
1072 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

Links as a Service (LaaS): Guaranteed Tenant
Isolation in the Shared Cloud

Eitan Zahavi, Alexander Shpiner, Ori Rottenstreich, Avinoam Kolodny, and Isaac Keslassy

Abstract— The most demanding tenants of shared clouds
require complete isolation from their neighbors, in order to
guarantee that their application performance is not affected by
other tenants. Unfortunately, while shared clouds can offer an
option, whereby tenants obtain dedicated servers, they do not
offer any network provisioning service, which would shield these
tenants from network interference. In this paper, we introduce
links as a service (LaaS), a new abstraction for cloud service
that provides isolation of network links. Each tenant gets an
exclusive set of links forming a virtual fat-tree, and is guaranteed
to receive the exact same bandwidth and delay as if it were
alone in the shared cloud. Consequently, each tenant can use the
forwarding method that best fits its application. Under simple
assumptions, using bipartite graph properties and pigeonhole-
based analysis, we derive theoretical conditions for enabling the
LaaS without capacity over-provisioning in fat-trees. New tenants
are only admitted in the network, when they can be allocated
hosts and links that maintain these conditions. We also provide
new results on the numbers of tenants and hosts that can fit while
guaranteeing network isolation. The LaaS is implementable with
common network gear, tested to scale to large networks, and
provides full tenant isolation at the cost of a limited reduction
in the cloud utilization.

Index Terms— Communication networks, software defined
networking, computer networks, computer network management.

I. INTRODUCTION

A. Problem Background (The Network-Softwarization
Predictability Hurdle in Shared Clouds):

Many companies that own private data centers would like to
move to a shared multi-tenant cloud, which can offer a signif-
icantly reduced cost of ownership and better fault-tolerance. It
is vital for some of these companies that their applications will
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not be affected by other tenants, and will keep exhibiting the
same performance1 [10], [37], [38]. For example, a banking
application may need to roll-up all accounts data overnight,
and a weather prediction software should similarly complete
within a highly predictable time. For such tenants, run-time
predictability is a key requirement.

Unfortunately, distributed applications often suffer from
unpredictable performance when run on a shared cloud [11],
[27]. This unpredictable performance is mainly caused by
two factors: server sharing and network sharing [14], [17],
[21], [25], [35], [36], [39], [41], [51]. The first factor, server
sharing, is easily addressed by using bare-metal provisioning
of servers, such that each server is allocated to a single ten-
ant [4]. However, the second factor, network sharing, is much
more difficult to address. When datacenter network links are
shared by several tenants, network contention can significantly
worsen the application performance if other tenant applications
consume more network resources, e.g., if they simply want
to benchmark their network or run a heavy backup [32].
This can of course prove even worse when other tenants
purposely generate adversarial traffic for DoS or side-channel
attacks [46].

In addition, shared clouds seemingly form a barrier to
network softwarization. They cannot currently allow tenants
to apply the network algorithms that they use in their pri-
vate data centers, such as private routing, load-balancing,
traffic engineering, self-management, self-optimization, and
NFV (network function virtualization) forwarding algorithms.
Allowing different forwarding and management algorithms
for different tenants may result in a significantly increased
unfairness between aggressive and non-aggressive tenants in
a way that is hard to predict. For companies that are thinking
of moving to the shared cloud, this inability to have access
to their own fully-programmable, optimized, and automated
network slice forms a major barrier.

As detailed in the Related Work (Section II), current solu-
tions for providing guarantees either (a) require tenants to
provide and adhere to a specific traffic matrix declared in
advance, which often proves impractical [14]; (b) follow the
hose model by providing enough throughput for any set of
admissible traffic matrices [11], [22], but also significantly
reduce the link bandwidth and burst size that can be allocated
to each VM; or (c) attempt to track the current traffic matrix,

1By performance, we refer to the inverse of either the total application
run-time, including both the computation and communication times, or of the
response time of online services.
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Fig. 1. Illustration of cloud resource allocation for two tenants. (a) The traffic of the two tenants interferes on many shared links. (b) There are no shared
links, but the second tenant cannot service an admissible traffic from S0 and S1 to D0 and D1. (c) Under LaaS conditions of tenant placement and link
allocation, a link is assigned to at most one of the tenants and the network can service any admissible tenant traffic demands.

but cannot guarantee constant performance [25], [36], [51].
Furthermore, none of the current cloud solutions allow multi-
ple programmable forwarding and management algorithms to
co-exist on the same network without impacting performance.

B. Problem Statement

We want to find conditions under which we can guarantee
a full network isolation between different tenants of a shared
cloud, such that each tenant can obtain the exact same band-
width and delay independently of the number and bandwidth
of other tenants.

C. Contributions

In this paper, we introduce Links as a Service (LaaS),
a novel shared-cloud architecture model that guarantees a full
isolation between all tenants. Keeping with the notion that
good fences make good neighbors, the main idea of LaaS
is that each tenant that requests isolation should receive its
own dedicated sub-fat-tree network, i.e., an exclusive access
to a subset of the data center links. As a result, the main
novelty of the LaaS model consists in fully guaranteeing that
this tenant can obtain the exact same bandwidth and delay as if
it were alone in the shared cloud, i.e., its performance cannot
be affected by any other tenant. In addition, LaaS allows
each tenant to use a private fully-programmable network
forwarding and management algorithm that is optimized for
its own application. Finally, we show that allocation of links to
tenants is cost-effective and implementable by using common
hardware.

While the LaaS abstraction is attractive, Figure 1 illustrates
why it can be a challenge to provide it given any arbitrary set
of tenants. First, Fig. 1(a) illustrates a bare-metal allocation
of distinct hosts (servers) to two tenants that does not satisfy
the LaaS abstraction, since the tenants share common links.
Likewise, the allocation of hosts and links in Fig. 1(b) also
does not satisfy LaaS, even though no links are shared between
tenants. This is because, regardless of the packet forwarding
algorithm, internal traffic of the second tenant from the two
hosts S0 and S1 in the right leaf switch to hosts D0 and D1

would need to share a common link, and so some admissible
traffic patterns would not be able to obtain full bandwidth.
Interestingly, for this host placement, we find that there is in
fact no link allocation that can provide full bandwidth to all

the admissible traffic patterns of both tenants. Finally, Fig. 1(c)
fully satisfies the LaaS conditions. All tenants obtain dedicated
hosts and links, and can service any admissible traffic demands
between their nodes, independently of the traffic of other
tenants. This illustrates the main practical novelty of this paper.

The main theoretical novelty of this paper is to generalize
the above examples and analyze the fundamental require-
ments for providing LaaS guarantees to tenants in 2- and
3-level homogeneous fat-trees, i.e., guarantee that the delay
and bandwidth provided to a given tenant is completely
independent of the other tenants. Specifically, we first provide
necessary conditions on host placement (Theorem 2), then
provide necessary and sufficient conditions on link allocation
(Theorem 1). We also prove that in small fat trees, when
the required host number fits the fat-tree size, an assignment
satisfying LaaS always exists for any number of tenants and for
any combination of the tenant sizes (Theorem 3). We further
prove that LaaS also holds in large fat trees, whenever there
are at most two large tenants (Theorem 4).

