP-split proxy placement problem is different.
For example, in the above examples, it is preferable to place a
cache as close to end-points as possible, while in TCP splitting,
the preferred location of a single proxy is in the middle.

III. USE-CASES

We are interested in considering many data-intensive geo-
distributed applications. Since they may vary considerably, to
reason about them, we abstract away details and focus on their
characteristic communication patterns, classifying them into
four topological use-cases.
One-to-many. A single source broadcasts information to many
destinations worldwide. Usually, a Content Delivery Network
(CDN) will be used for most of the destinations [14]. However,
some 1.8% of all live streams use direct connections due to
cache misses (Facebook statistics [27]). These remaining flows
can be modeled using a star-like one-to-many pattern.
Many-to-many. Many nodes in different locations communi-
cate in a full-mesh pattern, e.g., in a geo-distributed database
that transfers data between nodes to keep consistency [12].
Many one-to-one. Topology with many unrelated source-
destination pairs. One example is a VM migration applica-
tion [13] that entails sending data from one data-center loca-
tion to another for many unrelated VMs. Additional examples
include backup between data centers, and file-sharing systems.
Many localized one-to-many. Several sources that are geo-
graphically distributed and each broadcasts to many mostly-
local destinations. One example is the traffic between CDN
caches and their end-users [14]. Another is Twitch, an inter-
active live-streaming platform that offers three servers in three
different continents [28].

In this paper, we focus on a static setting where applica-
tions have predictable traffic patterns (for instance, periodic
backups), and we use this predictability to optimize the proxy
placement by minimizing the total FCT of future flows. In
future work, this could be extended to a speculative setting

that uses various prediction models to estimate the upcoming
future patterns. For example, an hourly process could consider
the flow distribution in the last hour, then establish proxies for
the next hour based on the expectation that the location dis-
tribution of future requests will be close enough. In addition,
for simplicity, we focus in this paper on applications with at
most dozens of flows per period.

IV. PROXY ACCELERATION SYSTEM

In this section, we introduce our CloudPilot system that
utilizes TCP-split proxies to reduce FCT. We derive a model
to predict the FCT based on proxy properties and network
measurements, and provide empirical evidence for the effec-
tiveness of our approach. In the next section, we use our model
to optimally decide which proxies to allocate for each flow.

A. CloudPilot

CloudPilot system. CloudPilot is a Kubernetes-based sys-
tem that measures communication parameters across different
cloud regions, and uses these measurements to deploy cloud
proxies in optimized locations on multiple cloud providers. It
is able to deploy new Kubernetes clusters on multiple cloud
providers, deploy Kubernetes container instances, and connect
between them. It also deploys iPerf3 measurement containers
and HAProxy proxy containers. Finally, it implements the
algorithms of this paper to decide where to deploy the proxies.
The CloudPilot code is available online [15].
Deployment for FCT measurements. To obtain the FCT
measurements below, CloudPilot spawns Kubernetes 1.22.2
clusters on demand for each pair of (source, destination)
locations. The source cluster executes a Kubernetes container
running an iPerf3 3.9 client [29] and the destination clus-
ter executes a Kubernetes service with a backend container
running an iPerf3 server. This way, FCT can be measured
remotely between the source and destination over a direct
cloud connection.

To obtain the FCT for connections with TCP-split proxies,
CloudPilot creates additional Kubernetes clusters in different
locations. CloudPilot can create three types of acceleration
configurations: forwarding, one-proxy, and two-proxy.

For the forwarding acceleration, CloudPilot uses an Ubuntu
20.04 container. Traffic forwarding is done using appropriate
iptables rules. For TCP splitting, CloudPilot uses an HAProxy
2.2.19 container that splits a TCP connection into two con-
nections with smaller RTT. In addition, when CloudPilot uses
two-proxy splitting acceleration, it increases the TCP buffer
size of the containers to match their intra-cloud bandwidths
between the proxies.
FCT measurements. Fig. 2 presents the results of our prelim-
inary measurement experiments intended to gain an intuition
about different flow proxy acceleration options. The rationale
is to understand which options are likely to result in most gains
and focus our exploration on those settings. Table I summa-
rizes the configuration of each experiment. Fig. 2 shows how a
forwarding proxy obtains either negligibly better or even worse
performance compared to a direct communication over public

TABLE I: Configuration of CloudPilot measurement experiments

source dest. 1 proxy 2 proxies

first second

a Israel
public net

California
public net

London
GCP

London
GCP

Oregon
GCP

b London
AWS

Oregon
AWS

Montreal
GCP

London
GCP

Oregon
GCP

c Ohio
AWS

Mumbai
AWS

London
GCP

Virginia
GCP

Mumbai
GCP

d S. Carolina
GCP

Oregon
GCP

Iowa
GCP

S. Carolina
GCP

Oregon
GCP

Fig. 2: Rate comparison between (1) direct connection, (2) one-proxy
forwarding, (3) one-proxy splitting and (4) two-proxy splitting, using different
types of (source, destination, proxies) tuples as described in Table I.

internet. This is consistent with previous studies [8], [10].
TCP-split proxies clearly outperform both direct connections
and forwarding proxies. Therefore, in the remainder of this
paper we focus on split proxies.

