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Efficient router architectures should
have predictable throughput and scalable
capacity, as well as internal optical technolo-
gy (such as optical switches and wavelength
division multiplexing) that can increase capac-
ity by reducing power consumption. Keslassy
et al.1 describe one such architecture—a 100-
terabit-per-second (Tbps) Internet router with
a single-rack switch fabric built from essen-
tially zero-power passive optics that do not
sacrifice throughput guarantees. Compared
to currently available routers, this router has
approximately 40 times more switching
capacity than a single rack can contain, with
throughput guarantees that no commercial
router can match today.

The key to this scalability is the use of the
load-balanced switch, which Chang et al.2 first
described. The sidebar “How a Load Balanced
Switch Works” gives an overview of the
switch’s function. Keslassy et al.1 extended the
basic architecture of the load-balanced switch
so that it has provably 100 percent through-
put for any traffic pattern and doesn’t reorder
packets. It is scalable, has no central sched-
uler, is amenable to optics, and can simplify

the switch fabric by replacing a frequently
scheduled and reconfigured switch with a sin-
gle, fixed, passive mesh of wavelength-division
multiplexing (WDM) channels. 

The load-balanced switch works by uni-
formly spreading packets over all linecards,
and therefore must know which linecards are
present and which are not. Unfortunately, the
number of linecards will change as network
operators add or remove linecards, or when
linecards fail. If some linecards are missing,
the switch fabric must be able to schedule the
traffic uniformly over the linecards present.
Keslassy et al.1 describe a hybrid electro-
optical architecture that solves this problem
and will operate with any subset of linecards.
Elsewhere, Keslassy, Chuang, and McKeown3

describe an algorithm to configure the switch
fabric and prove that it will always find a valid
configuration in polynomial time. 

When a linecard fails, network operators
require recovery—which involves reconfigur-
ing the optical switch—in less than 50 ms.4-7

With the polynomial-time algorithm,3 how-
ever, reconfiguration took more than 50 sec-
onds. A possible solution is simply to convert
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the software algorithm to hardware, but that
would be too slow by at least an order of mag-
nitude because the algorithm is extremely
memory intensive. A better alternative, as we
show in this article, is to modify the hardware
implementation. 

The polynomial-time algorithm requires
many repetitions of two graph-matching algo-
rithms. The first finds the maximum flow in
a graph, commonly through the Ford-
Fulkerson algorithm.8 The second algorithm
decomposes a matrix into a minimal number
of permutations, commonly through a
Birkhoff-von Neumann decomposition.9,10

However, both the Ford-Fulkerson and the
Birkhoff-von Neumann algorithms require a
large number of memory accesses to find
matches. To speed up the runtime, we adapt-
ed the original algorithms to minimize mem-
ory accesses. First, we modified the

Ford-Fulkerson algorithm to work specifically
for bipartite matches. On the basis of the bina-
ry matrix structure specific to our problem, we
then used bit manipulation schemes to reduce
the time needed to search for new matches.

Second, to decompose a matrix into per-
mutations, we replaced the Birkhoff-von
Neumann algorithm, which repeatedly finds
a permutation using either a maximum size
match or a simplified Ford-Fulkerson algo-
rithm, with the Slepian-Duguid algorithm.
This algorithm finds all the permutations at
the same time, which requires only one itera-
tion and reduces the number of preprocess-
ing steps accordingly. We added a simple
mechanism to search for the matrix elements
not yet assigned to a permutation.

Our experimental results show that we can
achieve a 50-ms recovery time for the 100-
Tbps router for up to 640 linecards. 
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As Figure A illustrates, the load-balanced router consists of a single
stage of buffers sandwiched between two identical switching stages.
The buffer at each intermediate input (center) is partitioned into N sepa-
rate first-in, first-out (FIFO) queues, one per output. The switch contains
N 2 of these virtual output queues (VOQs).

The two switch fabrics operate quite differently from a normal single-
stage packet switch. Instead of picking a switch configuration on the basis

of queue occupancy, both switching stages walk through a fixed sequence
of configurations. At time t, input i of each switch fabric is connected to
output [(i + t) mod N] + 1. In other words, the configuration is a cyclic shift,
and each input is connected to each output exactly 1/Nth of the time,
regardless of the arriving traffic. Each stage is thus a fixed, equal-rate
switch. Although the two stages are identical, it helps to think of them as
performing different functions. In this perspective, the first stage is a load

balancer that spreads traffic over
all the VOQs, while the second
stage is an input-queued crossbar
switch, in which each VOQ is
served at a fixed rate.

