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Abstract—With the rise of datacenter virtualization, the num-
ber of entries in the forwarding tables of datacenter switches
is expected to scale from several thousands to several millions.
Unfortunately, such forwarding table sizes would not fit on-chip
memory using current implementations.

In this paper, we investigate the compressibility of forwarding
tables. We first introduce a novel forwarding table architecture
with separate encoding in each column. It is designed to keep
supporting fast random accesses and fixed-width memory words.
Then, we show that although finding the optimal encoding is NP-
hard, we can suggest an encoding whose memory requirement per
row entry is guaranteed to be within a small additive constant of
the optimum. Next, we analyze the common case of two-column
forwarding tables, and show that such tables can be presented
as bipartite graphs. We deduce graph-theoretical bounds on
the encoding size. We also introduce an algorithm for optimal
conditional encoding of the second column given an encoding of
the first one. In addition, we explain how our architecture can
handle table updates. Last, we evaluate our suggested encoding
techniques on synthetic forwarding tables as well as on real-life
tables.

Index Terms—Datacenter Virtualization, Layer-2 Datacenter,
Forwarding Information Base, Compression.

I. INTRODUCTION

A. Background

The rapid growth of forwarding tables in network switches
raises serious concerns in the networking industry. Layer 2
(L2) networks are no longer constrained to small local area
networks. On the contrary, they are now used in datacenter
networks, which will soon have a need for millions of hosts
in a single L2 domain, while current L2 domains are only
restricted to several thousands [2]. As a result, current for-
warding tables cannot handle such datacenter networks.

The main driver of this expected dramatic growth rate
is the deployment of host virtualization in datacenter net-
works. Whereas traditional servers would only use one or
two globally-unique MAC addresses per server, contemporary
servers use tens of MAC addresses, corresponding to their
tens of virtual machines (these generated MAC addresses
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are not necessarily globally unique anymore). Assuming one
MAC address per thread, and considering the joint increase of
the numbers of (a) threads per core, (b) cores per processor
(socket), (c) sockets per server, and (d) servers per datacenter,
it is clear that the product of all these numbers is expected to
dramatically increase in the coming years [2]–[4]. In addition
to this expected strong growth in the number of entries per
forwarding table, we can also expect a moderate growth in the
number of attributes per entry, such as the quality-of-service
and security attributes, as well as in the size of these attributes.
All in all, we need to be able to handle dramatically larger
forwarding tables.

Unfortunately, forwarding tables must be accessed on a
per-packet basis. Therefore, they are performance sensitive.
Because of the high datacenter rates, they are often imple-
mented in hardware using on-chip memory. This makes scaling
forwarding tables challenging, because on-chip memory is
too small to hold millions of forwarding-table entries in raw
form [5], [6].

The goal of this paper is to study the compressibility of
forwarding tables, providing both an analytical framework and
experimental insight toward the effective compression of such
tables.

B. Compressing Forwarding Tables

Forwarding tables, also referred to as Forwarding Informa-
tion Bases (FIBs), consist of several entries, which associate
a lookup key to its corresponding forwarding information.
For instance, the lookup key can be a (destination MAC
address, VLAN) pair, and the forwarding information can
include the switch target port, the quality-of-service attributes,
the security attributes, and additional information used for
various modifications that need to be applied to the packet.

Forwarding tables are typically arranged as two-dimensional
tables. Each row entry in a forwarding table corresponds to
a different lookup key, and contains several columns, with
the lookup key and forwarding information. Forwarding tables
can then be accessed using a hashing mechanism. Upon each
incoming packet, the packet lookup key is hashed into one (or
several) of the hash table entries. If this entry indeed contains
the lookup key, then the forwarding table returns the associated
forwarding information.

Forwarding tables are typically redundant, because their
fields (columns) can have a highly non-uniform value dis-
tribution, and because the values in different fields can be
correlated. Therefore, we are interested in studying whether



Fig. 1. An illustration of an access to the encoded forwarding table. First,
the packet lookup key is hashed to obtain an entry index i ∈ [1, h]. Then,
a single encoded entry of (at most) P bits is retrieved. Finally, d pipelined
accesses to d dictionaries are performed based on the d binary codewords (of
different lengths) composing this encoded entry.

these properties can be used to compress them. However, we
would like to keep two key properties that are specific to
forwarding tables:
(i) The ability to access each row entry directly regardless of
its row index, and
(ii) The ability to store each row entry in a fixed-width memory
word.

Such criteria prevent or make less attractive traditional en-
coding techniques. For instance, if the entries are compressed
using a Lempel-ZivWelch (LZW) technique and sequentially
stored in the memory, it is then difficult to calculate the
memory address of a specific entry, and to access it directly
based on its entry index.

C. Overview of the Suggested Solution

As illustrated in Figure 1, we suggest a novel compression
technique for forwarding tables that supports random accesses.

We propose to encode each of the forwarding-table columns
separately, using a dedicated variable-length binary prefix
encoding, i.e. an encoding in which any codeword is not a
prefix of any other codeword. We remind that a prefix of a
string b1b2 . . . bn, is a string of the form b1b2 . . . bm where
m ≤ n. Therefore, each row entry in a d-column table is
represented by the concatenation of d codewords representing
the content of each of its d fields. Accordingly, its width equals
the sum of the d corresponding codeword lengths. For each
row entry we allocate a fixed memory size P . In addition,
each column j is associated to a dictionary Dj , which is
stored separately in the memory. This dictionary Dj maps each
binary codeword into its represented field value in column j.

Figure 1 illustrates an access to the encoded forwarding
table. At each packet arrival, we first hash the packet lookup
key to obtain an entry index i ∈ [1, h]. Then, we access the
encoded table to retrieve the P bits representing the encoding
of its ith entry. Last, we look up each of the d dictionaries
in a pipelined manner. This way, we sequentially obtain the
corresponding values of the d fields in the ith entry after d
pipelined lookups.

Note that the combination of the bounded-width entry
property and the prefix property of individual fields yields our
two desired properties specified above.

(A) The original forwarding table
MAC Address VLAN Target Port
00:1b:2b:c3:4d:90 Vlan10 Te12/1
00:00:aa:6c:b1:10 Vlan10 Gi11/8
00:00:aa:65:ce:e4 Vlan10 Te12/1
00:00:aa:65:ce:e4 Vlan200 Gi11/24
00:13:72:a2:a2:0e Vlan200 Gi11/24
00:21:9b:37:7e:14 Vlan10 Te12/1
00:13:72:a2:a2:0e Vlan200 Gi11/8

(B) Encoding
110 0 0
00 0 10
01 0 0
01 1 11
10 1 11
111 0 0
10 1 10

(C) The encoding dictionaries
D1 (MAC Address) D2 (VLAN) D3 (Target Port)
00 - 00:00:aa:6c:b1:10 0 - Vlan10 0 - Te12/1
01 - 00:00:aa:65:ce:e4 1 - Vlan200 10 - Gi11/8
10 - 00:13:72:a2:a2:0e 11 - Gi11/24
110 - 00:1b:2b:c3:4d:90
111 - 00:21:9b:37:7e:14

TABLE I
AN EXAMPLE OF A FORWARDING TABLE WITH d = 3 COLUMNS AND ITS

ENCODED REPRESENTATION. (A) SHOWS THE ORIGINAL TABLE WITHOUT
ENCODING. THE ENTRY SELECTION MECHANISM IS NOT PRESENTED. (B)
ILLUSTRATES THE CORRESPONDING ENCODED FORWARDING TABLE WITH

A MAXIMAL ENCODED ENTRY WIDTH OF P = 5 BITS. (SPACES ARE
PRESENTED JUST FOR SIMPLICITY AND DO NOT EXIST IN PRACTICE.) (C)

DESCRIBES THE d = 3 DICTIONARIES REPRESENTING THE PREFIX
ENCODINGS OF THE d COLUMNS.

Example 1. Table I presents an example of a forwarding table
and a possible encoding of that table. There are h = 7 entries
in the table, each with d = 3 fields: MAC Address, VLAN and
Target Port.

First, Table (A) presents the original table without encoding.
Next, Table (B) illustrates a possible encoding of the for-

warding table (the presented spaces in the encoded table are
just shown to distinguish between the different fields, and do
not exist in practice). For instance, the two possible values in
the VLAN field are encoded by a simple fixed-length single-
bit encoding. In addition, variable-length encodings are used
to encode the three distinct values in the Target Port field,
as well as the five distinct values of the MAC Address field.
With these d = 3 encodings, the obtained maximal width of
an encoded entry is P = 5 bits. Thus, in order to support
the random-access requirement, we keep P = 5 bits in the
memory for each encoded entry, even if it may actually be
shorter. For instance, the third entry only needs 4 bits, and
therefore wastes 1 bit.

