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Abstract—We consider a multi-channel communication
system in which a transmitter has access to a large number of
channels, but does not know the state of these channels. We
model channel state using an ON/OFF Markovian model,
and allow the transmitter to probe one of the channels
at predetermined probing intervals to decide over which
channel to transmit. For models in which the transmitter
must send over the probed channel, it has been shown that a
myopic policy that probes the channel most likely to be ON
is optimal. In this work, we allow the transmitter to select a
channel over which to transmit that is not necessarily the one
it probed. We show that the myopic policy is not optimal, and
propose a simple alternative probing policy, which achieves
a higher per-slot expected throughput. Finally, we consider
the case where there is a fixed cost associated with probing
and derive optimal probing intervals.

I. INTRODUCTION

Consider a communication system in which a trans-
mitter has access to multiple channels over which to
communicate. The state of each channel evolves indepen-
dently from all other channels, and the transmitter does
not know the channel states a priori. The transmitter is
allowed to probe a single channel after a predefined time
interval to learn the channel state at the current time,
which is either ON or OFF. Using the information obtained
from the channel probes, the transmitter selects a channel
in each time-slot over which to transmit, with the goal
of maximizing throughput, or the number of successful
transmissions.

This framework applies broadly to many opportunistic
communication systems, in which there exists a tradeoff
between overhead and performance. When there is a
large number of channels over which to transmit, or a
large number of users to transmit to, it is impractical
to learn the channel state information (CSI) of every
channel before scheduling a transmission; consequently,
it is only practical for the transmitter to obtain partial
channel state information, and use that partial CSI to make
a decision. Therefore, the transmitter must decide how
much information, and which information is needed in
order to make efficient scheduling decisions.

Several works have studied channel probing policies in
multichannel communication problems [1], [2], [3], [4],
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Fig. 1. Markov Chain describing the channel state evolution
of each independent channel. State 0 corresponds to an OFF
channel, while state 1 corresponds to an ON channel.

[5], [6], [7]. Of particular interest is the work in [8] and
[9], in which the authors assume that after a channel is
probed, the transmitter must transmit on that channel. They
show that the optimal probing policy is a myopic policy,
which probes the channel most likely to be ON.

In this work, we show that when the transmitter is
able to transmit over a channel other than that which was
probed, the myopic probing policy in [8], [9] is no longer
optimal. Specifically, we prove using renewal theory that a
simple policy, namely the policy which probes the channel
that is second most likely to be ON, has a higher per-
slot expected throughput. We conjecture that this policy
is in fact optimal for our setting. Additionally, we show
that a round robin probing policy has the same expected
throughput as the myopic policy in [8], [9]. Finally, we
extend these results to the case where there is a fixed cost
associated with a probe, and derive the optimal dynamic
probing epochs.

The remainder of this paper is organized as follows. We
describe the model and problem formulation in detail in
Section II. In Section III, we prove that the myopic policy
is suboptimal by analytically computing the expected per-
slot throughput of two other policies. In Section IV, we
solve for the optimal probing intervals when a fixed cost
is associated with probing. Lastly, we conclude in Section
V.

II. SYSTEM MODEL

Consider a transmitter and a receiver that can commu-
nicate using a large number of independent channels. At
every time slot, each channel is either in an OFF state
or an ON state. Channels are i.i.d. with respect to each
other, and evolve across time according to a discrete time
Markov process described by Figure 1.

At each time slot, the transmitter chooses a single
channel over which to transmit. If that channel is in the



ON state, then the transmission is successful; otherwise,
the transmission fails. We assume the transmitter does not
receive feedback regarding previous transmissions1. The
objective is to maximize the expected sum-rate throughput,
equal to the number of successful transmissions over time.

Furthermore, at predefined epochs of T slots, the trans-
mitter probes the receiver for the state of one of the chan-
nels at the current time, which is delivered instantaneously.
The transmitter then uses the history of channel probes to
make a scheduling decision.