B. Proxy Acceleration Model

We now analyze how TCP-split proxies affect FCT and
develop a model for estimating the FCT for several proxy
deployment options: direct connection, one proxy, and two
proxies, using measurable permanent properties of the end-
hosts and the potential proxies. To do so, we consciously
ignore the temporary impacts of the loss rate, queueing time,
packet reordering, and similar effects along the packet path. In
other words, we make the following simplifying assumptions:
(1) each modeled flow transfers a large amount of data;
(2) packet loss rate is negligible; (3) queueing time in the
network is negligible vs. the propagation time; and (4) packet
reordering is negligible. As we show in the next subsection,
these assumptions are verified by our real cloud experiments.
Direct connection. We consider four main measurable factors
affecting the FCT of a TCP flow from i to j.
Transfer size. Assume that i wants to transfer ωi,j bits to j.
Then FCT is directly proportional to the transfer size ωi,j

(using Assumption (1)).
Round Trip Time (RTT). The RTT equals RTTi,j , its propaga-
tion component between i and j (Assumption (3)).
Maximum window size. Let WNDi,j be the maximum possible
window size between i and j, as limited by the respective OS
configurations. Since we send at most WNDi,j bytes per RTT,
the rate between i and j is bounded by WNDi,j

RTTi,j
[30].

Last-mile bandwidth. The flow’s rate is limited by both the
last-mile egress bandwidth of source i and the last-mile ingress

bandwidth of destination j. The last-mile bandwidth may
reflect a variety of factors, including the internet service
provider rate limit or the NIC speed. We denote as BWi,j

the minimum of these two last-mile bandwidths.

Combining the above factors and applying assumptions, the
flow rate is bounded by either WNDi,j

RTTi,j
or BWi,j , yielding an

approximate rate of Ri,j ≈ min
(

WNDi,j

RTTi,j
, BWi,j

)
. Its FCT

T direct
i,j is approximated by T direct

i,j ≈ ωi,j

Ri,j
.

One-proxy acceleration. FCT for a flow with one-proxy
accelerator p is T p

i,j ≈ ωi,j

min(Ri,p,Rp,j)
, because the flow rate

is the rate of its slowest hop.

Two-proxy acceleration. FCT for a flow with two-proxy
acceleration (p, q) is T p,q

i,j ≈ ωi,j

min(Ri,p,Rp,q,Rp,j)
. As in [10], we

assume that in the proxies, the maximum window sizes on the
internet side use the Linux default. However, on the internal
cloud side they can be increased to take full advantage of the
paid cloud bandwidth rates, namely Rp,q ≈ BWp,q , which is
set by the cloud proxy capacity.

C. Model validation

Fig. 3 puts our model to test in the real world. It plots
the real-world measured rate and rate acceleration against
the predicted values using our model, for all three types of
connections. The figure shows sample results. Each data point
averages 20 runs. Using CloudPilot we run three types of
experiments: (1) Public internet, where source and destination
are located in the public internet, and proxies are located in
different regions of the same cloud, Google Cloud Platform
(GCP) in this case. We use a desktop computer with Ubuntu
v20.04 located at the Technion (Israel) as a host, and nine
public iPerf3 servers around the world as destinations [29],
[31]. (2) Single cloud, where the source, destination and
proxies are sampled from 24 potential GCP locations. (3) Multi
cloud, where source and destination are sampled from 9 IBM
cloud locations, but the proxies are deployed in GCP. Overall
we run over 75 different tuples (source, destination, proxies)
with over 3, 000 tests. The flow average rate is measured for
40 seconds. Our model prediction is based on a maximum
window size of 2.875MB (observed default for Linux TCP) for
all links, except in the cloud-facing links of the proxies where
they are set to 500MB. The proxy bandwidth limitation is
estimated as 1750Mb/s (the per-flow limitation of HAProxy),
as it is tighter than the 2Gb/s link capacity of our used proxy
machines.

V. CLOUD-PROXY PLACEMENT PROBLEM

In this section, we present the cloud-proxy placement prob-
lem. First, we explain the problem informally to equip the
reader with some intuition. Next, we introduce a formal nota-
tion and present a MILP (mixed-integer linear programming)
formulation of the problem.

A. Informal Problem Definition

Given a set of source-destination pairs representing TCP
flows, we want to find a feasible allocation of the flows to a set

(a) Rate in direct connection (b) Rate with one proxy (c) Rate with two proxies (d) One-proxy rate acceleration (e) Two-proxy rate acceleration

Fig. 3: Model validation: Real-world rate vs. predicted rate using (a) direct connection; (b) one proxy; and (c) two proxies; then real-world rate acceleration
(beyond direct connection) vs. predicted one using (d) one and (e) two proxies. In all cases, the model predictions seem close to real-world measured values.

Notation Description

Input Sets

S Set of all servers in the system, si ∈ S
F Set of all valid flows in the system, fi,j ∈ F
L Set of all possible regions for proxies, l ∈ L
N Set of all possible instances for proxy, n ∈ N
P Set of all possible proxies p ∈ P ,

P contains all instances in all locations, P ≡ (L ×N)
A Set of all possible proxy assignments (2 proxies, 1 proxy,

or direct connection), A = (P×P)∪(P×{0})∪{(0, 0)}

Input Parameters

ωi,j Data size to transfer by fi,j
BW (p) Bandwidth capacity of proxy p ∈ P

CBW (p) Network traffic cost per Gigabyte using proxy p ∈ P
Csetup (p) Cloud proxy setup cost for proxy p ∈ P
B Maximum allowed budget in the system

Computed FCTs by CloudPilot (§IV)

T direct
i,j FCT of fi,j using direct path

T p
i,j FCT of fi,j using one proxy p ∈ P

T p,q
i,j FCT of fi,j using two proxies p, q ∈ P

Decision Variables

up,q
i,j

{
1 flow fi,j uses proxies p, q ∈ P
0 otherwise

xk

{
1 if proxy k ∈ P is used
0 otherwise

Input

Tij [p, q] =

T direct
i,j if (p, q) = (0, 0)

T p
i,j if (p, q) = (p, 0)

T p,q
i,j otherwise.