Finally, Table (C) illustrates the encodings used by the d =
3 dictionaries representing the d = 3 columns. The number of
entries in each dictionary equals the number of distinct values
in the corresponding column in (A).

This example illustrates how prefix encoding enables us
to simply concatenate the codewords without a need for any
additional separating flags.

In addition, it also shows how the memory size is directly
determined by the worst-case entry width, i.e. the maximum
number of concatenated bits per entry. This is one reason for
example why encoding each column using Huffman coding [7]
would not necessarily address this problem: while it is optimal
for the average entry width, it may yield a worst case that ends
up wasting a significant number of bits. Therefore, for a given



forwarding table with d columns, our goal is to suggest a
set of d prefix encodings that minimizes the maximal encoded
entry width. This makes it particularly hard, because each entry
width involves all columns, and the maximal one also involves
all row entries. Therefore, any strong solution may need to
jointly look at all the elements.

D. Related Work

The forwarding table scaling problem has been thoroughly
analyzed and discussed in networking industry forums and
standards organizations, both in the L2 and the L3 layers
(e.g. [2], [4]–[6], [8], [9]). These analyses raise the concern
that the steep growth rate of forwarding tables has outrun the
steady technology growth rate of memory density.

Various creative methods have been proposed to mitigate
this scaling problem. First, FIB aggregation [10] is an ap-
proach that reduces the size of a forwarding table by aggregat-
ing table entries with the same values of the next hop field. For
instance, two prefix rules that differ only on their last bit can
be combined to a single prefix with a shorter prefix. Likewise,
a prefix may be eliminated due to redundancy achieved by
a shorter prefix with the same next hop. A similar approach
is presented in [11]–[14]. For instance, in [12] an optimal
representation is found based on dynamic programming where
in each rule the value of the next hop can be selected among a
short list of possible values. However, this approach assumes
that the routing table has a tree structure, i.e. the rules have
the form of prefixes in an address field (usually IP address)
and cannot be applied in the case of more general fields, such
as an exact MAC address with a corresponding attribute.

In addition, there have been studies in other related fields.
Clearly, in information theory, there are many results on com-
pression and on lower bounds based on entropy [7]. Likewise,
database implementations also attempt to scale systems by
introducing compression techniques [15]–[17]. In particular,
in [15] a dictionary-based solution that supports delete and
update operations is suggested. A field value is inserted into
the dictionary and encoded based on its length and its number
of occurrences. Likewise, a block of data is compressed only
if its compression ratio is beyond a threshold. However, these
studies do not consider the forwarding table restrictions that
we mention above, and in particular the bounded entry length.
Recently, [18] studied how to maximize the probability of
encoding random entries within a fixed-width memory.

Our solution can be considered as a type of topologi-
cal transformation. Most of the related approaches suggest
TCAM-based solutions and mainly discuss range encod-
ing [19]–[21]. Our solution can be applied to a more general
class of tables and is not necessarily based on TCAM.

Finally, as mentioned, an orthogonal and complementary
consideration is the implementation of the forwarding table
using hashing, in order to easily find the row that corresponds
to a given key [22].

E. Contributions

This paper investigates a novel technique for the efficient
representation of forwarding tables in datacenter switches,

with a support for fast random access and fixed-width memory
words.

We start by studying an offline encoding scheme for a given
static FIB table. We prove that it is possible to formulate
the encoding problem as an optimization problem, and that
the relaxed optimization problem is convex. As a result,
we propose a novel algorithm that achieves, for any given
forwarding table with d columns, the optimal worst-case entry
width within a guaranteed constant additive factor of d − 1,
independently of their values and of the number of rows.

Next, we also prove that the general optimization problem
is NP-hard, as long as there are at least d = 7 columns. We
do so by presenting a reduction from the 3 − SAT decision
problem. Therefore, there is little hope for a practical optimal
algorithm.

In addition, we also consider the special case of forwarding
tables with d = 2 columns, which may only consist of the
key and the action. We first suggest tight upper and lower
bounds on the optimal encoding width of a two-column table
in the general case. We also show a sufficient condition
for a fixed-length encoding to be optimal. Moreover, we
present an optimal conditional encoding of a second column
when the encoding of one column is given. Later, we also
introduce a bipartite graph that can model the forwarding
table, and present additional graph-theoretic bounds on its
optimal encoding width. These improved bounds rely on the
combinatorial properties of the graph, such as the size of its
edge cover.

Finally, we also discuss the limits of our offline model, by
analyzing how our compressed forwarding tables may be able
to handle updates. We show that an additional bit per column
and an additional small memory may be sufficient to cope with
temporary loads of entry additions, modifications or deletions.

We conclude by evaluating the suggested encoding tech-
niques on real-life forwarding tables as well as on synthetic
tables. We demonstrate how our introduced techniques fare
against alternative algorithms such as fixed-length and Huff-
man coding. In particular, we get closer to the compression
lower bound, albeit at the cost of an increased complexity.

II. MODEL AND PROBLEM FORMULATION

A. Terminology

We start with the formal definition of terminology used in
this paper. For a binary codeword (string) x, let ℓ(x) denote
the length in bits of x.

Definition 1 (FIB Table). A FIB table A =
((a1

1, . . . , a
1
d), . . . , (a

h
1 , . . . , ah

d)) is a two-dimensional
matrix of h rows (entries) and d columns (fields).

Given a FIB table A, we denote by Sj (for j ∈ [1, d]) the
set of element values in the jth column, i.e. Sj =

∪h
i=1{ai

j}.
We also denote by nj the number of distinct elements in the jth

column, i.e. nj = |Sj |. Let sj,1, . . . , sj,nj denote the elements
of Sj .

For example, in Table I, there are n3 = 3 values in the third
column, and S3 = {Te12/1,Gi11/8, Gi11/24}.



Definition 2 (Prefix Encoding). For a set of elements S, an
encoding σ is an injective mapping σ : S → B, where B is
a set of binary codewords of size |B| = |S|. An encoding is
called a prefix encoding if no binary codeword in B is a prefix
(start) of any other binary codeword in B.

Definition 3 (FIB Encoding Scheme). An encoding scheme
CA of a FIB Table A is an ordered set of d prefix encodings
CA = (σ1, . . . , σd). That is, each σj encodes column j, and
is constrained to be a prefix encoding.

Definition 4 (FIB Encoding Width). Let CA = (σ1, . . . , σd)
be a FIB encoding scheme of the FIB table A. The encoding
width ℓ(CA) of CA is defined as the maximal sum of the
lengths of the d codewords representing the d elements in a
row of A, i.e.

ℓ(CA) = max
i∈[1,h]

 d∑
j=1

ℓ(σj(ai
j))

 . (1)

Example 2. Let A be the FIB table from Example 1 with
h = 7, d = 3, also described in Table I.(A). Likewise, let
CA = (σ1, σ2, σ3) be the FIB encoding scheme of A. Then,
as shown in Table I.(C), σ3(Te12/1) = 0, σ3(Gi11/8) = 10,
σ3(Gi11/24) = 11. As described in Table I.(B), ℓ(CA) =
maxi∈[1,h]

( ∑d
j=1 ℓ(σj(ai

j))
)

= max
(
5, 5, 4, 5, 5, 5, 5

)
=

5.
Let’s compare this scheme with a fixed-length encoding of

each column. Since the number of distinct elements in the
d = 3 columns of A are n1 = 5, n2 = 2 and n3 = 3, if IA a
fixed-length encoding of A then the elements in the jth column
are encoded in ⌈log2 nj⌉ bits, and ℓ(IA) =

∑d
j=1 ⌈log2 nj⌉ =

3 + 1 + 2 = 6.

B. Optimal FIB Table Encoding Scheme

For each FIB table A, we denote by OPT (A) the optimal
encoding width of A, i.e. the smallest possible encoding width
of any encoding scheme of A such that

OPT (A) = min
CA=(σ1,...,σd)

ℓ(CA). (2)

Our goal is to find an encoding scheme CA that minimizes the
encoding width ℓ(CA), and therefore reaches this minimum.

III. GENERAL FIB TABLES

A. Optimization Problem

We first want to rewrite the problem of finding the optimal
encoding scheme for any FIB table A as an optimization
problem.

First, it is well known that the set of codeword lengths in
a prefix encoding exists iff it satisfies Kraft’s inequality [7].