A. Notation

Let Si(t) be the state of channel i at time t. The
transmitter has an estimate of this state based on previous
probes and the channel state distribution. Define the belief
of a channel to be the probability that a channel is ON
given the history of channel probes. For any channel i
that was last probed k slots ago and was in state si, the
belief xi is given by

xi(t) = P
(
Channel i is ON|probing history

)
= P

(
Si(t) = 1|Si(t− k) = si)

(1)

where the second equality follows from the Markov prop-
erty of the channel state process. The above probability
is derived from the k-step transition probabilities of the
Markov chain in Figure 1:

pk
00 =

q + p(1− p− q)k

p+ q
, pk

01 =
p− p(1− p− q)k

p+ q

pk
10 =

q − q(1− p− q)k

p+ q
, pk

11 =
p+ q(1− p− q)k

p+ q
.

(2)

Throughout this work, we assume that p ≤ 1
2 and q ≤ 1

2 ,
corresponding to channels with “positive memory.” As the
CSI of a channel grows stale, the probability π that the
channel is ON is given by the stationary distribution of
the chain in Figure 1.

lim
k→∞

pk
01 = lim

k→∞
pk
11 = π =

p

p+ q
. (3)

B. Optimal Scheduling

Since the objective is to maximize the expected sum-
rate throughput, the optimal transmission decision at each
time slot is given by the maximum likelihood (ML) rule,
which is to transmit over the channel that is most likely
to be ON, i.e. the channel with the highest belief. The
expected throughput in a time slot is therefore given by

max
i
xi(t). (4)

Following the above assumptions, the optimal scheduling
decision remains the same in between channel probes.

C. Infinite Channel Assumption

In the model used throughout this paper, there is an
infinite number of channels available to the transmitter.

1If such feedback exists in the form of higher layer acknowledgements,
it arrives after a significant delay and is not useful for learning the channel
state.

This assumption affords various simplifications to our state
space model. Whenever a probed channel is OFF, it is
effectively removed from the system. This is because there
always exists a channel which has not been probed for an
infinitely long amount of time. Therefore, its belief equals
the steady state probability π, and pk

01 ≤ π for all k.

III. AVERAGE THROUGHPUT ANALYSIS

To begin, consider the probe best policy, which probes
the channel with the highest belief. This policy is also
referred to as a myopic or greedy policy, as it maximizes
the immediate reward without regard to future rewards.
Such a policy is advantageous, as the channel with the
highest belief is the most likely to be ON at the current
time. Recall that this policy is shown to be optimal for the
model in [8], [9]. For our model, we have the following
result.

Lemma 1. Assume the transmitter makes probing deci-
sions every T slots according to the probe best policy.
The expected per-slot throughput is given by

E[Thpt] = π +
πpT

10

T (p+ q)(pT
10 + π)

(5)

Proof: We use renewal theory to compute the average
throughput. Under the probe best policy, only one channel
can have belief greater than π, since the policy won’t
probe other channels and therefore won’t change its belief
about these channels. Define a renewal to occur before a
channel with belief π is probed. Therefore, if a channel
is probed and if it is OFF, it is removed from the system
and a renewal occurs. If the channel is ON, that channel
is probed at all future probing instances until it is found
to be OFF. The expected inter-renewal time X̄B is given
by

X̄B = T + TπE(N) (6)

where N is the number of times an ON channel is probed
before it is OFF, and is geometrically distributed with
parameter pT

10. Equation (6) reduces to

X̄B = T +
πT

pT
10

. (7)

The expected reward R̄B incurred over a renewal interval
is πT for the interval immediately after the OFF probe,
and

∑T−1
i=0 pi

11 for each subsequent ON probe.