When a packet arrives to the
first stage, the first switch imme-
diately transfers it to a VOQ at the
(intermediate) input of the second
stage. The intermediate input that
the packet goes to depends on the
load balancer’s current configura-
tion. The packet is put into the
VOQ at the intermediate input
according to its eventual output.
Some time later, the second fixed,
equal-rate switch will serve the
VOQ. The packet will then be
transferred across the second
switch to its output, where it will
depart the system.
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Figure A. A load-balanced switch.
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Configuration algorithm in brief
The configuration algorithm1,3 involves G

groups; group i contains Li linecards, and the
total number of linecards is

The numbers L1, L2, … LG are fixed for a
given linecard arrangement. The objective of
the algorithm is to create a schedule in which
linecards spread packets evenly across all other
linecards. Therefore, during every frame of N
time slots, each sending linecard must con-
nect exactly once to each of N receiving
linecards, and vice versa. This is nearly the
classical time-slot-assignment problem, also
known as a Latin square problem when rates
are equal, but with one twist: An additional
constraint arises from the use of micro-
electromechanical system (MEMS) switches
in the switch-fabric architecture. Within each
time slot, the algorithm limits the rate from
each transmitting group to each receiving
group of linecards. Therefore, two linecards
in a transmitting group might not be able to
send simultaneously to two linecards in a
receiving group.

An algorithm for constructing the sched-
ule3 first creates a schedule between sending
and receiving groups by repeatedly solving the
connection assignment problem described
earlier. It then creates a schedule between
sending linecards and receiving groups, and
finally between sending linecards and receiv-
ing linecards. These last two steps repeatedly
decompose matrices into a minimal number
of permutations.

Connection assignment problem
The configuration algorithm of the load-

balanced switch must solve the following con-
nection assignment problem. Consider 2G
nodes separated into G left nodes and G right
nodes. The left nodes connect to the right

nodes using a 0-1 capacity matrix C of size G
× G whose rows correspond to the left nodes
and whose columns correspond to the right
nodes. The objective is to find 0-1 connection
matrix R that is below capacity and satisfies a
target number of connections per node. RLi

represents the target number of connections
needed for left node i; similarly, RRj represents
the target number of connections needed for
right node j. Figure 1 presents a sample con-
nection assignment problem when G = 3. The
first left node in the figure must make two
connections, as the first element of RL speci-
fies. The second right node must make one
connection, as the second element RR shows.
Therefore, the 0-1 solution matrix R has two
elements on its first row, and one element on
its second column.

Put mathematically, we want to solve the
following problem. Find a 0-1 matrix R ≤ C
such that

This solution is not necessarily unique, but
for the load-balanced switch configuration,
the capacity matrix will always be large
enough to guarantee a solution.3

Original Ford-Fulkerson algorithm
Given a capacity matrix, the Ford-Fulker-

son algorithm can find the solution in poly-
nomial time.3 The algorithm consists of
finding the augmenting paths from the source
node to the sink node until there are no more
augmenting paths. The resulting flow is the
maximum flow. Either breadth-first search
(BFS) or depth-first search (DFS) is suitable. 

Modified Ford-Fulkerson algorithm
Our goal in modifying the Ford-Fulkerson

algorithm was to implement it in hardware
and reduce its runtime. Each entry in capac-
ity matrix C is binary, so C represents a bipar-
tite graph. We can therefore convert the
Ford-Fulkerson graph to consider only the left
and right nodes. Figure 2 shows the difference
between a typical Ford-Fulkerson graph and
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Figure 1. Sample connection assignment problem.



our modified version. The left nodes are L1,
L2, and L3, and the right nodes are R1, R2, and
R3. Unlike the original Ford-Fulkerson algo-
rithm, the modified version searches from the
left to the right nodes, not from the source to
the sink. It also disallows connections from
the right to the left nodes.

Our modified Ford-Fulkerson algorithm
has two parts. The first part uses a greedy
approach to make connections between
nodes. The second part uses back tracing to
find the remaining connections.