Property 1 (Kraft’s inequality). There exists a prefix en-
coding σ of the elements in a set S with codeword lengths
{ℓ(σ(a))|a ∈ S} iff ∑

a∈S

2−ℓ(σ(a)) ≤ 1. (3)

Therefore, we can now formally present the problem of
finding an optimal FIB table encoding scheme for table A =
((a1

1, . . . , a
1
d), . . . , (a

h
1 , . . . , ah

d)) as the following optimization
problem.

min P

s.t.
d∑

j=1

ℓ(σj(ai
j)) ≤ P ∀i ∈ [1, h] (4a)∑

a∈Sj

2−ℓ(σj(a)) ≤ 1 ∀j ∈ [1, d] (4b)

ℓ(σj(a)) ≥ 0 ∀j ∈ [1, d], ∀a ∈ Sj (4c)
ℓ(σj(a)) ∈ Z ∀j ∈ [1, d], ∀a ∈ Sj (4d)

In this optimization problem, we try to minimize the max-
imal encoding width of a row (denoted here by P ) while
having four sets of constraints. The first set (4a) represents the
limitation on the total width of each row. The second set of
constraints (4b) requires that each of the encodings σ1, . . . , σd

should satisfy Kraft’s inequality. The last two sets (4c, 4d)
illustrate the fact that the codeword length of any element
should be a non-negative integer (the constraints (4b) and (4c)
together guarantee that if the number of distinct elements in a
column is at least two, the codeword lengths are positive). For
an optimal solution to this optimization problem, the equality
P = OPT (A) is satisfied.

The optimization problem can be also described as being
dependent only on the codeword lengths. To do so, we
replace (for j ∈ [1, d], a ∈ Sj) the value of ℓ(σj(a)) by a
corresponding variable. In addition, it is easy to derive the
sets of codewords given their lengths. To do so, we can find
for an encoding σi (for i ∈ [1, d]), the codewords of the
elements of Si in an increasing order of their required lengths.
For each element x ∈ Si, we allocate an arbitrary codeword
σi(x) in the required length such that none of the previously
allocated codewords (for this encoding) is a prefix of the
current codeword. It is easy to verify that Kraft’s inequality
guarantees that such allocation is always possible.

We also denote by the relaxed FIB encoding problem the
problem achieved by omitting the fourth set of constraints
(4d). In this relaxed problem, the codeword lengths are not
necessarily integers.

B. Approximation of the Optimal Encoding

We now describe how to obtain a concrete efficient encoding
scheme for any given forwarding table with an arbitrary
number of columns. We find for each table A of d columns,
a solution to the FIB encoding problem that is guaranteed
to be within a fixed additive approximation of the optimal
encoding width OPT (A). More specifically, we find an en-
coding scheme CA with encoding width ℓ(CA) that satisfies
ℓ(CA) ≤ OPT (A) + (d− 1), i.e. its encoding width is larger
than the optimal encoding width (in bits) by at most the
number of columns in A minus one. We emphasize that this
bound on the additive error of (d− 1) depends neither on the
number of distinct elements nj ≤ 2Wj (for j ∈ [1, d]) in each
of the columns, nor on the number of rows h in A.



To obtain such an encoding, we consider the relaxed FIB en-
coding problem defined above, in which the codeword lengths
are not necessarily integers. We show that this optimization
problem is convex, and thus its solution can be found by one
of several known algorithms for such problems. We then build
as a solution to the original optimization problem, an encoding
with codeword lengths achieved by taking the ceiling of each
of the codeword lengths in the solution of the relaxed problem.
We show that these new codeword lengths lead to an encoding
that satisfies the additive approximation from above.

Theorem 1. Let
(
ℓ(σ̄j(sj,1)), . . . , ℓ(σ̄j(sj,nj ))

)
(for j ∈

[1, d]) be the codeword lengths of an optimal solution to the
relaxed FIB encoding problem. Further, let CA = (σ1, . . . , σd)
be an encoding scheme satisfying ℓ(σj(sj,i)) = ⌈ℓ(σ̄j(sj,i))⌉
for all j ∈ [1, d], i ∈ [1, nj ]. Then we have:
(i) The relaxed FIB encoding problem is convex.
(ii) The encoding width ℓ(CA) of the encoding scheme CA

satisfies

ℓ(CA) ≤ OPT (A) + (d − 1). (5)

Proof: We first examine the convexity of the relaxed prob-
lem. Clearly, its simple objective function is convex. We would
like to show that each of the inequality constraint functions (as
a function of the codeword lengths) is convex as well. Simply,
constraints in the first and the third sets of inequality con-
straints (4a, 4c) are convex due to their linearity. In addition,
we would now like to examine the convexity of the second set
of constraints (4b) representing Kraft’s inequality. To do so,
we define d functions f1, . . . , fd for the constraints on each of
the d prefix encodings. The function fj (for j ∈ [1, d]) receives
as a parameter the set of codeword lengths of the elements in
Sj . The function fj

(
ℓ(σj(sj,1)), . . . , ℓ(σj(sj,nj ))

)
is defined

as
∑

a∈Sj
2−ℓ(σj(a)) =

∑nj

i=1 2−ℓ(σj(sj,i)).
We consider two arbitrary encoding

schemes (σ̄1, . . . , σ̄d), (σ̂1, . . . , σ̂d) with code-
word lengths

(
ℓ(σ̄j(sj,1)), . . . , ℓ(σ̄j(sj,nj ))

)
,(

ℓ(σ̂j(sj,1)), . . . , ℓ(σ̂j(sj,nj ))
)

for the elements in Sj

for j ∈ [1, d], respectively. We would like to show that
fj(α · σ̄ + β · σ̂) ≤ α · fj(σ̄) + β · fj(σ̂) for all j ∈ [1, d]
and α, β ∈ [0, 1] with α + β = 1. Here, when performing
linear operations on the set of codeword lengths, we refer to
a new set of codeword lengths, so that each of its codeword
lengths is obtained by performing the linear operations on
the corresponding length in the original set. Based on the
convexity of the function g(x) = 2−x, we have

fj(α · σ̄ + β · σ̂) =
nj∑
i=1

2−
(
α·ℓ(σ̄j(sj,i))+β·ℓ(σ̂j(sj,i))

)
≤

nj∑
i=1

(
α · 2−ℓ(σ̄j(sj,i)) + β · 2−ℓ(σ̂j(sj,i))

)
= α ·

nj∑
i=1

2−ℓ(σ̄j(sj,i)) + β ·
nj∑
i=1

2−ℓ(σ̂j(sj,i))

= α · fj(σ̄) + β · fj(σ̂). (6)

Based on these properties, we can finally deduce that the re-
laxed FIB encoding problem is convex. With this observation,

an optimal solution, i.e. a generalized encoding (with non-
necessarily integer codeword lengths) can be found by using
one of the several known (polynomial time) algorithms for
such convex problems (e.g. the ellipsoid algorithm [23]). Let
us denote by (

ℓ(σ̄j(sj,1)), . . . , ℓ(σ̄j(sj,nj
))

)
the codeword lengths of an optimal solution to the relaxed
problem. Let OPTr(A) = maxi∈[1,h]

( ∑d
j=1 ℓ(σ̄j(ai

j))
)

be
the maximal encoding width of a row in this optimal solution
of the relaxed problem. Again, OPTr(A) is not necessarily
integer. Clearly, since the set of constraints in the relaxed prob-
lem is a subset of the constraints in the FIB encoding problem,
the inequality OPTr(A) ≤ OPT (A) holds. Further, since
OPT (A) is an integer, we have that ⌈OPTr(A)⌉ ≤ OPT (A),
i.e. ⌈OPTr(A)⌉ is a lower bound for OPT (A). Clearly, since
ℓ(σj(sj,i)) = ⌈ℓ(σ̄j(sj,i))⌉ ≥ ℓ(σ̄j(sj,i)), all the d constraints
representing Kraft’s inequality, satisfied by the solution of the
relaxed problem, are also satisfied by the set of codeword
lengths in CA = (σ1, . . . , σd).

We now show that the encoding width of the encoding
scheme CA is within a guaranteed additive approximation of
the optimal encoding width of A, OPT (A). Directly from the
definition of CA, we can have that

ℓ(CA) = max
i∈[1,h]

( d∑
j=1

ℓ(σj(ai
j))

)
= max

i∈[1,h]

( d∑
j=1

⌈
ℓ(σ̄j(ai

j))
⌉)

< max
i∈[1,h]

( d∑
j=1

(
ℓ(σ̄j(ai

j)) + 1
))

= max
i∈[1,h]

( d∑
j=1

ℓ(σ̄j(ai
j))

)
+ d = OPTr(A) + d

≤ OPT (A) + d. (7)

Finally, since ℓ(CA) as well as OPT (A) are both inte-
gers, we can deduce from the (strong) inequality ℓ(CA) <
OPT (A) + d that ℓ(CA) ≤ OPT (A) + (d − 1).