∀(p,q)∈A

(FCTs from §IV)
Optimization goal

minimize
∑

∀fi,j∈F

∑
(p,q)∈A

Ti,j [p, q] · up,q
i,j (total FCT)

Constraints∑
(p,q)∈A

up,q
ij = 1 ∀fi,j∈F (one allocation per flow)

BW (k) ≥
∑

∀fi,j∈F
ωi,j

 ∑
(p,k)∈A

up,k
i,j

Ti,j [p, k]
+

∑
(k,q)∈A

uk,q
i,j

Ti,j [k, q]

 ∀k∈P

(proxy capacity fulfills bandwidth demand)

xk ≤
∑

fi,j∈F,(p,q)∈A s.t. p=k∨q=k

up,q
i,j ∀k∈P (0 if k unneeded)

|N |xk ≥
∑

fi,j∈F,(p,q)∈A s.t. p=k∨q=k

up,q
i,j ∀k∈P (1 if k needed)

xk1
= x(l,n1) ≥ x(l,n2) = xk2

∀n1<n2∈N , ∀l∈L
(for proxies k1, k2 with the same location l, prefer the smaller index)

C total
setup =

∑
k∈P

Csetup (k)xk (total setup cost)

C total
BW =

∑
fi,j∈F

ωi,j

∑
p,q∈A

up,q
i,j (CBW (p) + CBW (q)) (total BW cost)

B ≥ C total
setup + C total

BW (budget limitation)

Fig. 4: MILP formulation of cloud-proxy placement problem, with a table of used notations on the left.

of TCP-split proxies in cloud regions, such that we minimize
the total FCT (the sum of per-flow FCTs). An allocation is
feasible if (a) its cost is no greater than the overall predefined
budget, and (b) for any proxy, the sum of bandwidth demands
of all flows using this proxy is no greater than its capacity.
Each flow can be allocated one, two, or zero proxies (the latter
corresponds to a direct connection).

The cost of using a proxy comprises two components:
(1) the proxy setup cost (e.g., a virtual machine or a con-
tainer with a specific bandwidth capacity), and (2) the data-
transmission cost. If more than one flow share a proxy in a
feasible allocation, the setup cost is paid only once. Note that
cloud providers do not impose costs on the inbound network
traffic. Only the outgoing traffic from the cloud proxy is billed
(to different regions or to exit the cloud).

B. Problem Statement

Fig. 4 presents a formal MILP formulation for our cloud-
proxy placement problem. Formally, we want to find a feasible
assignment of proxies to flows such that the total FCT in
the system is minimized, given constraints that reflect (1) the
input sets and parameters presented on the top-left of Fig. 4,
including the proxy setup costs, proxy data-transfer costs, and
total budget; and (2) the per-flow FCT of each flow using
any zero, one or two proxies, as computed by the proxy
acceleration model of §IV.

The following theorem (proved in the Appendix) states that
this problem is NP-hard.

Theorem 1. The cloud-proxy placement problem is NP-Hard.

(a) Flow-greedy prefer two proxies (b) Proxy-greedy prefer single proxy

Fig. 5: Intuition for algorithm choices. (a) Flow-greedy algorithms pick the
best proxy acceleration for the flow that benefits most, even if expensive,
and tend to prefer two-proxy acceleration; while (b) proxy-greedy algorithms
choose the single proxy that can most benefit the system by serving several
flows, thus spending the budget more efficiently.

VI. ALGORITHMS

Since the cloud-proxy placement problem is NP-hard, we
propose two families of greedy approximation algorithms:
(1) the flow-greedy family of algorithms, where we greedily
allocate flows, one at a time; and (2) the proxy-greedy family
of algorithms, where we greedily allocate proxies, one at
a time. Fig. 5 provides an example for understanding the
intuition behind the two families of algorithms.

A. Flow-greedy algorithms

We propose two versions of the flow-greedy algorithm
that differ only by the gain calculation, namely the order of
processing flows.
F-FCT (Flow-greedy FCT). The pseudo-code for F-FCT is
given in Alg. 1. It takes as input (Line 1) the set of flows, the
set of proxies, and the overall budget. For each flow, F-FCT
initializes the allocation to a direct connection (Line 4) and
computes its gain for every possible proxy allocation (Line 5).
That is, it considers all possible locations for one proxy or one
proxy pair and computes the gain w.r.t. a direct connection.
The possible allocations for each flow are sorted by their gain.

The main loop (Line 10) greedily processes flows one at
a time, launching the greedy function that examines the best
proxy locations for each flow, and updates the flow with the
highest gain (Line 15). It then finds concrete proxy instances
at these locations and calculates the cost of allocating these
instances to the flow. If the budget allows, then the allocation
for the flow is completed (Line 31) and the greedy step
concludes. In order to find concrete proxy instances and their
marginal cost (Line 18), Alg. F-FCT calculates the needed rate
through the allocated proxies (Line 20). Then, it looks for a
proxy with enough free capacity at each location (Line 24).
It first tries to find an existing proxy with enough available
capacity (Lines 25-26); if that fails, it uses a new proxy
instance. The cost of the allocation (Line 22) includes the
bandwidth cost of each proxy and the setup cost if a new
proxy instance is required.