Greedy algorithm. For each left node, the
greedy algorithm keeps adding as many tem-
porary connections as possible to the right
nodes. It can add a connection only if this
connection is in the binary capacity matrix
and adding it does not exceed the target
number of left and right connections. Figure
3 shows the matrix P of temporary connec-
tions after applying the greedy algorithm.
RL′ and RR′ represent the remaining target
number of connections to be made for the
left and right nodes. After the greedy algo-
rithm’s application, L1 is connected to R1

and R2, and L2 is connected to R1, thereby
meeting the target number of connections
for L1, L2, R1, and R2. The only connections
not yet met are for L3 and R3, as seen in RL′
and RR′. The greedy algorithm cannot con-
nect L3 to R3 because the only available con-
nections from L3 in the capacity matrix are
to R1 and R2. After the greedy algorithm’s
application, the back-tracing algorithm
makes the remaining target connections that
RL′ and RR′ specify. The C′ matrix specifies

the connections the greedy algorithm does
not use (C′ = C − P).

Back-tracing algorithm. Figure 4 depicts how
we did back tracing using a simplified version
of BFS. Initially the greedy algorithm finds
the connections in the P matrix, the thin solid
lines in Figure 4a. These edges are the current
temporary connections. The dashed lines in
the figure are the connections in the C′ matrix.
In our example, L3 has no connection to R3,
but has connections to R1 and R2.

This is where the back-tracing algorithm
starts. As the thick gray lines in Figure 4b
show, the algorithm can trace back from
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Figure 2. Original (a) and modified (b) Ford-Fulkerson algorithms.
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either R1 or R2. If it traces back from R1, it
can go back only to L1 and L2, as Figure 4c
shows. When back tracing from the right
nodes, the algorithm considers only tempo-
rary connections. If the algorithm traces
back to L1, as Figure 4d shows, L1 connects
to R3, which is a node that has yet to achieve
its target number of connections. This ends
the trace. The algorithm then updates tem-
porary connections. Figure 4e shows the
final connections.

The back tracing algorithm repeats for all
other nodes that do not achieve their targets. 

Implementation. Memories keep track of the
matrix elements. Throughout both the greedy
and back tracing algorithms, we store current
capacity matrix C′, which tracks the tempo-
rary connections made, and the number of
connections that must still be made to each
node. The back-tracing algorithm also requires
a predecessor memory to remember the trace.

The greedy algorithm is memory-intensive
because when it adds connections, it must
search for the next available connection to a
right node. With G right nodes, the search
could require up to G memory accesses per
left node and therefore a total of up to G2

memory accesses.
The greedy algorithm uses bit manipula-

tion schemes to reduce the number of mem-
ory accesses. It first arranges current capacity
matrix C′ associated with a left node as a
bitmap of size G. It also represents the RR′
array as a bitmap of size G, where it sets the
bit if the corresponding RR′j is positive. A
logical AND between these two bitmaps
gives a bitmap representation of the avail-
able connections. The algorithm then finds
the next available connection by locating the
first set bit in the resulting bitmap—a task
it can accomplish in a single clock cycle
through its priority encoder. Therefore,
reusing the resulting bitmap can reduce the
total number of memory accesses by a factor
of up to G.

The back-tracing algorithm is memory
intensive because it uses so many memory
accesses. Part of the reason is the need to
track the trace. Because the algorithm is
based on a BFS, each search step might
require adding up to G nodes to the prede-
cessor memory. In one search step of a left

node, for example, the algorithm might con-
sider up to G right nodes.

In our implementation, the predecessor
memory is a binary matrix of size G × G. We
implement this matrix using a memory
structure that allows a memory write to an
entire row, and a memory read of an entire
column. Instead of writing each node indi-
vidually, a search step writes the entire set of
available nodes in parallel to the entire row.
After a trace, to find the predecessor of a
node in the trace, our implementation uses
an encoder on the memory read’s entire col-
umn to find the position of the single bit that
is set in the column. This position corre-
sponds to the predecessor’s index. This bit
manipulation scheme reduces each search
step to a single memory access and thus
reduces the total number of memory access-
es by a factor of up to G. 

Matrix decomposition problem
The configuration algorithm of the load-

balanced switch must repeatedly decompose
matrices into a minimal number of permuta-
tions. Keslassy, Chuang, and McKeown3

proposed the Birkhoff-von Neumann decom-
position algorithm for this task, but we believe
that the Slepian-Duguid algorithm will yield
a more efficient implementation.