Furthermore, while the above results guarantee LaaS iso-
lation and performance with 100% host utilization, we also
want to guarantee LaaS with a limited reduction in utilization
(e.g., 90%) in a more general set of cases. Theorems 5 and 6
below intuitively guarantee that as long as there is a relatively
large proportion of small tenants, then the utilization will be
relatively high, i.e., most of the cloud servers will be utilized
while maintaining our strong goal of a full LaaS isolation and
performance guarantee. For instance, if small tenants request
80% of the hosts and large tenants request 10% of the hosts,
then we are guaranteed that all tenants will fully fit and satisfy
LaaS. Note that our results rely on a range of methodological
tools, including bipartite graph properties and pigeonhole-
based analysis.

The above results greatly reduce the complexity of our
online allocation algorithm, even in the case of a 3-level
fat tree, as we detail in Section V. In addition, in the
evaluations section (Section VI), we implement a standalone
LaaS scheduler that automates tenant placement on top of
OpenStack, as well as configures an InfiniBand SDN controller
to provide forwarding without interference. Our open-source
code is made available online [1]. We show that using this
code, our LaaS algorithm responds to tenant requests within
a few milliseconds, even on a cloud of 11K nodes, i.e.,
several orders of magnitude faster than the time it takes to
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provisioning a new virtual machine. In addition, when the
average tenant size is smaller than a quarter of the cloud size,
we find that our LaaS algorithm achieves a cloud utilization
of about 90%, for various tenant-size distributions. For larger
tenant sizes, our LaaS allocation converges to the maximal
utilization obtained by a bare-metal scheduler that packs ten-
ants without constraints. Finally, to demonstrate LaaS strength,
we show performance improvements of 50%–200% for highly-
correlated tenant traffic generated by a Bulk Synchronous
Parallel (BSP) application relying on data exchanges along
a virtual three-dimensional axis system. The performance
improvement exceeds the utilization cost for such applications,
uncovering an economic potential. Thus, our evaluations show
that LaaS is practical and efficient, and completely avoids
inter-tenant performance dependence.

For the sake of presentation, we present all proofs and
further discussion of our results in an extended online
version [55].

II. RELATED WORK

A. Application Variability

Several studies about the variability of cloud services and
HPC application performance were presented by [11], [27],
[32]. They show significant variability for such applications
which strengthens LaaS motivation.

B. Network Isolation

Specific high-dimensional tori super-computers like IBM
BlueGene, Cray XE6, and the Fujitsu K-computer provide
scheduling techniques to isolate tenants [5], [42]. However,
they all rely on forming an isolated cube on 3 out of the
5- or 6-dimensional torus space, and thus cannot be used
in clouds with fat-tree topologies. They also exhibit a sig-
nificantly lower cluster utilization, measured as the amount
of servers used over time, than the 90% utilization obtained
by LaaS on fat-trees. Another approach reduces the inter-
ference between jobs running on the same fat-tree but does
not guarantee job isolation from each other [33]. Likewise,
pFTree is a fat-tree routing algorithm that aims to provide
network isolation in fat trees [56], [57]. However, it does not
provide any guarantee of network isolation nor of full bisection
bandwidth, which are the aims of this paper. It also does not
consider the improved guarantees that result from alternative
placement options.

C. Packet Forwarding

Many architectures rely on Equal Cost Multiple
Path (ECMP) [26] to spread the allocated tenant traffic
and avoid the need to allocate exact bandwidth on each of
the used physical links [11], [30]. However, while ECMP
load-balancing is able to balance the average bandwidth of
many small bandwidth flows, it suffers from a heavy tail of
the load distribution. When traffic contains a relatively small
number of large flows, ECMP is known to provide poor
load-balancing. Thus, other tenants will affect the application
performance.

Silo [29] provides guaranteed latency, bandwidth and burst
size to multiple tenants for a worst-case traffic pattern, by

applying accurate rate- and burst-size moderation to enforce
centrally-calculated values obtained from network calculus.
Unlike LaaS, in Silo multiple hosts of the same tenant might
need to share link bandwidth where the link has to be used
based on the existing forwarding rules.

DRF [23] and HUG [13] provide max-main fair link sharing
in a multi-resource setting with correlated demands. DRF
considers static and fixed demands. HUG also allows for
elastic demands.

D. Time Separation

Some systems like Cicade [35] accept the need for handling
the varying nature of tenant traffic instead of relying only on
the average demand. Alternatively, scheduling the MapReduce
shuffle stages was proposed by Orchestra [16]. This approach
was generalized to allow a tenant to describe its changing
communication needs using coflows [15], [52], [59]. In par-
ticular, Utopia [52] considers the tradeoff between minimizing
the average coflow completion time and providing optimal
isolation between contending coflows. However, since these
schemes propose a fair-share network bandwidth to the current
set of applications, they actually change the performance of
a tenant when new tenants are introduced and can increase
tenant performance variability.

E. Tenant Resource Allocation

Cloud network performance has received significant atten-
tion over the last few years. An overview of the different
proposals to allocate tenant network resources is provided
by [39]. In addition, a survey [18] specifically focuses on
network isolation solutions for multi-tenant data centers.

Virtual Network Embedding maps tenants’ requested
topologies and traffic matrix over arbitrary clusters [14].
However, these schemes require that tenants know in advance
their exact traffic demands and cand suffer from scalability
challenges due to relying on solutions for linear programs.

Other proposals, such as Topology Switching and Okto-
pus [11], propose an abstraction for the topology and traffic
demands to be allocated to the tenants. They are similar to
the hose model proposed for Virtual Private Networks in the
WAN context [7]. In addition, [9] aims to provide a feedback-
based fair-share bandwidth using edge-based rate-limiting.
However, to guarantee tenant latency predictability and isola-
tion, such solutions need strict packet time-pacing, small limits
on allowed VM bandwidth and burst-size allocation [29].

Another approach for isolation may rely on distributed rate
limiting like NetShare [36], SecondNet [25] and Seawall [51].
Employing that at the network edge requires tenant-wide
coordination to avoid bottlenecks due to load-imbalance. This
coordination leads to response time in the order of millisec-
onds [30], while the life time of a traffic pattern for high-
demanding applications may be 2 to 3 orders of magnitude
shorter.

F. Application-Based Routing

The above schemes for network resource allocation ignore
the fact that each tenant application may perform best with
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Fig. 2. Cloud management system architecture, with LaaS extensions in bold.
First, in (a) a front-end interface collects tenant requests with information on
the desired host number. Then, in (b) a scheduler allocates hosts and links for
the tenants. Last, in (c) a network controller performs the network setup for
a tenant based on its allocated hosts and links.

a different routing scheme. Routing algorithm types span a
wide range. Some are completely static and optimized for
MPI applications [24]. Others rely on traffic spraying as in
RPS or DeTail [19], [58], on per-packet synchronized schemes
like FastPass [44], on sampling [53], on programmable data
planes [12], or on the virtual edge [34]. Additional algorithms
can offer intra-application and potentially inter-application
contention-free routing, but without any guarantees as in
LaaS [47]. LaaS isolates the sub-topology of each tenant, and
therefore allows each tenant to use the routing that maximizes
its application performance. Without link isolation, routing
engines must continuously coordinate the actual bandwidth
each one of them utilize from each link.