C. Upper Bound on the Optimal Encoding

We now present a simple upper bound on the optimal
encoding of any FIB table with an arbitrary number d of
columns.

Consider a fixed-length encoding scheme IA that encodes
each column j using a fixed-length encoding (as seen in
Example 2). Then in each column j, it uses codewords of size
Wj = ⌈log2 nj⌉, since it needs at least nj > 2Wj−1 codewords
to represent the nj different values. As a consequence, the total
width of each row in also fixed, and we have

ℓ(IA) =
d∑

j=1

Wj =
d∑

j=1

⌈log2 nj⌉. (8)

The fixed-length encoding yields an upper bound on the
optimal encoding width of the FIB table.



Property 2. Let A be a FIB table of d columns such that the
set of distinct elements in the jth column is Sj with |Sj | =
nj ≤ 2Wj . Then,

OPT (A) ≤
d∑

j=1

Wj . (9)

D. NP-HARDNESS

We conclude the section by considering the complexity of
finding an optimal encoding scheme of a given FIB table. First,
for a table with a single column (d = 1) an optimal solution
is given by the fixed-length encoding. If there are n1 = |S1|
distinct elements, in the fixed-length encoding all codewords
have length of ⌈log2 n1⌉ bits. Clearly, this encoding is optimal
since Kraft’s inequality cannot be satisfied if all elements are
encoded in at most (⌈log2 n1⌉-1) bits.

We now show that the above encoding problem is NP-hard
for tables with at least seven columns.

Theorem 2. Given a FIB table A with d ≥ 7 columns, finding
an optimal encoding scheme of A is NP-hard.

Proof Outline: For space reasons, we provide a proof
outline, and present the full proof in [24]. We show a reduction
from the 3 − SAT decision problem to finding an optimal
encoding of a table with 7 columns.

Let Y = Y1 ∧ Y2 ∧ . . . ∧ Ym be a CNF formula. Let n be
the number of variables in Y . For simplicity, we assume that
n is of the form of n = 2k−1

3 for a positive integer k.
We show that the formula Y is satisfiable iff a carefully

constructed table T (Y ) with seven columns has encoding
width of at most 3k + 6 bits. T (Y ) has two kinds of entries.
Entries that are not influenced by Y , and m additional entries
that represent the m clauses of Y . A clause is satisfied if the
width of the corresponding encoded entry is at most 3k+6 bits.
Using this table, we present the reduction from any instance
of 3 − SAT , before concluding.

Determining the hardness of the problem in the case of
d ∈ [2, 6] is left as an open question. We conjecture that the
problem is NP-hard for d ≥ 2.

Conjecture 1. For all d ≥ 2, finding an optimal encoding
scheme of tables with d columns is NP-hard.

E. Retrieving the Forwarding Information

As mentioned in Section I, in the proposed solution the
representation of any encoded entry of d columns, is simply
the concatenation of the d corresponding codewords without
any additional separating flags. We would like to show first
that the representations of two distinct original entries yield
two different concatenations. We would also like to suggest
an efficient way to detect the boundaries of the different
codewords composing such a concatenation.

Property 3. Let σ1, . . . , σd be d prefix encodings of d sets
S1, . . . , Sd. Let x = (x1, . . . , xd), y = (y1, . . . , yd) be two
entries satisfying (∀j ∈ [1, d])xj , yj ∈ Sj . Let σ(x) = σ1(x1)·
σ2(x2) . . . σd(xd) and σ(y) = σ1(y1)·σ2(y2) . . . σd(yd) be the
two string obtained by concatenating the d codewords in the

encodings of x, y. If σ(x) = σ(y) then necessarily x = y, i.e.
(∀j ∈ [1, d])xi = yi. In particular there is a single element
z1 ∈ S1 whose encoding σ1(z1) is a prefix of σ(x) = σ(y).

Proof: The proof is by induction on d. First, for d = 1
if σ(x) = σ(y) we have σ1(x1) = σ(x) = σ(y) =
σ1(y1). Since σ1 is an encoding, we have that necessarily
x1 = y1. For d ≥ 2, assume that σ(x) = σ(y), i.e.
σ1(x1) · σ2(x2) . . . σd(xd) = σ1(y1) · σ2(y2) . . . σd(yd) and
distinguish between the two following cases.
(i) If x1 = y1 then necessarily σ1(x1) = σ1(y1). We
can then deduce that σ2(x2) . . . σd(xd) = σ2(y2) . . . σd(yd).
By the induction hypothesis we have in this case also that
(x2, . . . , xd) = (y2, . . . , yd) and since x1 = y1 we can
conclude that (x1, . . . , xd) = (y1, . . . , yd).
(ii) If x1 ̸= y1 then necessarily σ1(x1) ̸= σ1(y1). From the
equality σ1(x1)·σ2(x2) . . . σd(xd) = σ1(y1)·σ2(y2) . . . σd(yd)
we must have that ℓ(σ1(x1)) ̸= ℓ(σ1(y1)) and that either
σ1(x1) is a prefix of σ1(y1) (if ℓ(σ1(x1)) < ℓ(σ1(y1))) or
σ1(y1) is a prefix of σ1(x1) (if ℓ(σ1(x1)) > ℓ(σ1(y1))). Both
cases lead to a contradiction since σ1 is a prefix encoding.

Finally, since case (ii) leads to a contradiction, the only
element z1 ∈ S1 whose encoding σ1(z1) is a prefix of σ(x) =
σ(y) must be z1 = x1 = y1.

Following the last part of the property, we can now suggest
how to detect the boundaries of the different codewords
composing an encoded entry. To do so, we keep for each of
the d encodings, a dictionary with a sorted list of the possible
codewords (and their matching elements). Then, we perform
in a pipelined manner d accesses to the dictionaries. In each
access, we perform a binary search to find the single codeword
in the current encoding which is a prefix of the concatenated
string representing the encoded entry. By the last property,
there is exactly one such codeword. Next, we continue to the
next dictionary after omitting the prefix of the concatenated
string. Any additional memory besides the basic representation
of the dictionaries is not required.

IV. TWO-COLUMN FIB TABLES

In datacenters, a popular class of FIB tables are simple L2
MAC tables that contain two columns. The first describes the
Target Port, while the second can be viewed as an aggrega-
tion of columns representing a collection of other attributes.
Indeed, we see in real-life table traces that these additional
attributes are hardly ever used. Thus their aggregation has a
relatively small set of possible values.

Therefore, from now on, we consider the special case of
two-column FIB tables, i.e. FIB tables that satisfy d = 2. We
would like to fundamentally study this case to obtain some
intuition on the problem. We show that in this case, in order
to find its optimal encoding scheme, a FIB table A can be
simply represented as a bipartite graph. We also suggest an
analysis of the optimal encoding width of such two-column
FIB tables.

For the sake of simplicity, we assume, unless mentioned
otherwise, that the number of distinct elements in each of the
d = 2 columns of A is the same, and that it is a power of
two, i.e. |S1| = |S2| = n = 2W .



(a) (b)

Fig. 2. A two-column forwarding table with h = 6 entries and n = 2W = 4
(for W = 2) distinct elements in each column with (a) the table, and (b) its
corresponding bipartite graph. The number of edges in the graph equals the
number of distinct entries in the forwarding table.

A. The Optimal Encoding Width of a Two-Column FIB Table

The next theorem suggests a lower bound and an up-
per bound on the optimal encoding width of A =
((a1

1, a
1
2), . . . , (a

h
1 , ah

2 )) for W ≥ 2.

Theorem 3. Let A be a two-column FIB table with |S1| =
|S2| = n = 2W for W ≥ 2. Then, the optimal encoding width
of A satisfies

W + 2 ≤ OPT (A) ≤ 2W. (10)

Proof Outline: In [24], we present the full proof and also
prove the tightness of these bounds by exposing, for each of
them, a FIB table that achieves the bound.

The upper bound of W +W = 2W can be simply achieved
using Property 2, based on a fixed-length encoding. To show
the lower bound, we consider two options for the codeword
lengths of the elements in S1. If all of them equal W bits,
at least one of them shares an entry with an element in S2

encoded with two or more bits. Likewise, if the codeword
lengths are not fixed, we have an element in S1 with a
codeword length of at least W + 1 that shares an entry with
another arbitrary element in S2 encoded in at least a single
bit. Both cases then suffice to conclude.