To explain the matrix decomposition prob-
lem, we assume a 0-1 square matrix S and a
positive integer n satisfying

We want to decompose S into n permuta-
tion matrices, which means finding n permu-
tation matrices Pk, 1 ≤ k ≤ n, such that

Although the decomposition is not necessar-
ily unique, it always exists because the chromatic
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number of a bipartite graph equals its maximum
degree. Consider matrix S, for example,

A permutation matrix has exactly one 1 in
each row and column. Given matrix S, the
algorithm can generate the following permu-
tation matrices:

In the load-balanced switch example, the
binary matrices for S could be as large as 640
× 640; they are typically sparse, having at most
sixteen 1s in each row and each column.

Earlier work
The polynomial-time Birkhoff-von Neu-

mann decomposition algorithm9,10 finds each
permutation by applying a
bipartite graph-coloring algo-
rithm (Ford-Fulkerson or size
matching, for example) on
the S matrix. It then removes
the permutation from the S
matrix and repeats these steps
until it finds all the n permu-
tations. In our 100-Tbps
router, the matrix size can be
up to 640 × 640, requiring
large memory structures for
the coloring algorithms.

Other graph-coloring algorithms use smaller
data structures and parallelism.11 However,
none of these algorithms is fast enough for our
implementation because all require at least
one occurrence of the maximum-size-match-
ing algorithm. 

Greedy Slepian-Duguid algorithm
To reduce memory size, our implementa-

tion uses the sparsity of the matrices in the
load-balanced switch example, representing
the 1s of the binary matrix S as a list of row-
column pairs. To reduce the number of mem-
ory accesses, we apply an algorithm that is
based partially on the Slepian-Duguid algo-
rithm.12 Our algorithm attempts to produce n
permutation matrices at once and uses the
row-column pair list structure. The initial part
of our algorithm uses a greedy scheme to assign
the easily matched elements; the second part
uses the Slepian-Duguid algorithm to reassign
these elements and provide a solution. 

Greedy algorithm. The greedy algorithm orga-
nizes the n permutations in a list structure
consisting of row-column pairs; thus, inputs
are essentially rows; outputs, columns. The
algorithm arranges each permutation as an
array of outputs. The ith array element, for
example, refers to the output matched with
input i. A valid permutation will not match
more than one output to the same input. The
algorithm attempts to find n permutations, so
it maintains n such arrays arranged into matrix
A, where each row corresponds to a different
permutation and therefore to a different array.

Figure 5a illustrates how the greedy algo-
rithm works. Matrix A is initially empty. The
algorithm goes through the list of input-
output pairs (i,o) and tries to assign each such
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Figure 5. Matrix decomposition algorithm, which consists of greedy (a) and Slepian-Duguid
(b) algorithms.



pair to a permutation for which both input i
and output o are unassigned. It continues this
process until it can assign no more (i,o) pairs. 

Matrix Ak shows the state of the permutations
after the algorithm assigns the kth (i,o) pair. If
o is the (p,i)th element of Ak, then the pth per-
mutation matches input i to output o in the kth
step. Because matrix A0 is initially empty, the
algorithm sets each matrix element to 0. 

To understand further how the algorithm
works, consider the assignment of the (2,1)
pair in the fourth step. In A4, the algorithm
can assign the pair only to the second or third
permutation, since output 1 is already sched-
uled in the first permutation. Assume the
algorithm assigns this pair to the second per-
mutation. It is possible that the algorithm can-
not assign a specific pair. In A8, for example,
it cannot assign the (3,5) pair because the only
permutation free for input 3 is the third per-
mutation, and output 5 is already assigned in
the third permutation. A15 shows the final
state of the permutations, in which the (3,5)
and (4,3) pairs remain unassigned.

Slepian-Duguid algorithm. The Slepian-
Duguid part of our decomposition algorithm
addresses each pair that the greedy algorithm
could not assign. For each such pair (i1,o1) the
algorithm

1. Identifies permutations Pi1 and Po1 such
that input i1 is not assigned in Pi1 and out-
put o1 is not assigned in Po1.

2. Swaps input i1 with i2, where i2 is an
input such that (i2,o1) was already
assigned in Pi1. The algorithm must now
track (i2,o1).