The gain function used by Alg. F-FCT (Line 13) only
considers the reduction in FCT, regardless of its impact on the
total budget. As illustrated in Fig. 5, F-FCT prefers expensive
two-proxy acceleration types that strongly reduce the FCT,
rather than cost-efficient one-proxy connections. Intuitively, F-
FCT is best to use when the budget is nearly unlimited.
Time complexity. Let m be the number of flows, L the number
of regions, and n the number of instances for each region.

Algorithm 1 Flow Greedy FCT (F-FCT)
1: MAIN(F0,P0, B0) ▷ Flow and proxy sets, budget
2: D ← (L × L) ∪ (L × {0}) ∪ (0, 0) ▷ D is a list of every possible

proxy allocation location
3: for f ∈ F0 do
4: af ← (0, 0) ▷ af is the allocation for f , ini-

tialized as a direct connection
5: Gf ← D, sorted non-increasing by GAIN(f, d) ∀d ∈ D

▷ Gf is a list of all possible A
for f sorted by gain

6: rp ← BW (p) ∀p ∈ P0 ▷ Available proxy bandwidth
7: P ← ∅ ▷ Allocated proxies so far
8: B ← B0 ▷ Remaining budget

— end of initialization —
9: F ← F0 ▷ Flows without allocated proxies

10: while F ̸= ∅ do GREEDY-STEP

11: return
∑

f∈F0

Tf [af],
{
af

}
f∈F0 ▷

Return overall score and allo-
cation per flow

12: GAIN(f, a) ▷ FCT reduction for f with allocation a = (p, q)
13: return Tf [0, 0]−Tf [a]

14: GREEDY-STEP
15: f ← argmaxf∈F

(
GAIN(f,Gf .head)

)
▷ Greedily choose flow

16: a, b← FIND-PROXY-INSTANCES(f)
17: if b ≤ B then ALLOCATE(f, a, b)

18: FIND-PROXY-INSTANCES(f)
19: (l1, l2)← Gf .head
20: r ← ωf/Tf [l1, l2] ▷ Flow BW requirement
21: a← (FIND-PROXY-AT(l1, r), FIND-PROXY-AT(l2, r))
22: b←

∑
p∈a,p ̸=0

ωfCBW (p) +
∑

p∈a,p ̸∈P
Csetup (p) ▷ Marginal allocation cost

23: return a, b ▷
Return chosen proxy instances,
a, and their marginal cost, b

24: FIND-PROXY-AT(l, r) ▷ Find proxy at location l with r free capacity
25: Pl ← {p ∈ P s.t. p’s location is l} ▷ Pl ← ∅ if l = 0
26: if ∃p ∈ Pl s.t. rp ≥ r then
27: return p ▷ Proxy instance p has enough capacity for the flow
28: if ∃p ∈ P0 \ P s.t. p’s location is l then ▷ Always False if l = 0
29: return p ▷ New proxy instance
30: return 0

31: ALLOCATE(f, a, b) ▷ Allocate a to f with budget b
32: af ← a, B ← B − b, F ← F \ {f}
33: for p ∈ a do
34: P ← P ∪ {p} ▷ Add proxy if new
35: rp ← rp − ωf/Tf [a] ▷ Update available capacity

The size of D is O(L2), so sorting for all flows requires
O(mL2 log(L)) time. Each greedy step requires O(m + n)
time, O(m) to find the best flow1 and O(n) to find its
concrete proxy allocation. One flow is removed after each
successful greedy step, thus the total time for the successful
steps is O(m(m + n)) = O(m2) (since n ≤ m). In order to
bound the work required to process unsuccessful greedy steps,
after each successful allocation, we make sure that the best
potential allocation for each flow (the head of its sorted list)
falls within the remaining budget. This is done by removing
infeasible allocations from the head of each flow’s list (in O(1)
per removal).2 There are at most O(mL2) such removals,
so overall O(mL2) time is required. Summing all, we get
O(m(L2 log(L) +m)) time for Alg. F-FCT.
F-Cost (Flow-greedy FCT per cost). This algorithm is similar

1Note that the gain for each allocation can be cached.
2This implementation detail is omitted from Alg. 1 to simplify the presen-

tation. The check can be done in O(1) by caching maxp∈Pl
rp (Line 26).

Algorithm 2 Flow Greedy Cost (F-Cost) extends Alg. 1
1: GAIN(f, a)
2: return Tf [0,0]−Tf [a]∑

p∈a

(
ωfCBW(p)+Csetup(p)

ωf/Tf [a]

BW (p)

) ▷
ωf

Tf [a]
is f ’s rate

Algorithm 3 One-Proxy Greedy (1-P)
QF =

{
af

}
f∈F denotes a set of proxy allocations af for all flows f

1: MAIN
2: Scoremin ,QF

min,Pmin ←∞, {(0, 0)}f∈F , ∅ ▷ Initialization
3: do
4: update ← False ▷ Flag indicates score improvement
5: for each P in CANDIDATE-PROXY-SETS(Pmin) do
6: Score,QF ← FLOW-GREEDY-FCT(F ,Pl, B)
7: if Score < Scoremin then
8: Scoremin ,QF

min,Pmin ← Score,QF ,Pl

9: update ← True
10: while update ▷ Stop if no candidate improved score
11: return Scoremin ,QF

min

12: CANDIDATE-PROXY-SETS(P)
13: return ADD-ONE-PROXY(P)
14: ADD-ONE-PROXY(P)
15: for each region l ∈ L do
16: choose a proxy pl in region l s.t. pl ̸∈ P
17: Pl ← P ∪ {pl}
18: return {Pl}l∈L

to the previous one, but considers cost when greedily choosing
flows to process. The pseudo code is given in Alg. 2; it uses
the same code of Alg. 1 with the GAIN function replaced.
The idea is to scale down the gain for each allocation by its
expected cost. The flow rate for each potential allocation can
be computed at initialization from its expected FCT, so the BW
cost of each allocation is known. However, the exact setup cost
for each allocation cannot be known at initialization, since it
depends on whether the allocation would use an existing proxy
with enough free capacity or would require a new instance.
Instead, Alg. 2 attributes a fraction of the setup cost for every
allocated flow using the ratio of the flow rate to the capacity
of the proxy. Note that this cost-based gain is only used to
sort the flows and allocations and is not used to calculate the
actual allocation cost (Alg. 1, Line 22). With this algorithm,
we get better performance under a limited budget. The time
complexity is the same as for Alg. 1.