G. Fog and Edge Computing

Smaller clouds in the emerging fog and edge computing
paradigms [48], [50] can similarly adopt LaaS models for
isolation and performance guarantees. In fact, some of our
theoretical guarantees specifically apply to small fat trees only.

III. LAAS ARCHITECTURE

A typical cloud architecture depicted in Fig. 2 consists of (a)
a front-end interface for tenants to register their requests, (b) a
scheduler that decides when and how to service these requests
and can allocate hosts to tenants (e.g., an OpenStack Nova
scheduler and a Heat application setup), and (c) a network
controller that performs the network setup (e.g., an OpenStack
Neutron and an SDN back-end). In this section, we introduce
a LaaS cloud architecture that enhances this architecture by
enabling the allocation of tenant-exclusive hosts and links.

Specifically, we propose to extend the scheduler with link
allocation functionality (on top of the host allocation), and
enhance the network controller by adding network routing
rules to enforce the link allocation. Fig. 2 emphasizes these
two extensions by bold lines on an abstract cloud management
software architecture.

A. Scheduler

We require the scheduler to provide each new tenant with
an exclusive set of dedicated hosts and dedicated links. As in
bare-metal allocation, a tenant may request a given number
of dedicated hosts, which may be further refined by require-
ments of memory, accelerators or number of cores. In our

implementation, we assume homogeneous hosts. In addition,
the scheduler provides each new tenant with a set of dedicated
links that form a tenant sub-topology, which will guarantee full
bandwidth for any admissible traffic matrix of the tenant, i.e.
will provide the tenant with the same bandwidth as in its own
private data center.

In the LaaS architecture, we assume that the scheduler
employs an online algorithm, by successively processing one
new tenant request at a time. Each new tenant may be either
accepted to the cloud, or denied due to the unavailability of
a sub-network that can provide enough dedicated hosts and
links. In any case, the scheduler does not migrate already-
running tenants. This could be relaxed if we want to allow
global optimization of host placements, by running tenants
over virtual machines (VMs) and allowing migrations [31],
[54]. But then, tenant run-times would be impacted by the
arrival of new tenants, which is precisely what we want to
avoid.

B. Network Controller

As depicted in Fig. 2, we require the information of the
allocated links to be provided by the scheduler to the network
devices. This information should be used to adjust the network
forwarding and routing to provide tenant isolation. This task
fits SDN networks, but may also be implemented in other net-
work architectures like TRILL [43]. There are several different
ways to implement such an isolation-aware network controller.
At one extreme, which requires switch-virtualization hardware
support, a master controller may configure the underlying
switches to be split into multiple virtual switches [49]. Then
each tenant may incorporate its own SDN controller, which
can then only discover its own isolated sub-topology. Another
approach is to let a single SDN controller do all the work and
enhance all the routing engines to work on sub-topologies.
We rely in our implementation on an off-the-shelf InfiniBand
SDN controller with a capability of defining sub-topologies
and routing packets in an isolated manner (L2 forwarding).
This feature, known as Routing Chains, is described in [2].
This isolated-routing feature could also be implemented by
Ethernet SDN controllers like OpenDaylight.

IV. ANALYZING LAAS REQUIREMENTS

In this section we introduce the analytical basis for provid-
ing LaaS. We first describe necessary and sufficient conditions
on the assignment of hosts and links to the various tenants
that can guarantee the LaaS properties. Later in this section,
we also examine the possibility to satisfy these conditions in
scenarios of low resource redundancy.

In this section, we describe online algorithms for tenant
placement and link allocation in the LaaS scheduler. Online
placement algorithms require the existing tenant placement to
be maintained when a new job is placed, and therefore do
not move existing tenants. Similarly we provide online link-
allocation algorithms to avoid any traffic interruption when a
new tenant is introduced. The algorithm we describe provably
guarantees that a tenant will obtain a dedicated set of hosts
and links, with the same bandwidth as in its own private
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data center. The algorithm relies on the required properties
of the placement to trim the solution space and achieve fast
results.

We first study 2-level fat-trees, and then generalize the
results to 3 levels. We first present a Simple heuristic algo-
rithm, and then extend it with a LaaS algorithm that achieves
a better cloud utilization.

A. Isolation for 2-Level Fat Trees

Consider a 2-level full-bisectional-bandwidth fat-tree topol-
ogy, i.e. a Full Bipartite Graph between leaf switches and
spine switches, as in Fig. 1 above. For brevity we denote Full
Bipartite Graphs that make the fat-tree connections between
switches at levels lvli and lvli+1: FBGi. It is composed of
r leaf switches, denoted Li for each i ∈ [1, r], and m spine
switches. Each leaf switch is connected to n ≤ m hosts as
required to meet the rearrangeably non-blocking condition for
fat-trees [28].

1) Problem Definition: Given a pre-allocation of tenants
(with pre-assigned links and hosts), when a new tenant arrives
with a request for N hosts, we need to find:
(i) Host Placement: Find which free hosts to allocate to the
new tenant, i.e. allocate Ni free hosts in each leaf i such that

N =
r∑

i=1

Ni.

(ii) Link Allocation: Find how to support the tenant traffic, i.e.
allocate a set Si of spines for each leaf i, such that the hosts
of the new tenant in leaf i can exclusively use the links to Si,
and the resulting allocation can fully service any admissible
traffic matrix.

We want to fit as many arriving tenants as possible into the
cloud such that their host placement and link allocation obey
the above requirements, and without changing pre-existing
tenant allocations.

2) Simple Heuristic Algorithm: We first introduce a Simple
heuristic algorithm, as basis for the discussion of our algo-
rithm. It relies on a property of fat-trees and minimum-hop
routing: if a single tenant is placed within a subtree, then traffic
from other tenants will not be routed through that subtree. Note
that for 2-level fat-trees a subtree is a leaf switch.

Let N denote the number of tenant hosts, and n the number
of hosts per leaf. The Simple heuristic simply computes the
minimal number s of leaf switches required for the tenant:
s = �N/n�. Then, it finds s empty leaf switches to place the
tenant hosts in. Finally, if s > 1, it allocates all the up-links
leaving the s leaf switches; else, no such links are needed.

In the general case, any placement obtained by Simple
supports any admissible traffic pattern. This is because the
dedicated sub-network of the tenant is a single leaf switch if
s = 1, and a 2-level fat-tree if s > 1, which is a folded-Clos
network with m ≥ n. It is well known that such a topology
supports any admissible traffic pattern, because it meets the
rearrangeable non-blocking criteria and the Birkhoff-von Neu-
mann doubly-stochastic matrix-decomposition theorem [28].