Any two-column FIB table A = ((a1
1, a

1
2), . . . , (a

h
1 , ah

2 ))
can be represented by a corresponding bipartite graph GA

as follows. The two disjoint sets are the sets of distinct
elements in each of the two columns. Thus, if an element
appears in both of the two columns, it is represented by
two different vertices in each of the two disjoint sets. Edges
connect elements in the two sets if they appear at least once
on the same row of the FIB table. Formally, we define the
graph GA =< L + R, E > such that L = S1, R = S2

and E = {(x, y)|(∃i ∈ [1, h]), (ai
1, a

i
2) = (x, y)}. Therefore,

duplicated rows have no influence on the construction of the
bipartite graph, and the graph does not contain parallel edges.
It is also easy to see the independence in the order of the rows
of the FIB table.

Example 3. Figure 2(a) presents an example of a two-column
forwarding table with h = 6 entries and n = 2W = 4 (for
W = 2) distinct elements in both columns. The corresponding
bipartite graph appears in Figure 2(b). The vertices on the
left side of the graph represent the n = 4 distinct elements in
the first column, while the vertices on the right side represent
the n distinct elements in the second column. The number of

edges in the graph equals the number of distinct entries in the
forwarding table.

Given a FIB encoding scheme CA = (σ1, . . . , σd)
of A = ((a1

1, a
1
2), . . . , (a

h
1 , ah

2 )), we can present
its FIB encoding width based on GA as ℓ(CA) =
max(x,y)∈E ℓ(σ1(x)) + ℓ(σ2(y)). From the construction
of GA, we can clearly see that the last equation is compatible
with Definition 4.

The representation of a FIB table as a bipartite graph can
help us to further understand the FIB encoding width based on
tools from graph theory. The next theorem relates the existence
of an independent set of a specific size in the bipartite graph
GA to the value of OPT (A).

Theorem 4. Let A be a two-column FIB table with |S1| =
|S2| = n = 2W and let GA =<L + R, E> be its correspond-
ing bipartite graph. If there does not exist an independent
set of vertices U = U1

∪
U2 in GA, so that U1 ⊆ L = S1,

U2 ⊆ L = S2 and |U1| = |U2| = n
2 + 1, then the optimal

encoding width of A necessarily satisfies OPT (A) = 2W .
Namely, the optimal encoding width is achieved by the fixed-
length encoding and it cannot be improved by any variable-
length encoding.

Proof: Let CA = (σ1, σ2) be an arbitrary FIB table
encoding scheme of A. As mentioned earlier, by Property 2,
OPT (A) ≤ 2W . We would like to show also that ℓ(CA) ≥
2W and therefore OPT (A) ≥ 2W . By Kraft’s inequality,
there are (at least) n

2 + 1 elements in S1 whose codeword
lengths in σ1 are at least W bits. Let U1 denote the set of
their corresponding vertices in L. Likewise, let U2 ⊆ R denote
the similar set of vertices representing the elements in S2

with codeword lengths of at least W in σ2. We then have
that |U1|, |U2| ≥ n

2 + 1. If ℓ(CA) < 2W , then (∀i ∈ [1, h]),
ℓ(σ1(ai

1)) + ℓ(σ2(ai
2)) ≤ 2W − 1. Since (∀x ∈ U1, y ∈ U2),

ℓ(σ1(x)) + ℓ(σ2(y)) ≥ W + W = 2W , then necessarily,
(∀x ∈ U1, y ∈ U2), (x, y) /∈ E. Thus U = U1

∪
U2 is an

independent set in GA. Since |U1|, |U2| ≥ n
2 + 1, we have a

contradiction, and can deduce that indeed ℓ(CA) ≥ 2W and
OPT (A) = 2W .

B. Optimal Conditional Encoding of the Second Column

We now consider the conditional problem of finding an
optimal two-column encoding given that the encoding of the
first column is known.

Formally, given a two-column FIB table A and a known
prefix encoding of one of its columns σ1 := σ̄1, we want to
find a prefix encoding σ2 of the second column such that the
encoding width ℓ(CA) of the FIB encoding scheme CA =
(σ1 := σ̄1, σ2) is minimized. We denote the FIB encoding
width of such scheme by OPT (A|σ1 := σ̄1), i.e.

OPT (A|σ1 := σ̄1) = min
CA=(σ1:=σ̄1,σ2)

ℓ(CA). (11)

We would like to suggest an algorithm to find such an optimal
conditional encoding. Let A be a two-column FIB table with
two sets of distinct elements in each of the columns S1, S2

and an encoding of the first column σ1 := σ̄1. For y ∈ S2,



we denote by ϕσ̄1(y) the maximal codeword length ℓ(σ̄1(x))
of an element x ∈ S1 that shares a row with y in A.

ϕσ̄1(y) = max{ℓ(σ̄1(x))|x ∈ S1, (x, y) ∈ E}. (12)

By Definition 4 of the FIB encoding width, we can see that
the encoding width of an encoding scheme CA = (σ̄1, σ2) can
be presented as

ℓ(CA) = max
i∈[1,h]

(
ℓ(σ̄1(ai

1)) + ℓ(σ2(ai
2))

)
= max

y∈S2

(
ϕσ̄1(y) + ℓ(σ2(y))

)
. (13)

We observe that in order to calculate the optimal encoding
σ2 given that σ1 := σ̄1, it is enough to know ϕσ̄1(y) for any
y ∈ S2 while the exact values of ℓ(σ̄1(s1,1)), . . . , ℓ(σ̄1(s1,n))
are not necessarily required. This is because

OPT (A|σ1 := σ̄1) = min
CA=(σ1:=σ̄1,σ2)

ℓ(CA)

= min
CA=(σ1:=σ̄1,σ2)

max
i∈[1,h]

(
ℓ(σ̄1(ai

1)) + ℓ(σ2(ai
2))

)
= min

CA=(σ1:=σ̄1,σ2)
max
y∈S2

(
ϕσ̄1(y) + ℓ(σ2(y))

)
. (14)

Before presenting the algorithm, we suggest the following
lemma.

Lemma 5. There exists a (prefix) encoding σ̄2 of S2 such that
(σ1, σ2) = (σ̄1, σ̄2) achieves the minimal encoding width of all
the FIB encoding schemes {(σ1, σ2)|σ1 := σ̄1} and satisfies

(∀y ∈ S2), ϕσ̄1(y) + ℓ(σ̄2(y)) = OPT (A|σ1 := σ̄1). (15)

Proof: Let ĈA = (σ1 := σ̄1, σ̂2) be a FIB encod-
ing scheme that satisfies ℓ(ĈA) = OPT (A|σ1 := σ̄1). If
(∀y ∈ S2), ϕσ̄1(y) + ℓ(σ̂2(y)) = OPT (A|σ1 := σ̄1) then
σ̄2 = σ̂2 can be the requested encoding. Otherwise, by the
definition of ℓ(ĈA), (∀y ∈ S2), ϕσ̄1(y)+ℓ(σ̂2(y)) ≤ ℓ(ĈA) =
OPT (A|σ1 := σ̄1). This is because by Equation (13), for
ĈA = (σ̄1, σ̂2) we have ℓ(ĈA) = maxy∈S2

(
ϕσ̄1(y) +

ℓ(σ̂2(y))
)

. For y ∈ S2 we use the notation q(y) =
OPT (A|σ1 := σ̄1) − (ϕσ̄1(y) + ℓ(σ̂2(y))). We define an
encoding σ̄2 of S2 based on σ̂2 as σ̄2(y) = σ̂2(y) ·0q(y) where
the · sign is used to represent the concatenation operation. In
particular, if for y ∈ S2, ϕσ̄1(y) + ℓ(σ̂2(y)) = OPT (A|σ1 :=
σ̄1) then σ̄2(y) = σ̂2(y) · 0q(y) = σ̂2(y). We can see that
(∀y ∈ S2), ϕσ̄1(y) + ℓ(σ̄2(y)) = ϕσ̄1(y) + ℓ(σ̂2(y)) + q(y) =
OPT (A|σ1 := σ̄1). Thus σ̄2 satisfies the required equality.