B. Proxy-greedy algorithms

In the proxy-greedy family of algorithms, we choose the
best proxy locations incrementally in a greedy manner. We
start from an empty proxy set and add a few proxies at a
time, so long as the overall FCT improves. At each greedy
step, we generate a list of candidate proxy sets, and choose the
one with the best total FCT. The total FCT for each candidate
proxy set is computed using Alg. 1. The difference between
the algorithms is in the way the candidate sets are generated
at each greedy step.

1-P (one-proxy greedy). This is the basic proxy-greedy
algorithm, its pseudo-code is given in Alg. 3. Alg. 3 creates a
candidate set that includes all possibilities of adding a single

Algorithm 4 Two-Proxy Greedy (2-P) extends Alg. 3
1: CANDIDATE-PROXY-SETS(P)
2: return ADD-TWO-PROXIES(P)
3: ADD-TWO-PROXIES(P)
4: P2 ← ∅
5: P1 ← ADD-ONE-PROXY(P)
6: for each combination Pl ∈ P1 do
7: append ADD-ONE-PROXY(Pl) to P2

8: return P2

Algorithm 5 Two-Proxy Rollback (2-P RB) extends Alg. 3
1: CANDIDATE-PROXY-SETS(P)
2: PRB ← ∅
3: for each p ∈ P do
4: append ADD-TWO-PROXIES(P \ p) to PRB

5: return PRB

proxy instance to the existing set (Lines 5&14). For every
possible location in L, it creates a candidate proxy set that
includes the existing proxies plus a new proxy instance at
that location. Then, at each greedy step, Alg. 1 is called for
every proxy set in the candidate set to compute its FCT score
(Line 6).3 If a candidate has a better total FCT score then
its allocation is saved. The algorithm returns if no candidate
proxy set improves the total FCT (Line 10).
Time complexity The candidate set size is bounded by the
number of locations and the number of greedy steps is O(m),
since there are at most 2 proxies per flow. Thus there are (mL)
calls to Alg. 1. Each call requires O(m(L2 log(L) + m)),
however the initialization sorting can be cached to reduce
subsequent calls to O(m(L2 + m)).4 The overall time com-
plexity is thus O(m2L(L2 + m)). Let P denote the number
of proxies returned by the algorithm. Both the number of
greedy steps and the number of available locations for each
is bounded by P . Thus there are (PL) calls to Alg. 1 each
requiring O(m(P 2 + m)). The overall complexity becomes
O(mPL(P 2+m)), which is tighter in practice as P is limited
by the overall budget.
2-P (two-proxy greedy). The algorithm is based on Alg. 3,
but with a candidate set that now includes all possibilities
of adding two-proxy instances to the existing set (Line 3).
The implementation reuses ADD-ONE-PROXY to generate the
candidate set. The candidate set size is now O(L2), therefore
the overall time complexity increases to O(m2L2(L2 + m))
and O(mPL2(P 2 +m)).
2-P RB (two-proxy greedy with rollback). The algorithm is
again based on the Alg. 3, but with a candidate set that now
includes all possibilities of removing one proxy and adding
two proxy instances to the existing set (Line 1). The idea is
to avoid local minima by allowing the greedy algorithm to
rollback one of the existing proxy allocations when it adds
new proxies. Here we reuse ADD-TWO-PROXY from Alg. 4.

3Note that the proxy set defines how many instances are available at each
location, thus FIND-PROXY-AT may return 0 also for l ̸= 0.

4In practice, the bound on L is smaller for most calls, as we only need to
consider the locations that are covered by each particular candidate proxy set
({L s.t. Pl ̸= ∅}).

(a) Total FCT acceleration (b) Number of proxies (c) Connection-type distribution

Fig. 6: Impact of number of flows in one-to-many use case. (a) shows the FCT acceleration when compared to a baseline without proxy. The proxy-greedy
family of algorithms outperforms the flow-greedy algorithms and obtains over 2× acceleration. (b) shows that the flow-greedy algorithms tend to spend a
larger share of the budget on establishing proxies. (c) details each family’s connection type distribution with 60 flows, confirming the intuition from Fig. 5
that flow-greedy algorithms tend to choose expensive single-use two-proxy accelerations for flows, while proxy-greedy algorithms prefer cheaper one-proxy
accelerations with proxy sharing.

Now the size of the candidate set is O(L3), so the overall
time complexity is O(m2L3(L2+m)) or O(mPL3(P 2+m)).
Although the above theoretical complexity bound is high, we
found the actual run-time to be acceptable in practice. Both
the number of world-wide cloud geographic locations and the
number of flows is relatively small (dozens). Due to budget
constraints, the number of allocated proxies is even smaller.

VII. EVALUATION

First, in simulations based on real-world parameters, we
study the impact of several key model parameters and evaluate
the performance of our algorithms on the use cases of §III.
Then, in CloudPilot-based real-world cloud-environment ex-
periments using Kubernetes and HAProxy, we confirm that
the model predictions are close to reality, and that the proxy
acceleration can be significant.