3) LaaS Placement Analysis: This section describes a
required condition on placement and sufficient condition on
link allocation that are key to make the LaaS algorithm correct
and efficient. The placement condition requires the allocation

of N tenant hosts as Q leaves of D hosts and optionally
additional leaf of R | R < D hosts such that N = QD + R.
The sufficient link allocation condition requires the links of R
spines connecting to the Q leaves and the optional single leaf
of R hosts. A subset of size D − R of these spines should
connect just to the Q leaves.

Consider a single leaf i with Ni tenant hosts. In the analysis
below, we make the following simplifying assumption: on
every leaf switch, the number of leaf-to-spine links (and the
corresponding number of spines) allocated to a tenant equals
the number of its allocated hosts:

|Si| = Ni. (1)

Our simplifying assumption is based on the following intu-
ition. On the one hand, for tenants occupying several leaves,
if |Si| < Ni, we may not be able to service all admissible
traffic demands (since we may have up to Ni flows that need
to exit leaf i, but only |Si| links to service them). On the other
hand, allocating |Si| > Ni, is wasteful, because the number of
remaining spine switches would then be less than the number
of available hosts, and therefore future tenants spanning more
than one leaf may not be able to obtain enough links to connect
their hosts.

Without loss of generality, we also make a notational
assumption that the Ni’s are sorted such that 0 < N1 ≤ N2 ≤
· · · ≤ Nt, where t is the number of leaves connected to hosts
allocated to the tenant.

We will now see that our assumptions lead (by a sequence
of lemmas) to a simple rule that greatly simplifies the possible
placements that need to be evaluated by our LaaS scheduling
algorithm.

Lemma 1: The number of common spines that connect two
leaves must at least equal their minimal number of allocated
hosts: ∀i < j ∈ [1, t] : Ni = min(Ni, Nj) ≤ |Si ∩ Sj|.

Lemma 2: The number of common spines that connect two
leaves to a third must at least equal the minimal number of
allocated hosts, either in the union of the first two leaves or in
the third, i.e. ∀i, j, k ∈ [1, t] : min(Ni + Nj , Nk) ≤ |Si ∪ Sj |.

Lemma 3: The number of allocated hosts in any leaf cannot
exceed the number in the union of any two other leaves, i.e.
∀i 
= j 
= k ∈ [1, t] : Ni, Nj , Nk > 0 → Ni + Nj ≥ Nk

4) Necessary Host Placement: We will now provide two
theorems showing necessary and sufficient conditions to get
the LaaS conditions of tenant traffic isolation and support for
any admissible traffic matrix. Interestingly, the first theorem
requires necessary conditions on the host placement, while
the second theorem provides sufficient conditions on the link
allocation. We continue to assume throughout the rest of the
paper that |Si| = Ni for all i, and N1 ≤ N2 ≤ · · · ≤ Nt.

5) Sufficient Link Allocation: The following theorem sug-
gests sufficient conditions on the link allocation to satisfy
LaaS.

Theorem 1: A necessary and sufficient condition for LaaS
is that the link allocation satisfies ∀i ∈ [1, Q] : Si = SD and
if R > 0 : SR ⊂ SD, i.e. all the allocated leaf up-links of a
given tenant go to the exact same set of spine switches (or a
subset of it for the remainder leaf).
In addition, we obtain a necessary condition:
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Fig. 3. Host allocation constraints illustration. To implement LaaS, for each
tenant i, there must be Qi leaves of Di hosts and optionally one leaf of
Ri < Di hosts such that the equality Ni = Qi · Di + Ri holds. A tenant
of N = Q · D + R = 2 · 3 + 2 = 8 hosts appears in black.

Theorem 2: A necessary condition for LaaS is

N1 ≤ N2 = N3 = · · · = Nt, (2)

implying that all leaf switches of a tenant should hold the exact
same number of hosts except for a potential smaller one.
Given Theorem 2, the tenant placement should follow the
form: N = Q · D + R, where Q is the number of repeated
leaves with D hosts each, and we optionally add one unique
leaf with a smaller number of hosts R. This notation follows
the Divisor, Quotient and Remainder of N . This result is useful
because it greatly simplifies the solution of the host placement
problem defined above.

Fig. 3 demonstrates this result. It shows Q leaf switches
of D hosts each, and optionally another leaf switch of R <
D hosts. We denote by SD the set of spines connected by
allocated links to the Q leaves of D hosts, and by SR those
that connect via allocated links to the optional leaf of R hosts.

Proof: If R = 0, there is a group of D spine switches
that connect to all leaf switches. Thus the tenant sub-topology
reduces to a Full Bipartite Graph (FBG) with D spine
switches and the same number D hosts per leaf. Such a
topology is rearrangeable non-blocking known to support any
admissible traffic matrix. If there is leaf LjR of R > 0
hosts, we provide a constructive method for routing arbitrary
permutations. We consider the FBG sub-topology formed by
the tenant hosts and links, where LjR connects to all SD

spines. For this topology D spines, D hosts per leaf and Q+1
leaves. Again, every full permutation of D · (Q + 1) hosts
is routeable. Consider a traffic permutation in the original
topology. We can add to it traffic between D − R dummy
hosts in a single leaf. The traffic between the dummy hosts
must be routed through D − R distinct spines. The other
spines are equivalent to SR and by symmetry the given
traffic permutation could be routed in the partial topology. The
necessity of the condition immediately follows the necessity
of the condition in Theorem 2 with the result of Lemma 1.

6) Counter-Example: We now show that there is indeed
a gap between the necessary conditions on host placement
in Theorem 2 and the necessary and sufficient conditions on
link allocation in Theorem 1. Namely, we exhibit a counter-
example that satisfies the conditions of Theorem 2 but still
does not guarantee LaaS.

Lemma 4: There are host placements that meet Theorem 2
for which there does not exist a link allocation satisfying LaaS.

Fig. 4. Satisfying host allocation constraints is not enough. A joint host
placement and link allocation is necessary for LaaS. (a) All tenants satisfy the
host placement necessary conditions, e.g., C includes 3 = Q·D+R = 1·2+1
hosts. A and B support any admissible traffic matrix by the sufficient link
allocation conditions. (b) However, the link allocation for C is impossible.
There is no way to find a common set of spines with free ports.

B. Achieving LaaS Without Any Reduction in Utilization

As shown in Lemma 4, some tenant requests may
be denied when the scheduler cannot find a proper host
placement and link allocation that satisfy the LaaS conditions.
Indeed, sometimes a tenant can be denied even when the
fat-tree has the number of available hosts as required by the
tenant, i.e., when a host placement can be found but not
a corresponding link allocation. A particularly challenging
assignment task is when the total number of hosts required by
the tenants exactly equals the number of hosts in the fat-tree.
Based on the fat-tree size, the number of tenants and their
requests, we demonstrate that are there some scenarios for
which the existence of an allocation is guaranteed and there
is no reduction in utilization for achieving that.

To simplify the presentation, we describe a host and a link
assignment through a matrix of size r×m where r and m are
the number of leaf and spines switches, respectively. A value
in the matrix describes the tenant assigned to a link between
a leaf switch and a spine. A matrix row shows the tenants
assigned to one leaf switch. An example that follows the hosts
assignment from Fig. 4(a) is described in Fig. 4(b). We also
consider a family of two-level fat-trees, where we define the
subtree of parameter r ∈ N

+ as a fat-tree with r switch leaves,
fully connected to m = r spines, such that r hosts can be
assigned to each leaf. We also define the fat-tree size as its
number of hosts r2. For instance, the fat-tree of parameter
r = 4 is illustrated in Fig. 3.