To complete the proof we have to show also that σ̄2 is
indeed a prefix encoding. We can first verify that the n2 = |S2|
codewords of σ2 are different. If for any x, y ∈ S2 (s.t. x ̸= y),
σ̄2(x) = σ̂2(x) ·0q(x) = σ̂2(y) ·0q(y) = σ̄2(y) then necessarily
σ̂2(x) is a prefix of σ̂2(y) (if q(x) ≥ q(y)) or σ̂2(y) is a
prefix of σ̂2(x) (if q(x) ≤ q(y)), a contradiction since σ̂2 is a
prefix encoding. σ̄2 also preservers the prefix property since if
σ̄2(x) = σ̂2(x) · 0q(x) is a prefix of σ̄2(y) = σ̂2(y) · 0q(y) then
again either σ̂2(x) is a prefix of σ̂2(y) or σ̂2(y) is a prefix of
σ̂2(x).

Based on the last lemma we can deduce from Kraft’s
inequality, the exact value of OPT (A|σ1 := σ̄1).

Theorem 6. The optimal conditional FIB encoding width of
A satisfies

OPT (A|σ1 := σ̄1) =

log2

( ∑
y∈S2

2ϕσ̄1 (y)
) . (16)

Proof: We first would like to show that OPT (A|σ1 :=
σ̄1) ≥

⌈
log2

( ∑
y∈S2

2ϕσ̄1 (y)
)⌉

. Consider a FIB encod-
ing (σ1, σ2) = (σ̄1, σ̄2) that has an encoding width of
OPT (A|σ1 := σ̄1) and (∀y ∈ S2) satisfies ϕσ̄1(y) +
ℓ(σ̄2(y)) = OPT (A|σ1 := σ̄1). The last equality can be
presented also as ℓ(σ̄2(y)) = OPT (A|σ1 := σ̄1) − ϕσ̄1(y).
Such an encoding exists by Lemma 5. By Kraft’s inequality
σ̄2 satisfies

1 ≥
∑
y∈S2

2−ℓ(σ̄2(y)) =
∑
y∈S2

2
−
(

OPT (A|σ1:=σ̄1)−ϕσ̄1 (y)

)
2OPT (A|σ1:=σ̄1) ≥

∑
y∈S2

2ϕσ̄1 (y)

OPT (A|σ1 := σ̄1) ≥

log2

( ∑
y∈S2

2ϕσ̄1 (y)
) , (17)

where the last inequality is obtained since OPT (A|σ1 :=
σ̄1) is of course an integer. To complete the proof we
would also like to show that OPT (A|σ1 := σ̄1) ≤⌈
log2

( ∑
y∈S2

2ϕσ̄1 (y)
)⌉

by finding a FIB encoding scheme
(σ1, σ2) = (σ̄1, σ̄2) whose encoding width satisfies this
upper bound. To do so, we denote by vσ̄1 the term⌈
log2

( ∑
y∈S2

2ϕσ̄1 (y)
)⌉

. Then,∑
y∈S2

2−(vσ̄1−ϕσ̄1 (y)) =
∑
y∈S2

2ϕσ̄1 (y)−vσ̄1 =
∑
y∈S2

2ϕσ̄1 (y) · 2−vσ̄1

≤
∑
y∈S2

2ϕσ̄1 (y) ·
( ∑

y∈S2

2ϕσ̄1 (y)
)−1

= 1.

(18)

Thus there exists a prefix encoding σ̄2 with codeword lengths
ℓ(σ̄2(y)) = (vσ̄1 − ϕσ̄1(y)) for y ∈ S2. The FIB encoding
scheme CA = (σ̄1, σ̄2) satisfies

ℓ(CA) = max
y∈S2

(
ϕσ̄1(y) + ℓ(σ̄2(y))

)
(19)

= max
y∈S2

(
ϕσ̄1(y) + (vσ̄1 − ϕσ̄1(y)))

)
= max

y∈S2

(
vσ̄1

)
= vσ̄1 .

Then, OPT (A|σ1 := σ̄1) ≤ vσ̄1 =
⌈
log2

( ∑
y∈S2

2ϕσ̄1 (y)
)⌉

.

Now, when the codeword lengths of the elements of S2 are
known from Lemma 5 and Theorem 6, it is easy to find such
an encoding as explained earlier in Section III.

Based on the suggested optimal conditional encoding from
above, we now suggest two directions to find an efficient
encoding scheme for a given two-column FIB table. Of course,
these directions are alternatives for the encoding of general
FIB tables presented in Section III-B that can be applied also



for two-column tables. The first direction may be considered
when the available running time is very limited while the
second direction requires a longer running time.

(i) We first count for each of the elements in the first
column, the number of distinct entries in which it appears. As
discussed earlier, duplicated entries have no influence on the
obtained encoding width. Based on these numbers of distinct
appearances, we can calculate a corresponding distribution. We
can then encode this first column by a Huffman coding [25]
based on this distribution. Given this encoding of the first
column, we can find an encoding scheme for the whole table
by encoding the second column by the optimal conditional
encoding given the encoding of the first column. Another
option for an encoding scheme is obtained similarly by con-
sidering the two columns in a reverse order. By Lemma 5
and Theorem 6, it is guaranteed that both options perform at
least as well as an encoding scheme composed of the two
Huffman codings for each of the two columns. Finally, we
can encode the given two-column FIB tables by the best of
the two options, i.e. the one that yields a smaller encoding
width.

(ii) We find the encoding scheme obtained by the algorithm
for general FIB tables presented in Section III-B. Then, we
consider (independently) as the given (constrained) encoding,
each of the two encodings for the two columns composing the
solution. For each of them, we find the optimal conditional
encoding of the other column. Again, by Lemma 5 and
Theorem 6, it is guaranteed that both options perform at least
as well as the original solution given by the algorithm.

V. LOWER BOUNDS ON THE OPTIMAL ENCODING WIDTH
OF TWO-COLUMN FIB TABLES

We would like now to suggest additional lower bounds on
the optimal encoding width of a given two-column FIB table A
as defined above. We can calculate this bound without solving
the relaxed FIB encoding problem.

Let again GA =<L + R,E>=<S1 + S2, E> with |S1| =
|S2| = n = 2W . We first recall an additional definition from
graph theory.

Definition 5 (Edge Cover). For an undirected graph G =<
V, E>, a set of edges S ⊆ E is called an edge cover of G if∪

(x,y)∈S{x, y} = V , i.e. each of the vertices in V is incident
on at least one of the edges in S.

Clearly, GA does not include any isolated vertices, i.e. any
vertex is connected to at least one vertex and the value it
represents appears in at least one of the rows of A. Therefore,
an edge cover always exists. For a graph G, we denote by ρ(G)
the edge covering number of G, i.e. the minimal number of
edges in an edge cover of G. We first show a simple property
of ρ(GA).

Lemma 7. The edge covering number ρ(GA) of GA satisfies
n ≤ ρ(GA) ≤ 2 · (n − 1).

Proof: Consider the edges in a minimal edge cover in
an arbitrary order. The first edge covers two vertices. Any
additional edge adds one or two vertices to the set of vertices

covered by previous edges in the edge cover. Since there are 2n
vertices in GA then clearly n ≤ ρ(GA) ≤ 2n−1. To show that
ρ(GA) ≤ 2n−2, we show that there must be two independent
edges in GA, i.e. edges that do not share any vertex. Consider
an edge (s1,i, s2,j) for i, j ∈ [1, n]. If all the other edges in
E share at least one vertex with this edge, we must have that
E = {(s1,i, s2,k)|k ∈ [1, n]}

∪
{(s1,k, s2,j)|k ∈ [1, n]}. Then,

for instance the edges (s1,i, s2,k), (s1,k, s2,j) for k ̸= i, j
are independent. Finally, the two independent edges can con-
tribute two covered vertices to the edge cover and necessarily
ρ(GA) ≤ 2n − 2 = 2 · (n − 1).

Let α = ρ(GA)/n. The next theorem suggests a lower
bound on the optimal encoding width of A based on the value
of ρ(GA).

Theorem 8. The optimal encoding width of A satisfies

OPT (A) ≥
⌈

2 · (W + α − 1)
α

⌉
. (20)

Proof: For GA =<S1 + S2, E>, let S ⊆ E be an edge
cover of GA of size ρ(GA) = α · n. Let CA = (σ1, σ2) be an
arbitrary FIB table encoding scheme of A. We will show that

max
(x,y)∈S

ℓ(σ1(x)) + ℓ(σ2(y)) ≥
⌈

2 · (W + α − 1)
α

⌉
. (21)

Thus, since S ⊆ E then necessarily

ℓ(CA) = max
(x,y)∈E

ℓ(σ1(x)) + ℓ(σ2(y)) ≥
⌈

2 · (W + α − 1)
α

⌉
.