A. Settings

Runs. Each simulation data point is an average of 30 runs.

Proxy locations. We use 18 actual GCP regions for possible
locations of the cloud proxies. The RTTs between the proxies
are measured by CloudPilot and are consistent with a GCP
RTT benchmark [32]. Due to lack of space, we present only the
GCP results, but we get similar results in other cloud platforms
that we checked, e.g., IBM cloud.

Source and destination locations. To deploy each source,
we first choose a random proxy, then select a location such
that it has a reasonably small RTT to this proxy. We randomly
choose locations with RTTi,p < 40ms, corresponding to some
8,000Km using optical fibers [33]. Destination locations are
chosen in the same way.

Network parameters. We set the transferred data size as
ω = 2GB for each flow. We use a default constant proxy
setup cost of Csetup (p) = 50c and constant bandwidth
cost of CBW (p) = 8c per GB for all proxies and regions,
approximating the GCP prices [34], [35]. We set the proxy
bandwidth capacity to 2Gbits since this is a standard egress
bandwidth of a container on GCP [36]. We set the last-mile
bandwidth BW of all our end-hosts to be 1Gbps, planning for

a next-generation widespread gigabit access, at least among
corporate customers [37]; except for the multi-flow servers,
such as in the CDN and one-to-many use cases, which are not
constrained by last-mile bandwidth. We use the default Linux
window size for all servers and for one-proxy connections.
For two-proxy connections, we increase the window size to
500MB for intra-cloud communications only.

B. System Evaluations

Impact of number of flows. We start by evaluating the
impact of the number of flows on performance in a one-to-
many use case. One source in Tokyo transfers data to each
destination. At each step, we increment the number of flows
by randomly adding a new destination worldwide. We set the
budget proportionally to the number of flows. Fig. 6(a) shows
that proxy-greedy algorithms improve the total FCT in the
system and outperform the flow-greedy algorithms. Fig. 6(b)
illustrates how proxy-greedy algorithms use less proxies. Then,
Fig. 6(c) shows that this is because proxy-greedy algorithms
prefer having many flows share a single proxy for one-proxy
acceleration. By saving on the proxy setup cost, they can
accelerate more additional flows. By contrast, flow-greedy
algorithms rely on expensive two-proxy acceleration.

Impact of budget. Fig. 7(a) shows the influence of budget on
the overall FCT improvement for each algorithm. We keep the
settings of the previous one-to-many evaluation and consider
30 flows. We can see that the proxy-greedy algorithms are
superior for low and medium budgets. With a high budget,
the F-FCT algorithm gets the best result, because it always
picks the best proxy locations regardless of cost.

Impact of cost parameters. Fig. 7(b) and 7(b) show the
impact of cost parameters. Each boxplot box represents the
results between the 25th and 75th percentiles of 30 runs.
Fig. 7(b) doubles the data-transfer cost to 16c per GB and
zeroes the proxy-setup cost. All algorithms get similar results
based on two-proxy acceleration since there is no cost for
setting proxies, except for the 1-P algorithm which is less able
to place efficiently the corresponding two proxies. Fig. 7(c)
zeroes the data-transfer cost and doubles the proxy-setup cost

(a) Budget impact (b) Data-transfer cost impact (c) Proxy set-up cost impact (d) Access-bandwidth impact

Fig. 7: Impact of parameters on overall FCT acceleration. (a) Impact of budget: The proxy-greedy family better leverages low budgets and achieves higher
accelerations. On the other hand, with high budgets, the F-greedy FCT that tends to pick the best and most expensive two-proxy acceleration choices manages
to achieve the unlimited-budget bound, while the other algorithms cannot improve their greedily-picked choices. (b) Impact of cost: With dominant data-transfer
costs, both families get similar results. When there is no cost for setting proxies, all algorithms use two-proxy acceleration. (c) With dominant proxy-setup
cost, the cost-efficient algorithms obtain better accelerations. (d) Impact of last-mile access bandwidth: As it grows, FCT acceleration increases significantly,
especially when the cloud-proxy capacity is 20Gbps.

(a) One-to-many (b) Many-to-many (full mesh) (c) Many one-to-one (d) Many localized one-to-many (CDN)

Fig. 8: Impact of use cases with 50c per-flow budget. As expected, we get a strong acceleration for the first three use cases. In the fourth case that exploits
CDN localization, smaller distances enable less proxy options and therefore a lower acceleration.

to $1. Proxy-sharing cost-efficient algorithms perform better.

Impact of last-mile access bandwidth. Fig. 7(d) shows
the impact of the last-mile access bandwidth on the total
acceleration. We use the 2-P RB algorithm, assume 50c per
flow, and compare two types of proxy: small (2Gbps), as
in current cheapest proxies, and large (20Gbps), assuming
next-generation proxies will have larger limits. As the access
bandwidth grows beyond some 100Mbps, the FCT acceler-
ation increases significantly, especially with the large proxy
capacity. This is because the flows are less constrained by
the last-mile bandwidth, but rather by the long RTT, in which
case cloud proxies with TCP splitting help more. This may
partly justify the current increased interest in cloud proxies,
as last-mile fiber-optics deployment becomes wider.