The next theorem claims that for r ≤ 5, when the required
host number fits the fat-tree size, an assignment satisfying
LaaS always exists for any number of tenants and for any
combination of the tenant sizes.

Theorem 3: Consider a fat-tree of a parameter r ≤ 5. For
any tenant demands with a total of at most r2 required hosts,
there exists an assignment that satisfies LaaS.

While for r ≥ 6 we do not provide the equivalent guarantee,
we show that this can be provided when an assumption on the
size of the tenants holds. Intuitively, when r increases, it is
harder to bound the number of possibly large tenants. We see
the question whether Theorem 3 holds for any r ∈ N

+ as an
open problem.

Theorem 4: Consider a fat-tree of an arbitrary parameter r.
For any tenant demand with a total number of required hosts
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not larger than the fat-tree size, where at most two tenants
have a demand larger than r + 1, there exists an assignment
that satisfies LaaS.

While satisfying the above conditions guarantees the exis-
tence of a LaaS assignment without any utilization reduction,
they do not necessarily hold in the general case. Accordingly,
in Section VI we show that in practical scenarios the implied
utilization reduction is often small.

C. Achieving LaaS With a Bounded Reduction in Utilization

We now consider a more general scenario in which utiliza-
tion reduction might be a necessity. We describe guarantees
to bound the reduction as a function of the tenant sizes.
Intuitively, we show that a higher utilization can be guaranteed
in each of the two following cases: (i) A large portion of the
input tenants are of small size (lower than some threshold),
and/or (ii) Among the large tenants (of at least the threshold),
there are some of size much larger than the threshold.

As in the above we refer to a fat-tree of parameter r with
r2 hosts. The largest set of tenants in a legal LaaS assignment
includes a total of r2 hosts. We refer to a tenant as small
if its requested host number is at most r + 1 and as large
otherwise. We first describe a guarantee to find an assignment
for a demand composed of a dominant portion of small tenants.

Theorem 5: Consider a set of requested tenants composed
of: (i) A proportion α of hosts for small tenants, i.e., a total of
α · r2 requested hosts that belong to small tenants, each of at
most r+1 hosts. (ii) Additional (1−α)/2 ·r2 requested hosts
that belong to large tenants. Then, a legal LaaS assignment
exists for the tenants within a fat-tree of parameter r with r2

hosts. The assignment utilizes a proportion α + (1 − α)/2 =
(1 + α)/2 of the fat-tree hosts.
The above guarantee makes no assumption on the size of the
request for the large tenants (beyond the fact they are indeed
large). In the following, we explain that a stronger guarantee
can be derived as a function of the properties of the large
demands.

Theorem 6: Consider a set of requested tenants composed
of: (i) A total of α · r2 requested hosts that belong to
small tenants, each of at most r + 1 hosts. (ii) Additional⌊
(1 − α) · β

β+1 · r2
⌋
− (r − 1) requested hosts that belong to

tenants, each of size at least β · r for some β ∈ N, β ≥ 2.
Then, a legal LaaS assignment exists for the tenants within a
fat-tree of parameter r with r2 hosts.

V. ISOLATION FOR 3-LEVEL FAT TREES AND

ALGORITHMS

So far we have discussed the LaaS allocation for 2-level
fat-trees. We now extend the results to 3-level fat-trees, which
form the most common cloud topology [6], [8]. We use the
notation of Extended Generalized Fat Trees (XGFT) [40],
which defines fat-trees of h levels and the number of subtrees
at each level: m1, m2, . . . , mh and the number of parent
switches at each level: w1, w2, . . . , wh.

According to Lemma 4, some tenant requests may be denied
because the scheduler cannot find a proper link allocation.

Thus any LaaS algorithm has to validate the feasibility of a
link allocation for each legal host placement.

We consider three approaches to this problem: a Simple
heuristic, a Hierarchical decomposition, and an Approximated
scheme. We conclude with describing the final LaaS algorithm
that we implemented, relying on the Approximated scheme.

A. Simple Heuristic for 3-Level Fat-Trees

The Simple algorithm described in sub-section ’Simple
heuristic algorithm’ is easily extended to any fat-tree size. For
an arbitrary XGFT, first define the number of hosts Rl under a
subtree of level l: R0 = 0, and Rl =

∏l
i=1 mi. Given a tenant

request for N hosts, Simple first determines the minimum level
lmin of the tree that can contain all N tenant hosts:

lmin = min {l| (Rl ≥ N)} (3)

and the number s of required subtrees of level lmin: s =
�N/Rlmin−1�. Then, it places the tenant hosts in s free
subtrees of level lmin. It also allocates to the tenant all the
links internal to these s subtrees; and if s > 1, it allocates as
well all the links connecting the subtrees to the upper level.

It is clear that the Simple heuristic algorithm, by round-
ing up the number of nodes, trades off cluster utilization
for simplicity, non-fragmentation, and greater locality with
lower hop distances. As we show in the evaluation section,
the utilization obtained by this algorithm is low, making it
potentially unacceptable to cloud vendors, so we keep looking
for a better one.

B. Hierarchical Decomposition

In this section we describe how LaaS can be provided to
a 3-level fat-tree using a hierarchical decomposition approach
following the recursive description of fat-trees in [45].

As we showed in the previous sections, since the tenant
traffic pattern may be completely contained within each 2-level
tree, host allocation in each 2-level tree must adhere to Theo-
rem 2. So the number of tenant hosts within the 2-level subtree
j must be of the form Nj = Qj · Dj + Rj . Note that an
allocation that fits in a single leaf switch also follows this
scheme with Qj = 1.

When we consider the conditions required for the high-
lighted FBG2 to support any admissible traffic pattern, it is
strikingly similar to the analysis we provided for the 2-level
fat-tree. For the 2-level tree we already proved that in order
to support any admissible traffic pattern, the sequence of Uj

values must meet the rule U1 ≤ U2 = U3 = . . . = Um3 .
Applying the same to the 3-level tree we obtain a requirement
for the assignments of Uj on each of the FBG2. However,
each one of the FBG1 (there are m3 such 2-level subtrees)
could select a different set of SD

j and SR
j . This means that a

solution could allow each 2-level subtree to select a different
set of FBG2 to carry its flows, as long as the above rule is
maintained for each FBG2.