3. Swaps output o1 with o2, where o2 is an
output such that (i2,o2) was already
assigned in Po1. The algorithm must now
track (i2,o2).

The algorithm repeats steps 2 and 3 until there
is an unassigned slot for (in,on) in either per-
mutation Pi1 or Po1.

The Bi matrices are similar to the Ai matri-
ces. Figure 5b shows how the algorithm
assigns the (3,5) pair. It begins (step 1) by
identifying the permutations that have input
3 and output 5 free. As B0, shows, P3 (row 3)
has input 3 free and P1 (row 1) has output 5
free, so the algorithm assigns (3,5) in P3 as B1

shows. As B1 also shows, two inputs are
assigned to output 5 in P3, so the algorithm
swaps output 5 of P3 with output 3 of P1 for
the same input. B2 shows the resulting matrix.
Because output 5 is assigned only once in P1,
the algorithm stops here. Otherwise, it repeats
the procedure of swapping until no permuta-
tion has multiple outputs assigned. B3 shows
the final matrix. 

Implementation. Memories keep track of
which inputs and outputs are unassigned after
each permutation. For each input i, a bitmap
of size n stores the n permutations. If input i
is not assigned in a given permutation, the
algorithm sets the bit corresponding to this
permutation in the bitmap. The algorithm
works similarly for outputs. Then, in the
greedy algorithm, an (i,o) pair can easily find
a free permutation by taking a logical AND
between the input and output bitmaps. By
finding the first set bit in the resulting bitmap,
the greedy Slepian-Duguid algorithm can
match an (i,o) pair to a free permutation in a
single clock cycle. Reusing the resulting
bitmap reduces the total number of memory
accesses by a factor of up to n.

Implementation results
We implemented the hardware using Ver-

ilog and synthesized it using a 0.13-µm
process. For 40 groups and up to 640 linecards
(up to 16 linecards per group), the modified
Ford-Fulkerson algorithm used 10,000 gates
and 24 Kbits of memory. The core for our
greedy Slepian-Duguid algorithm used
25,000 gates and 230 Kbits of memory. Both
cores ran within a 4-ns clock cycle time.

In our simulations, however, we used a
cycle-accurate C model instead of the Verilog
implementation, which was too slow given
the number of experiments we wanted to run
and the level of algorithmic complexity. We
verified the C model’s accuracy by comparing
it with the Verilog implementation. We then
used the C model to run several tests. The C
model reports the number of clock cycles the
simulation would run in Verilog. Because of
the constraints in the load-balanced switch,1

we generated different sets of results over
1,000 iterations with different ranges of
linecards, between 0 and 640, spread over 40
groups. We spread the linecards randomly
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across the 40 groups, with at most 16 linecards
in a group. For each range, we took the worst-
case runtime.

Our simulations also assumed that a proces-
sor is connected to the cores uploading and
downloading the necessary information into
memories. To emphasize the processing time,
our results do not include the times to trans-
fer the initial matrices and to obtain the final
results to and from the processor because we
believe that transfer time is a negligible part
of the overall processing time.

In Figure 6, we compare the runtimes of our
implementation (new) with those of the earli-
er approach (old), which was simply to convert
existing algorithms into hardware using Ver-
ilog. We measured total number of memory
accesses and assumed that the hardware imple-
mentation can access memories in a pipelined
manner and that each memory access requires
one clock cycle. The number of memory
accesses is thus the number of hardware clock
cycles, each of which we assumed to be 4 ns.

The graph in the figure plots the most clock
cycles needed in any of the tests we ran. We
use a logarithmic scale to represent both plots
on the same graph, and because the algo-
rithms are polynomial, the plots appear loga-
rithmic as well. We did not attempt to
pipeline the Verilog implementation, howev-
er, and believe that we can reduce the time by
an additional factor of at least two. Nonethe-
less, even without complete pipelining, the
graph clearly shows that our implementation
meets the 50-ms target over the required range
of linecards.1

Our hardware implementation already
meets the 50-ms recovery time that net-

work operators require. Further improvements
are possible through the use of pipelining and
multiport memories and by exploiting some
parallelism in the greedy parts of the algorithms.
Moreover, the schemes we propose lend them-
selves to generalization and might be suitable in
accelerating the hardware implementation of
other graph-coloring algorithms. MICRO
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