Use cases. Fig. 8 shows the algorithm performance results
for all four different use cases of §III. In all cases, we
assume a 50c budget per flow and measure the total-FCT
improvement for 60 flows. In the many localized one-to-many
CDN-like topology, we first randomly select three sources in
three different continents: Asia, Europe and North America.
Since CDNs are not perfect, at each step, when we sample a
random destination, it connects to its closest source with 90%
probability, to its second-closest source with 7% probability,
and to its farthest source with 3%. The first three use cases
get high accelerations. In the fourth, the acceleration is smaller
due to the shorter average distance, but non-negligible due to
the many available proxy locations that enable us to perform
a two-proxy acceleration (especially with F-FCT).

Run-time. The simulation time for an example run with 60
flows in unoptimized Python, as in Fig. 6(c), takes less than

Fig. 9: Real-world experiment: We measure the total FCT obtained in a real-
world experiment on GCP. We consider a many-to-many topology with users
in Brazil, England, Finland, and Japan. We use our CloudPilot system to
deploy cloud proxies with Kubernetes and HAProxy, such that our algorithms
select the locations. We then compare the results against our model prediction.
We can see that our FCT acceleration prediction achieves very close results
to the obtained real-world results.

one second for the flow-greedy algorithms while for the 1-P,
2P, and 2P with RB, it takes 1.6s, 6.5s, and 131s, respectively.

C. Cloud Experiments

Methodology. We deploy our CloudPilot system on GCP to
set up the proxies and run iPerf3 tests (details in §IV). We
consider a many-to-many full-mesh use case with four servers
in Hamina (Finland), London (England), Sao-Paulo (Brazil),
and Tokyo (Japan), and therefore twelve flows, and measure
the FCT of each flow. All the hosts run virtual machines with
default instances (E2-medium). The budget is 6$, i.e., 50c per
flow. Each result averages 20 runs.

Results. Fig. 9 shows how the proxy-greedy algorithms

achieve better real-world results than the flow-greedy ones,
as previously seen in the simulations. Significantly, as we also
saw in the model evaluation for individual flows (Fig. 3), our
modeled predictions for the total system FCT appear close to
the real-world measured FCTs.

VIII. CONCLUSION

In this paper, we introduced CloudPilot, a Kubernetes-
based system that measures communication parameters across
different cloud regions, and uses these measurements to de-
ploy cloud proxies in optimized locations on multiple cloud
providers. We further demonstrated how it can significantly
improve the flow completion time of global geo-distributed
applications by relying on an optimized placement of cloud
proxies. In future work, we intend to expand on a speculative
CloudPilot version that uses various prediction models to
estimate the upcoming future patterns and their proxy needs.

ACKNOWLEDGMENT

The authors would like to thank Ofer Biran, Roy Mitrany
and Aran Bergman for useful discussions. This work was
partly supported by the Louis and Miriam Benjamin Chair in
Computer-Communication Networks, the Israel Science Foun-
dation (grant No. 1119/19), and the Hasso Plattner Institute
Research School.

REFERENCES

[1] B. Yeganeh et al., “A first comparative characterization of multi-cloud
connectivity in today’s internet,” in Passive and Active Meas., 2020.

[2] T. K. Dang et al., “Cloudy with a chance of short RTTs: analyzing cloud
connectivity in the internet,” in ACM IMC, 2021, pp. 62–79.

[3] R. K. Mok et al., “Measuring the network performance of Google Cloud
Platform,” in ACM IMC, 2021, pp. 54–61.

[4] F. Lai, M. Chowdhury, and H. Madhyastha, “To relay or not to relay
for Inter-Cloud transfers?” in USENIX HotCloud, Boston, MA, 2018.

[5] D. Bhattacherjee, M. Tirmazi, and A. Singla, “A cloud-based content
gathering network,” in USENIX HotCloud, Santa Clara, CA, 2017.

[6] O. Haq, C. Doucette, J. W. Byers, and F. R. Dogar, “Judicious QoS
using cloud overlays,” in ACM CoNEXT, 2020, pp. 371–385.

[7] A. Pathak et al., “Measuring and evaluating TCP splitting for cloud
services,” in PAM’10, Zurich, Switzerland, April 2010.

[8] F. Le, E. Nahum, and D. Kandlur, “Understanding the performance and
bottlenecks of cloud-routed overlay networks: A case study,” in ACM
Workshop on Cloud-Assisted Networking, 2016, p. 7–12.

[9] C. X. Cai, F. Le, X. Sun, G. G. Xie, H. Jamjoom, and R. H. Campbell,
“CRONets: Cloud-routed overlay networks,” in IEEE ICDCS, 2016.

[10] A. Bergman et al., “Pied piper: Rethinking internet data delivery,” arXiv
preprint arXiv:1812.05582, 2018.

[11] A. Markuze, A. Bergman, C. Dar, I. Keslassy, and I. Cidon, “Kernels
of splitting TCP in the clouds,” in Netdev 0x14, 2020.

[12] R. Taft et al., “Cockroachdb: The resilient geo-distributed SQL
database,” in ACM SIGMOD, 2020.

[13] F. Zhang et al., “CBase: A new paradigm for fast virtual machine
migration across data centers,” in IEEE/ACM CCGRID, 2017.

[14] G. Pierre and M. van Steen, “Globule: a collaborative content delivery
network,” IEEE Communications Magazine, 2006.

[15] (2022) CloudPilot system git. [Online]. Available: https://github.com/
kfirtoledo/CloudPilot Project

[16] M. Luglio, M. Sanadidi, M. Gerla, and J. Stepanek, “On-board satellite
”split TCP” proxy,” IEEE J. Select. Areas Commun., 2004.

[17] V. Farkas, B. Héder, and S. Nováczki, “A split connection TCP Proxy
in LTE Networks,” in Information and Comm. Technologies, 2012.