Fig. 5 shows an example of 3-level fat-tree. We denote
the switches on the tree by their levels (from bottom up)
lvl1, lvl2 and lvl3. For a LaaS link allocation to be feasible,
the condition of Theorem 2 needs to hold not only for
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Fig. 5. 3-level fat-trees with levels lvl1, lvl2 , lvl3. Constraints on the
allocated hosts similar to those of a 2-level fat-tree appear between lvl1 -
lvl2 as well as between lvl2 - lvl3 . In each of the m3 subtrees of lvl1 -
lvl2, a tenant is allocated a number of hosts of the form Nj = Qj ·Dj +Rj .
Similarly, in lvl2 - lvl3 the implied full bipartite graphs (such as the graph
illustrated in red) should satisfy similar properties based on the number Ui,
the number of flows of the tenant connected to some node in lvl2 .

each lvl1-lvl2 2-level subtree but also for each lvl2-lvl3 Full
Bipartite Graph (FBG2) at the top of the tree. One of these
FBGs is highlighted in Fig. 5 and the values of Uj should
satisfy U1 ≤ U2 = U3 = · · · = Um3 for some order of them.

Fig. 5 depicts a Theorem 2-compliant host allocation within
each of the 2-level lvl1-lvl2 subtrees. Within each subtree
j ∈ [1, . . . , m3], the number of allocated hosts follows the
form: Nj = Qj ·Dj +Rj |j ∈ {1 . . .m3}. Within that subtree,
these hosts are connected to some spines in lvl2. Moreover,
the link assignment within the 2-level lvl1-lvl2 subtrees must
also adhere to Theorem 1 such that SR

j ⊂ SD
j . Consequently,

the maximum number Uj of flows leaving the 2-level subtree
from switch s can be either 0 in case s /∈ SD

j , Qj in case
s ∈ SD

j \SR
j , or Qj +1 if s ∈ SR

j . Accordingly, the constraint
on the values U1, . . . , Um3 implies a constraint on the possible
values of hosts in each of the m3 lvl1-lvl2 subtrees.

Unfortunately the above rule still allows a vast amount of
legal tenant-placement and link-allocation possibilities, which
make the full 3-level fat-tree LaaS problem too hard to be
solved optimally in practical time even on high-end processors.
Luckily, our target is to show that there is a simple enough
algorithm that would be able to handle the online LaaS
problem in reasonable time and with reasonable success rate
such that the cluster utilization remains high and LaaS is
guaranteed. We do that by applying a restriction on the solution
space of the hierarchical decomposition.

C. Approximated Algorithm

We provide a simpler algorithm that compromises cluster
utilization in favor of reduction of the solution search space.
Our approximation requires the allocation to be symmetrical
with respect to all the FBG2, i.e. that the allocation on all
the FBG2 is identical and thus calculated just once. So the
solution must use the same number of flows Uj leaving any
one of the lvl2 switches in the same 2-level subtree. Note that
any allocation where the number of tenant hosts Ni connected
to leaf switch i does not include all the hosts on that leaf switch
Ni < m1, will not utilize all the links from that switch to the
upper-level switches. So only a subset of the lvl2 switches in
the same FBG1 is going to pass traffic of that tenant. Thus if
we now consider the lvl2 to lvl3 traffic, not all FBG2 will see
the same Uj . To avoid this we require that D is either 0 or m1

Fig. 6. An example of host placement with N = 32 hosts on a 3-level fat-
tree using the approximated method. Using a notation similar to the 2-level
fat-tree, this allocation is of the form: Q′ = 2, D′ = 3 and R′ = 2. Here,
flows of three hosts are connected each U1 and U2 and two to Ur satisfying
U1 = U2 > Ur .

for all 2-level subtrees, except where the tenant fits within the
same 2-level fat-tree and thus Uj = 0. As a consequence, if a
tenant cannot fit within a single subtree, we round up its size
to a multiple of m1. The host placement can now be performed
in complete leaf switches of m1 hosts. For instance, if each
leaf switch can hold 10 hosts, and a tenant requests N = 267
hosts, then we effectively allocate it N ′ = m1 �N/m1� = 270
hosts.

Moreover, since the approximation in 3-level fat-tree allo-
cates complete lvl1 switches, it is equivalent to the 2-level
LaaS problem: lvl1 switches are equivalent to hosts, lvl2
switches are like leaf switches and lvl3 switches are like
spines. Thus the approximated 3-level fat-tree LaaS problem
has to comply to the same conditions as for the 2-level tree.
We denote the allocation of full lvl1 switches using a similar
notation to the 2-level: Q′ is the number of allocated 2-level
subtrees, each with D′ = Q leaves. Optionally there may
be one additional 2-level subtree with R′ allocated leaves.
N ′ = �N/m1� = Q′ · D′ + R′.

An example of such allocation for a tenant of 32 hosts on a
3-level fat-tree, with 4 hosts per leaf, is provided in Fig. 6. On
the left Q′ = 2 subtrees, the tenant uses D′ = 3 leaves and
thus U1 = U2 = 3 for all FBG2. In addition a single unique
subtree r with R′ = 2 leaves is also allocated and Ur = 2
for all FBG2. So all the FBG2 are thus identical. Each one
of them has to support Q′ lvl2 switches of D′ = 3 flows and
one lvl2 switch with R′ = 2 flows. These requirements meet
the condition of Theorem 2 and thus may be feasible.

D. LaaS Algorithm

We now want to implement our final LaaS algorithm for
concurrent host placement and link allocation in fat-trees.
To do so, we rely on our Approximated approach, and track
the allocated up-links in a matrix similar to Fig. 7(a). The
required set of leaves and links is of the form N = Q ·D+R.
Following the analysis in Section IV-A, in a general fat-tree,
this translates to R spines that connect to all the Q+1 allocated
leaves and D − R spines connected just to the Q repeated
leaves. These requirements are equivalent to finding a set of
Q leaves that have D free up-ports to a common set of spines,
and a single leaf that has only R free up-ports that form a
subset of the spines used by the previous Q leaves.



1080 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 5, MAY 2019

Algorithm 1 LAAS(N )
1: // Try 1 level allocation
2: if N ≤ m1 then
3: for l = 0 to m2 · m3 − 1 do
4: if FLAP (N, 1, 0, l, l, 0, {} , {}) then
5: return true
6: // Try 2 level allocation
7: if N ≤ m1 · m2 then
8: for D = max(N, m1) to 1 do
9: Q =

⌊
N
D

⌋
; R = N − Q · D

10: for l = 0 to m3 − 1 do
11: if FLAP (D, Q, R, l·m2, (l+1)·m2−1, 0, {} , {})

then
12: return true
13: // Try 3 level allocation
14: U =

⌈
N
m1

⌉

15: for D = max(U, m2) to 1 do
16: Q =

⌊
U
D

⌋
; R = U − Q · D

17: if Q ≤ m3 then
18: if FLAP2(D, Q, R, 0, m3 − 1, 0, {} , {}) then
19: return true
20: return false

Fig. 7. Algorithm illustration: Given are two allocated tenants A and B,
with the existence of faulty links X. A third tenant C of 10 hosts needs
to be mapped: (a) shows the allocation of each link connecting leaves and
spines, and (b) displays the corresponding topology. Two possible allocations
for tenant C appear in (a), the first in green solid filling, and the second with
slanted blue lines. In both, the 10 = 2 · 4 + 2 requested hosts are allocated
into three leaves with 4, 4, and 2 hosts in each.

The search for Q leaves with enough common spines
is performed recursively. It may require examining at most
all

(
m2
Q

)
combinations. Our LaaS algorithm returns the first

successful allocation, so trying the most-used leaves first packs
the allocations and achieves the best overall utilization results.