(22)

To do so, we consider the subset of the rows
of A represented by the edge cover S. Let D =
((d1

1, d
1
2), . . . , (d

ρ(GA)
1 , d

ρ(GA)
2 )) represent these rows, s.t.

|D| = ρ(GA) = α · n. By Definition 5 of the edge cover,
S1 =

∪ρ(GA)
i=1 {di

1} and S2 =
∪ρ(GA)

i=1 {di
2}, i.e. all the

elements of S1 appear at least once in the first column of
the rows of D as well as all the elements of S2 in the second.
Let XD(CA) denote the total sum of codeword lengths of
the elements in D using the encoding CA = (σ1, σ2), s.t.
XD(CA) =

∑ρ(GA)
i=1

(
ℓ(σ1(di

1)) + ℓ(σ2(di
2))

)
.

By manipulating Kraft’s inequality, we can have that the
total sum of codeword lengths of the n distinct elements in
each column is at least n ·W . Of course, the other α ·n−n =
(α − 1) · n elements in each column are encoded in at least
one bit each. Thus,

XD(CA) =
ρ(GA)∑

i=1

(
ℓ(σ1(di

1)) + ℓ(σ2(di
2))

)
=

ρ(GA)∑
i=1

ℓ(σ1(di
1)) +

ρ(GA)∑
i=1

ℓ(σ2(di
2))

≥ n · W + (α − 1) · n + n · W + (α − 1) · n
= 2n · W + 2(α − 1) · n. (23)

We recall that the total number of rows is α ·n and thus there
is at least one row in D that is encoded in at least

⌈
XD(CA)

α·n

⌉



(a) (b)

Fig. 3. Two examples of bipartite graphs with n = 2W = 8 (for W = 3)
vertices in each graph side representing two two-column FIB tables A1 and
A2. In the first graph (a), there is a perfect match and the size of the (minimal)
edge cover is 8 = n = α · n with α = 1 and OPT (A1) = 2W = 6. In
the second (b), the size of the edge cover is 14 = α · n with α = 1.75 and
OPT (A2) ≥ 5.

bits. Thus the encoding width of CA satisfies

ℓ(CA) = max
(x,y)∈E

ℓ(σ1(x)) + ℓ(σ2(y))

≥ max
(x,y)∈S

ℓ(σ1(x)) + ℓ(σ2(y)) ≥
⌈

XD(CA)
α · n

⌉
≥

⌈
2n · W + 2(α − 1) · n

α · n

⌉
=

⌈
2 · (W + α − 1)

α

⌉
≥

⌈
2W

α

⌉
. (24)

Finally, Since CA is an arbitrary encoding scheme, we can
deduce the result.

Example 4. Figure 3 illustrates the two corresponding bi-
partite graphs for two-column FIB tables A1 and A2, with
n = 2W = 8 (for W = 3) distinct elements in each column.

For A1, the bipartite graph includes a perfect match and
the size of the edge cover is 8 = n = α · n with α = 1.
Theorem 8 implies that OPT (A1) ≥

⌈
2·(W+α−1)

α

⌉
= 2W .

For A2, the size of the minimal edge cover is 14 = 2 · (n−
1) = α·n with α = 1.75. Thus OPT (A2) ≥

⌈
2·(3+1.75−1)

1.75

⌉
=

5. Further, by encoding the first element in a column in a single
bit and others in four bits, we have that indeed OPT (A2) = 5.

VI. SUPPORTING UPDATES

Forwarding tables need to support updates. These updates
can include an insertion of a new entry, a deletion of an
existing entry, or a modification of some of the fields of an
entry. For instance, they may follow the addition or deletion of
VMs in the datacenter, as well VM migrations. In this section,
we discuss how such updates can be supported.

While updating the forwarding table in its encoded rep-
resentation, we might encounter several obstacles. First, an
entry might have to be encoded in a width larger than the
currently allocated memory width. In addition, in some cases
there may be a problem to allocate additional codewords for
new inserted elements while still keeping the properties of the
prefix encodings.

In general, the update process includes two steps: an im-
mediate step required for coherency, and another procedure
that can occur offline to improve performance. This second
step can be run, for instance, either periodically in time or
after a fixed number of updates. Meanwhile, in addition to the
encoded table, we make use of a small dedicated memory for
keeping a small number of entries. Let P be the fixed allocated

number of bits for the encoding of each entry. To support such
updates, we assume that each entry includes an additional bit
that indicates its validity.

Insertion and Modification: Dealing with with an inser-
tion of a new entry or a change in an entry can be done in
a similar way. We describe several possible scenarios. First,
if all the elements in the updated entry appear in the current
dictionaries, we simply encode a new entry based on these
dictionaries. If its total width is not greater than P , no further
changes are required. If it is greater than P , we set the original
entry (in case of a change) as invalid and temporarily add the
new entry (without encoding it) to the small memory.

If the updated entry includes a new element, we try to
associate it with a codeword. In a specific column, we can
do so only if the sum that appears in Kraft’s inequality is
smaller than one. Further, the minimal possible codeword
length depends on the value of this sum. For the sake of
simplicity, we suggest to allocate for each new element a
codeword with the minimal possible length. If we cannot
allocate any new codeword in one of these columns (due to
an equality in the corresponding Kraft’s inequality), or if the
allocated codewords yield an entry that is too long, the updated
entry is again added to the small memory.

Deletion: Dealing with an entry deletion is easy and
requires setting the entry as invalid. Such a change does not
require any changes in the encodings of other entries, since
the maximal width of the rest of the encoded entries is clearly
bounded by the maximal width before change. Reduction in
the maximal width of the table after an entry removal may be
achieved by running the compression algorithm as part of the
offline procedure.

Offline Process: The offline process includes the cal-
culation of an efficient encoding for the existing encoded
entries and for the unencoded entries stored in the small
memory. Later, this memory is cleared. The value of P may be
changed, as well as the encoded version of existing entries. It
is possible to endow the table encoding algorithm with better
update capabilities by choosing an encoding with a slightly
larger value of P that guarantees short codeword lengths
for possible future inserted elements. Another improvement
can be as follows. To avoid the relatively long running time
of the process, we can try to rely on the previously found
encoding scheme. We consider the elements in the problematic
entries stored in the additional memory. We try to allocate for
these elements relatively short codewords, to enable them to
be within the allocated memory width. To do so, we might
have to replace by longer codewords the representation of
other elements that appear in shorter entries. If we do not
succeed to do so, we can repeat the process after increasing
the current memory width. Meanwhile, for coherency reasons,
between two offline processes, any lookup should consider
the encoded entries in the FIB and the unencoded entries in
the small dedicated memory. In addition, there might be a
synchronization problem to deal with access requests during
the short time required for changing the memory (e.g. in the
completion of the offline process). We suggest to postpone
these access requests for a short time. If this is impossible, we
can keep an additional copy of the table that will be accessed



Fig. 4. Effectiveness of the encoding algorithm on synthetic FIB tables with
d = 2 columns and W = 8, as a function of the Zipf parameter. Elements
are selected according to the Zipf distribution with the given parameter. By
Theorem 3, the optimal encoding width is at least W + 2 = 10 and at
most 2W = 16. Since d = 2, our suggested convex scheme takes at most
d − 1 = 1 bit more than the theoretical lower bound. In comparison, the
fixed-length encoding has a fixed width of 2W = 16 bits, while the Huffman
encoding sometimes achieves a greater width.

(a) Effectiveness of the encoding algorithm as a function of the
number of columns with 2W = 32 distinct elements per column.

(b) Effectiveness of the encoding algorithm as a function of the
number of distinct elements per column with d = 10 columns.

Fig. 5. Analysis of the encoding algorithm as a function of table parameters.

in such cases.

VII. EXPERIMENTAL RESULTS

We now turn to conducting experiments to examine the dis-
tribution of the optimal encoding width and the performance
of our suggested encoding algorithm from Section III-B. In
the experiments, we rely on both synthetic and real-life FIB
tables.

A. Effectiveness on Synthetic FIB tables

We first evaluate our suggested scheme on synthetic two-
column FIB tables. In our first experiments, each table has
1000 entries with 2W = 256 (for W = 8) distinct elements in
each of the d = 2 columns. To generate the table, we first make
sure that each element appears at least once in each column
by adding an entry containing it with an additional random

Fig. 6. Effectiveness of the number of entries on the encoding width in
synthetic FIB tables with d = 4 columns and at most 2W = 256 (for
W = 8) distinct elements in each column. Two values of the Zipf parameter
s = 2, 3 are considered.

element in the other column. This additional random element
is selected according to a Zipf distribution of parameter s.
Then, we add additional entries with d = 2 random elements
selected according to the same distribution. Intuitively, a Zipf
distribution with a lower parameter s is closer to the uniform
distribution.