[18] B. H. Kim, D. Calin, and I. Lee, “Enhanced split TCP with end-to-end
protocol semantics over wireless networks,” in IEEE WCNC, 2017.

[19] N. H. Rotman et al., “Cloudcast: Characterizing public clouds connec-
tivity,” arXiv preprint arXiv:2201.06989, 2022.

[20] H. Zhang et al., “Harmony: An approach for geo-distributed processing
of big-data applications,” in IEEE CLUSTER, 2019.

[21] Q. Pu et al., “Low latency geo-distributed data analytics,” ACM SIG-
COMM CCR, 2015.

[22] K. Kloudas et al., “Pixida: Optimizing data parallel jobs in wide-area
data analytics,” Proc. VLDB Endow., 2015.

[23] P. Li et al., “Traffic-aware geo-distributed big data analytics with
predictable job completion time,” IEEE TPDS, 2017.

[24] A. Jonathan et al., “Nebula: Distributed edge cloud for data intensive
computing,” IEEE TPDS, 2017.

[25] Y. Guo, Z. Ge, B. Urgaonkar, P. Shenoy, and D. Towsley, “Dynamic
cache reconfiguration strategies for a cluster-based streaming proxy,” in
Web Content Caching and Distribution, 2004.

[26] J. Wu and K. Ravindran, “Optimization algorithms for proxy server
placement in content distribution networks,” in IFIP/IEEE International
Symposium on Integrated Network Management-Workshops, 2009.

[27] C. Ge et al., “QoE-assured 4K HTTP live streaming via transient
segment holding at mobile edge,” IEEE J. Select. Areas Commun., 2018.

[28] J. Deng et al., “Internet scale user-generated live video streaming: The
Twitch case,” in Passive and Active Measurement, 2017, pp. 60–71.

[29] (2022) iPerf3 - measuring network performance tool. Accessed:
2022-30-01. [Online]. Available: https://iperf.fr/iperf-download.php

[30] F. Kelly, “Mathematical modelling of the internet,” in Mathematics
unlimited—2001 and beyond. Springer, 2001, pp. 685–702.

[31] (2022) Public SpeedTest servers. [Online]. Available: https://as62240.
net/speedtest

[32] (2022) GCP inter region latency. [Online]. Available: https://docs.
aviatrix.com/HowTos/gcp inter region latency.html

[33] K. Lepikhov. (2022) Propagation delay in Géant. [Online]. Available:
https://wiki.geant.org/display/public/EK/PropagationDelay

[34] (2022) GCP network pricing. [Online]. Available: https://cloud.google.
com/vpc/pricing

[35] (2022) GCP VM pricing. [Online]. Available: https://cloud.google.com/
pricing/list

[36] (2022) GCP-machine family description. [Online]. Available: https:
//cloud.google.com/compute/docs/general-purpose-machines

[37] C. F. Lam, “(invited) Google Fiber Deployments: Lessons learned and
future directions,” in OFC, 2021.

[38] S. Martello and P. Toth, “Solution of the zero-one multiple knapsack
problem,” European J. of Op. Research, 1980.

IX. APPENDIX: PROOF OF THEOREM 1

Proof: The 0/1 multiple-knapsack problem (MKP) [38] is
a known NP-hard problem. In this problem, we need to place a
subset of N non-splittable items in M bins. Each item i has a
given positive weight wi and profit pi. The sum of the weights
of all items in a bin j cannot exceed its capacity Cj . Our goal
is to place a subset of items in the bins with maximum sum
of the subset item profits.

Given any 0/1 MKP instance, we define a corresponding
instance of the cloud-proxy placement problem with a single
proxy location, and show that solving it would also solve the
0/1 MKP problem. We define N flows, and can freely choose
their flow rates as wi (we can arbitrarily change the maximum
window, given an infinite BW and a fixed RTT), and flow
FCT gain (difference between FCT in direct connection and
FCT using the proxy) as pi (we can arbitrarily change the
data size of flow i). We define the budget as B. We set
the bandwidth cost as CBW = 0 and proxy-setup cost as
Csetup = B

M , so the budget allows exactly M proxy instances
at this location. We set the bandwidth capacity of proxy j to
Cj . Since there is only one proxy location, using two-proxy
acceleration is never beneficial. If there is a solution to our
problem, we can also solve the 0/1 MKP. Hence, by reducing
the 0/1 MKP to the above problem, we find it is NP-Hard.

https://github.com/kfirtoledo/CloudPilot_Project
https://github.com/kfirtoledo/CloudPilot_Project
https://iperf.fr/iperf-download.php
https://as62240.net/speedtest
https://as62240.net/speedtest
https://docs.aviatrix.com/HowTos/gcp_inter_region_latency.html
https://docs.aviatrix.com/HowTos/gcp_inter_region_latency.html
https://wiki.geant.org/display/public/EK/PropagationDelay
https://cloud.google.com/vpc/pricing
https://cloud.google.com/vpc/pricing
https://cloud.google.com/pricing/list
https://cloud.google.com/pricing/list
https://cloud.google.com/compute/docs/general-purpose-machines
https://cloud.google.com/compute/docs/general-purpose-machines

	Introduction
	Related Work
	Use-cases
	Proxy Acceleration System
	CloudPilot
	Proxy Acceleration Model
	Model validation

	Cloud-proxy placement problem
	Informal Problem Definition
	Problem Statement

	Algorithms
	Flow-greedy algorithms
	Proxy-greedy algorithms

	Evaluation
	Settings
	System Evaluations
	Cloud Experiments

	Conclusion
	References
	Appendix: Proof of Theorem 1