Fig. 7 demonstrates the process of evaluating a specific
D, Q, R division. Consider a new tenant C of 10 hosts,
arranged as 2 leaves of 4 hosts plus 1 leaf of 2 hosts. We show
2 possible placements: The first would use 4 hosts on leaves
4 and 5, and 2 hosts on another leaf 6. The second would
use 4 hosts on leaves 3 and 4, and 2 hosts on another leaf 2.
We also illustrate how we could take into account two faulty
links in our link allocation if needed.

In the following section we describe the algorithm for
mapping free leaves. We refer to a method that calculates the
above examples as FLAP. The recursive function is assuming
the availability of matrix M [l] of free ports on each leaf
switch. It is given the following constants: D, R, Q and the

start and end leaf switch indexes ls, le. The recursive function
provides its current state on the recursion using the following
variables: l represents the current leaf index to examine, r the
number of Q size leaves that were already found, {ports}
the set of ports that are possible for this allocation, {rl}
the collected set of, so far, Q size leaves. Eventually the
recursion provides the following results: {DL} set of leaves
with Q hosts, {DPORTS} the set of ports to be used by the Q
size leaves, UL the unique, sized R, leaf and {UPORTS} the
ports on that leaf. The higher level algorithm considering the
possible valid combinations of Q, D and R, for 2-level and
3-level fat-trees is provided in Algorithm 1.

VI. EVALUATION

Our evaluation is reported in three sub-sections. The first
deals with the resulting cloud utilization when applying LaaS
conditions. It shows that our LaaS algorithm reaches a rea-
sonable cloud utilization, within about 10% of bare-metal
allocation. The second part describes the system implemen-
tation on top of OpenStack, and the third part shows how the
LaaS architecture improves the performance of a tenant in the
presence of other tenants through a complete tenant isolation.

A. Evaluation of Cloud Utilization

1) Cloud Utilization: We want to study whether our LaaS
network isolation constraints significantly reduce the number
of hosts that can be allocated to tenants. We define the cloud
utilization as the average percentage of allocated hosts in
steady state. Assuming that tenants pay a fee proportional
to the number of used hosts and the time used, the cloud
utilization is a direct measure of the cloud provider revenue.

2) Scheduling Simulator: To evaluate the different heuristics
on large-scale clouds, we developed a scheduling simulator
that runs many tenant requests over a user-defined topology.
The simulator is configured to run any of the above algorithms
for host and link allocation. This algorithm may succeed and
place the tenant, or fail. We use a strict FIFO scheduling, i.e.
when a tenant fails, it blocks the entire queue of upcoming
tenants. Note that this blocking assumption forms an extremely
conservative approach in terms of cloud utilization. In practice,
clouds would typically not allow a single tenant to block the
entire queue and use resource reservation with back-filling
techniques to overcome such cases. Since smaller tenants are
easier to place, for any tenant size distribution, not letting
smaller tenants bypass those waiting means that we fill fewer
tenants into the cloud. Thus, the result should be regarded as
an intuitive lower-bound for a real-life cloud utilization.

3) Settings: We simulate the scheduler with LaaS algorithm
on the largest full-bisectional-bandwidth 3-level fat-tree net-
work that can be built with 36-port switches, i.e. a cloud of
11,664 hosts. The evaluation uses a randomized sequence
of 10,000 tenant requests. A random run-time in the range
of 20 to 3,000 time units is assigned to each tenant. The
variation of run-time makes scheduling harder as it increases
fragmentation.

We evaluate 2 distribution types for the number of hosts
requested by the tenants. First, we randomly generate sizes
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Fig. 8. Cloud utilization evaluation with Julich JUROPA job scheduler traces.
(a) Measured job-size cumulative distribution function (CDF), with peaks in
sizes that are powers of two. (b) Resulting cloud utilization. LaaS achieves
88%. The unconstrained host allocation does not each 100% due to possible
failure upon receiving a request larger than the number of currently available
hosts. Simple trades off cluster utilization for simplicity, through rounding up
the number of allocated nodes.

according to a job size distribution extracted from the Julich
JUROPA job scheduler traces. These previously-unpublished
traces represent 1.5 years of activity (Jan. 2010 – June 2011) of
a large high-performance scientific-computing cloud. Second,
we use a truncated exponential distribution of variable average
x. It is truncated between 1 and the cluster size.

In order to measure the utilization loss we fill the cluster
with tenants by assuming all tenant requests are available at
simulation start. Tenants’ run-time is randomized with uniform
distribution from 10 to 3000 time units.

As a baseline algorithm, we implement an Unconstrained
placement approach that simply allocates unused hosts to the
request, as in bare-metal allocation. Note that some requests
may still fail if the tenant requests more hosts than the number
of currently-free cloud hosts. We compare this baseline to the
Simple and LaaS algorithms, as described in Section IV.

4) Simulation Results: Fig. 8(a) illustrates the Cumulative
Distribution Function (CDF) of the tenant sizes (in number
of hosts) collected from the Julich JUROPA cluster. The
CDF shows peaks for numbers of hosts that are powers of 2
(1, 2, 4, 8, 16, and 32). We further generated 10,000 tenants
with this job-size distribution, and the same random run-time
distribution as above (instead of the original run-times, since
they resulted in a low load, and therefore in an easy allocation).
Fig. 8(b) shows the tenant allocation results: again, the cost
of our LaaS allocation versus the Unconstrained bare-metal
provisioning is about 10% of cloud utilization (88% vs. 98%).

To further test the sensitivity of our algorithm to the tenant
sizes, we use a truncated exponential distribution for tenant
host sizes and modify the exponential parameter x. The distrib-
ution of the JUROPA tenant sizes is similar to such a truncated
exponential distribution. Fig. 9 illustrates the cloud utilization
for Unconstrained, Simple, and LaaS, is plotted as a function
of the exponential parameter x, which is close to the average
tenant host size due to the truncation. The Unconstrained line
shows how the utilization degrades with the job size, even
without any network isolation. This is an expected behavior of
bin packing. As the job size grows, so does the probability for
more nodes to be left unassigned when the cloud is almost full.
The utilization of our LaaS algorithm stays steadily at about
10% less than the Unconstrained algorithm. Finally, Simple

Fig. 9. Impact of request size on cloud utilization. The requested tenant size
distribution is truncated according to various average tenant size following
exponential distribution in a cloud of 11,664 hosts. In both LaaS and
unconstrained, the utilization degrades with the tenant size but remains better
than that of simple.

Fig. 10. Impact of request average size and its deviation on cloud utilization:
A truncated Gaussian distribution N (x, α) for tenant host sizes in a cloud
of 11,664 hosts for α ∈ {0, x/10, x/5}, where the average tenant size is
x ≤ 4000. Without deviation, we can see a sawtooth shape. When size
deviations are positive, the larger deviations allow smmothness in curves.

has the lowest cloud utilization for the entire tenant size range.
Note that it is less steady, since its utilization is more closely
tied to the sizes of the leaves and subtrees. Once the tenant
size crosses the leaf size (18 in our case), it is rounded up
to a multiple of that number. Likewise, once it crosses the
size of a complete subtree (324 hosts), it is rounded up to
the nearest multiple of that number. These results show that
our LaaS algorithm provides an efficient solution for avoiding
tenant variability, as its cost is only about 10% for a wide
range of tenant sizes.