First, in Fig. 4, we compare our suggested scheme (from
Section III-B), denoted “convex”, with the fixed-length and
Huffman encoding schemes. The results are based on the
average of 10 simulations. We present the lower bound given
by the fractional solution of the relaxed optimization problem
(Section III-B). We also show our suggested scheme, which
takes the ceiling of the fractional solution of the relaxed
problem, unless it exceeds 2W , in which case it simply
uses fixed-length encoding. As suggested by Theorem 1, our
scheme is always within d − 1 = 1 bit of the fractional-
optimum lower bound. For instance, for a Zipf parameter
s = 4, the widths for the Huffman, fixed-length, and our
suggested encodings are respectively 17.6, 2W = 16, and
12.1, while the lower bound is 11.2. More generally, the lower
the Zipf parameter, the closer the lower bound is to 2W .

Next, in Fig. 5, we plot the encoding efficiency as a function
of the number of columns (a) and of the number of elements
appearing in each column (b). In both plots we take h = 1000
entries and a Zipf parameter s = 2. In Fig. 5(a) the number
of elements is 32, i.e. W = 5, and in Fig. 5(b) the number of
columns is d = 10. We can see that in (a), Huffman becomes
better for the worst-case entry width. Intuitively, it is because
the ratio of the standard deviation of the sum of the encodings
of d columns to the expected sum decreases with d as 1√

d
.

We want to stress that the presented encoding scheme
suggests a tradeoff between memory requirements and running
time. While our scheme performs better and obtains an im-
proved encoding width, it is also much slower to run than the
simpler schemes. As mentioned in the implementation section,
it is designed for offline or background use. For instance, in
Fig. 5(a), an unoptimized implementation of our scheme on
a basic Intel i5 core respectively took 0.82 seconds and 23.1
seconds for the two-column and ten-column tables, while the
Huffmann scheme ran in the respectively- negligible times of
7 and 11 milliseconds.

We perform an additional simulation to examine how
the number of entries influence the encoding width. We
compare again our suggested scheme with the fixed-



(a) United States (b) China 1 (c) China 2

Fig. 7. Total memory size of encoded real-life tables including the dictionary size. All forwarding tables were collected in enterprise networks, in the United
States as well as in China.

length encoding in tables of h entries for h ∈
{100, 500, 1000, 2000, 5000, 10000} and d = 4 columns. All
entries are selected randomly among 2W = 256 (for W = 8)
possible elements in each column, according to Zipf distribu-
tion parameters s = 2, 3. Here, since we consider also tables
with relatively small number of entries, we do not force all
elements to appear at least once in each column. Accordingly,
the fixed-length encoding yields an encoding width smaller
than d · W = 32. The results are based on the average of 10
simulations.

Fig. 6 depicts the results. As expected, the encoding width
of our scheme increases when the number of entries grows
since the additional entries result in more constraints on the
width. For all examined number of entries the improvement
of our scheme is not negligible. For instance, if h = 500
and s = 3 the obtained width is 12.8 in comparison with
14.5 for the fixed-length encoding (an improvement of 11.7%).
Likewise, if h = 2000 the width is 14.5 instead of 17.0 (14.9%
improvement). The improvement is even larger for the case
of h = 10000 entries and equals 20.0%. Further, we expect
to observe an improvement for tables with relatively large
number of entries as long as the distribution of their elements
is less close to the uniform distribution. Of course, with infinite
number of entries, all possible entries appear and we cannot
improve the fixed-length encoding.

B. Real-Life FIB tables

We also conduct experiments on three typical real-life
enterprise-network tables. The tables are collected from three
different switches of three different switch vendors, each
switch using a different number of columns. All tables were
collected in enterprise networks, the first in the United States
with 2790 entries and the other in China with 903 and 428
entries.

We would first like to evaluate the various encoding
schemes. For each table, we present the size of the original
raw table without compression. We compare it to the total
size of the compressed table, including the dictionary for
three compression algorithms: the fixed-length encoding, the
Huffman encoding and our suggested encoding. The results
are presented in Fig. 7.

For instance, in the second real-life table (China 1), pre-
sented in Fig. 7 (b), we consider the 903 entries of two
columns representing the VLAN and the Target-Port fields.

number number raw fixed- improved long uncoded
of of data length width entries entries

fields entries width width
United States 3 2790 31 15 13 53 0

China 1 2 903 29 11 8 13 2
China 2 2 428 29 5 5 3 0

TABLE II
DEALING WITH RULE UPDATES. ENCODING IS BASED ON THE FIRST HALF
OF THE ENTRIES IN EACH FILE. ADDITIONAL ENTRIES ARE CONSIDERED

AS NEW INSERTED ENTRIES.

Without encoding, each entry is allocated 29 bits per entry and
thus the raw data without encoding requires 903 · 29 = 26187
bits. Using the three encodings, the size of the dictionaries is
almost fixed and equals approximately 2900 bits. An entry
width of 11 and 14 bits is achieved in the fixed-length
encoding and in the Huffman encoding, respectively, while
in the proposed encoding we achieve an entry width of only
8 bits. This leads to an improvement of 20.7%, 34.9%, and
61.3% in the total memory size (including the dictionary)
compared to the fixed-length, Huffman and Raw solutions,
respectively.

We would also like to examine the efficiency of the en-
coding scheme while dealing with forwarding table updates.
To illustrate updates we perform the following experiment.
For each of the three real-life tables, we consider the first
half of entries (e.g. 1395 out of 2790 in the table from United
States). We then find for each of them, our suggested encoding
scheme. Next, we consider the entries in the second half of the
original table as new inserted entries. We examine the ability to
encode the new entries within the determined encoding width.
Another obstacle is that these new entries might include new
elements that are not encoded in the encoding scheme found
for the first half of entries. Our high interest in insertions of
new elements is explained by the fact that, as mentioned in
Section VI, changes in existing entries can be also supported
by insertions of new entries.

The results are summarized in Table II. In general, only
a small portion of the new entries could not be encoded
within the predetermined width. For instance, in the table from
United States an encoding width of 13 bits was obtained in
the encoding of the first 1395 entries, improving the width of
15 bits required for the encoding of the file with the fixed-
length encoding. While trying to insert the last 1395 entries
of the second half of the file as new entries, 1342 of them
(96.2%) could be encoded successfully within 13 bits based



Fig. 8. Effectiveness of the encoding algorithm on the extended table (based
on the China 1 table), as a function of the number of columns.

on the previously selected encoding scheme. Only 53 entries
obtained widths larger than 13. In addition, none of these new
entries contained new elements such that their encoding was
not defined in the scheme for the first entries. Likewise, in
China 1, we encountered 13 entries with overflow among 452
inserted entries (only 2.88%). Only two of the new entries
contained elements that did not appear in the first half of
entries.

C. Extrapolated Tables

We want to extrapolate the behaviors of these schemes from
real-life limited data sets to the larger expected data sets to be
encountered in future datacenter network architectures. The
approach we take herein is to amplify the available data sets
by scaling out the number of columns in the table, so as to
model a table with a scaled-out number of attributes.

We extend the China 1 table by duplicating and appending
the port column several times. In each new column, we
permute the appearances of the elements uniformly at random.
The motivation is to model additional forwarding attributes
that would follow a distribution that is similar to an existing
one. Rearranging the row locations of the duplicate elements
adds randomness to the extended file. As seen in Fig. 8, for
each additional column the fixed encoding increases by a
constant, as expected since the number of unique elements
in each column does not vary. The Huffman and convex
encodings increase at a slower pace, thereby increasing the
encoding effectiveness as the number of columns grows. Of
course, since this table is extended synthetically, we urge
caution in over-interpreting the results.

VIII. CONCLUSION

In this paper, we saw how datacenter virtualization is
causing a dramatic rise in the number of entries in forwarding
tables, such that it becomes impossible to implement for-
warding tables in current memory sizes without any compres-
sion algorithm. We then investigated the compressibility of
forwarding tables, by introducing a novel forwarding table
architecture with separate encoding in each column. Our
architecture supports fast random accesses and fixed-width
memory words. We also later explained how our architecture
can handle table updates.

Later, we suggested an encoding whose per-entry mem-
ory requirement is guaranteed to be within a small additive

constant of the optimum. Finally, we evaluated this new
scheme against the fixed-width and Huffman schemes, using
both synthetic and real-life forwarding tables from different
switches, switch vendors, and network country locations. As
future work, we plan to check how using additional hardware
such as CAM and TCAM can help in further compressing the
forwarding tables.
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