Simple suffers from a particularly large fluctuation in uti-
lization. LaaS is more stable over the entire range, with about
90% utilization. There are a few points where the Simple
heuristic provides a better utilization than LaaS. But, note that
utilization stability is key to cloud vendors, since changing the
allocation algorithm dynamically would require predicting the
future size distribution, and thus may produce worse results
when the distribution does not behave as expected.

Fig. 10 plots the LaaS Approximation utilization for differ-
ent spreads of tenant sizes around the average. We refer to the
same cloud size of a total of 11,664 hosts. A standard deviation
of x/5, x/10 and 0 are shown where an average tenant size of
x is considered up to roughly 4000. The zero deviation curve
exhibits the expected saw-tooth shape that is caused by the fact
that it is possible to get 100% utilization when the tenant size
is a divisor of the number of nodes. As the deviation of the
tenant sizes grows, so does the smoothness of the curve. This
is common to all scheduling algorithms behavior providing
the peaks and valleys around the job sizes crossing the single
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Fig. 11. Impact on cloud utilization of request average size selected
with a uniform distribution. Cloud utilization vs. average tenant size for
10,000 requests with uniform (0.2×,1.8×) size distribution.

leaf or subtree size. Most significantly, up to an average tenant
size of several hundreds of hosts, the utilization typically stays
above 90%, which is very encouraging for our algorithm.

Fig. 11 presents the utilization obtained for a uniform
distribution of the tenant sizes with a large variance. As can
be seen there is a clear advantage to the LaaS Placement
heuristic that maintains a utilization of about 90% from the
unconstrained host assignment. Moreover, for larger average
tenant sizes, the performance of the LaaS Placement is even
closer to that of the unconstrained.

B. System Implementation

We implemented the LaaS architecture by extending the
OpenStack Nova scheduler with a new service that first runs
the LaaS host and link allocation algorithm, and then translates
the resulting allocation to an SDN controller that enforces the
link isolation via routing assignments.

1) Host and Link Allocation: The integration of the LaaS
algorithm was done on top of OpenStack (Icecube release), uti-
lizing filter type: AggregateMultiTenancyIsolation. This filter
allows limiting tenant placement to a group of hosts declared
as an “aggregate”, which is allocated to the specific tenant
id. Our automation, provided as a standalone service on top
of OpenStack’s nova controller, obtains new tenant requests,
and then calls the LaaS allocation algorithm. If the allocation
succeeds, we invoke the command to create a new aggregate
that is further marked by the tenant id. The allocated hosts
are then added to the aggregate. The filter guarantees that a
new host request, conducted by a user that belongs to a specific
tenant, is mapped to a host that belongs to the tenant aggregate.

2) Network Controller: We further implement a method
to provide the link allocation to the InfiniBand SDN con-
troller [3], which allows it to enforce the isolation by chang-
ing routing. The controller supports defining sub-topologies,
by providing a file with a list of the switch ports and hosts that
form each sub-topology. Then each sub-topology may have its
own policy file that determines how it is routed.

3) Run-Time: The LaaS Approximation scans through all
possible placements for valid link allocation. This involves
evaluating all possible valid combinations of R and Q values.
Fig. 12 presents the average run-time per tenant request for
placing tenants on 11,664 nodes cluster providing a truncated
exponential tenant size distribution. Run time was measured
on an Intel® Xeon® CPU X5670 @ 2.93GHz. The peak in run-
time of about 5 msec appears just below the average tenant

Fig. 12. Run-time of single tenant allocation vs. average tenant size. The
average allocation time for a tenant is often smaller than 1 msec. It rises up to
5 ms for tenant sizes closer to 324 hosts. For slightly smaller tenant requests,
a large number of allocations has to be considered in a single subtree.

Fig. 13. Simulated relative performance for tenants running stencil scientific-
computing applications on a cloud of 1,728 hosts, either alone or as 32 concur-
rent tenants. While tenant performance degrades when placed unconstrained
(without link isolation), the performance of single and multiple tenants with
LaaS appears identical, fulfilling the promise of LaaS.

size of 324, which is the exact point where our algorithm
first scans all possible placements under a single subtree and
continues with multiple subtree placement.

C. Evaluation of Tenant Performance

Since LaaS guarantees tenant isolation, tenant performance
should be independent of the number of other tenants that run
on the same network. To demonstrate LaaS tenant isolation,
we simulate a large cluster using a well known InfiniBand flit
level simulator used for instance by [20].

Fig. 13 presents the relative performance of single and mul-
tiple tenants running Stencil scientific-computing applications
on a cloud of 1,728 hosts, under either Unconstrained or LaaS,
normalized by the performance of a single tenant placed
without constraints. The figure illustrates many effects. First,
the performance of a single tenant with Unconstrained sig-
nificantly degrades when other tenants are active, e.g., to
45% with 32-KB message sizes. This is because the bare-
metal allocation of Unconstrained does not provide link iso-
lation. Second, under our LaaS algorithm, the single-tenant
performance is not impacted when the other tenants become
active (the third and fourth sets of columns look identical).
This was the key goal of this work. LaaS prevents any inter-
tenant traffic contention. Finally, we can observe an additional
surprising effect (first vs. third sets of columns): the tenant
performance is slightly improved for small messages under
LaaS versus the Unconstrained allocation. The reason is that
LaaS does not accept tenants unless it can place them with no
contention, and therefore the resulting placement tends to be
tighter, thus improving the run-time performance with small
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message sizes when the synchronization time of the tasks is
not negligible. The lower network diameter of LaaS improves
the synchronization time, which is latency-dominated.

VII. CONCLUSIONS

In this paper, we demonstrated that the interference with
other tenants causes a performance degradation in cloud appli-
cations that may exceed 65%, and argued that it is a hurdle to
network softwarization in shared clouds. We introduced LaaS
(Links as a Service), a novel cloud allocation and routing tech-
nology that provides each tenant with the same bandwidth as
in its own private data center. We showed that LaaS completely
eliminates the application performance degradation. We further
explained how LaaS can be used in clouds today without any
hardware change, and showed how it can rely on open-source
software code we contributed. Finally, we also used tenant-
size statistics of a large scientific-computing cloud, obtained
over a long time period, to construct a random workload that
illustrates how isolation is possible at the cost of some 10%
cloud utilization loss.

We have analyzed how to find a LaaS assignment without
any utilization reduction for fat-tree sizes of a bounded size.
A natural open question is whether such a LaaS assignment
without reduction exists for any fat-tree size, and if so, whether
finding it can be performed by a polynomial-time algorithm.
Another possible extension would be to generalize the iso-
lation definition, letting any link to be shared by a bounded
number of tenants. Understanding the tradeoff between poten-
tially higher utilization and degraded performance for that
generalization is also left to future work.
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