R̄B = πT + πE
[
N
] T−1∑

i=0

pi
11 = πT +

π
∑T−1

i=0 pi
11

pT
10

(8)

Using results from renewal-reward theory [10], the average
per-slot reward is given by

R̄B

X̄B
=
πTpT

10 + π
∑T−1

i=0 pi
11

TpT
10 + πT

= π +
πpT

10

T (p+ q)(pT
10 + π)

(9)

Observe that the per-slot throughput is always larger
than π, and decreases toward π as T increases. The
probe best policy is attractive because it maximizes the



immediate reward. However, the drawback of this policy
is that when the probed channel is OFF, the transmitter
has no knowledge of the state of the other channels as it
searches for an ON channel. Consequently, during these
periods it has a low expected reward.

A. Probe Second Best Policy

Now, consider a simple alternative policy, the probe
second best policy, which at each time slot probes the
channel with the second highest belief, and transmits on
the channel with the highest resulting belief. Consider
channel state beliefs x1, x2, x3, . . . where x1 ≥ x2 . . . ≥
xi . . . ≥ π. The immediate reward from probing the best
channel is given by

x1 + (1− x1)x2 = x1 + x2 − x1x2, (10)

and the immediate reward from probing the second best
channel is given by

x2 + (1− x2)x1 = x1 + x2 − x1x2. (11)

The probe second best policy has the same immediate
reward as the probe best policy; however, since two
channels can have belief greater than π under the probe
second best policy, when the probe second best policy
probes an OFF channel, the transmitter can transmit over
the channel with the highest belief, while looking for
another ON channel, which results in a higher expected
throughput over that interval. This is a strict improvement
over the probe best policy, which transmits on a channel
with belief equal to the steady state probability π. It is this
intuition that leads us to consider the probe second best
policy. The following theorem states that the probe second
best policy yields a higher throughput than the probe best
policy.

Theorem 1. The average reward of the probe second best
policy is greater than that of the probe best policy, for all
fixed probing intervals T .

Proof: Theorem 1 is proved using renewal theory to
compute the average throughput of the probe second best
policy, and comparing it to that of the probe best policy.
The key to the proof is in the correct definition of the
renewal interval. We define a renewal to occur when the
best channel has belief p2T

11 , and the second best channel
(and each other channels) has belief π. During a renewal
interval, the transmitter probes new channels until it finds
an ON channel, and then probes the second best channel
until it finds an OFF channel. After this, a renewal occurs
before the next probe. This definition ensures that each
inter-renewal period is i.i.d. An example renewal interval
is shown in Table I.

The expected inter-renewal time is given by TE(N1 +
N2), where N1 is the number of probes it takes to find
an ON channel, and is geometrically distributed with
parameter π, and N2 is the number of probes it takes until
the next OFF probe. The distribution of N2 is dependent

Time 0 T 2T 3T 4T 5T 6T
Best Channel Belief p2T

11 p3T
11 p4T

11 pT
11 pT

11 pT
11 p2T

11

Second Best Belief π π π p5T
11 p2T

11 p2T
11 π

Probe Result 0 0 1 1 1 0 -

TABLE I
EXAMPLE RENEWAL INTERVAL STARTING AT TIME 0 AND

RENEWING AT TIME 6T . AT EACH PROBING INTERVAL, THE
SECOND BEST CHANNEL IS PROBED.

on N1, and has the following distribution function.

N2 =

{
1 w.p. p(N1+2)T

10

i w.p. p(N1+2)T
11 p2T

10 (p2T
11 )i−1 i ≥ 2

(12)

Therefore,

X̄SB = TE(N1+N2) = T

(
1
π

+1+
E[p(2+N1)T

11 ]
p2T
10

)
(13)

While the transmitter searches for an ON channel, a reward
of

R̄1
SB = E

[ (N1−1)T−1∑
i=0

pi+2T
11 +

T−1∑
i=0

pi
11

]
(14)

is earned. The first term is the throughput from trans-
mitting over the best channel while looking for an ON
channel, which starts with belief p2T

11 and decays until
an ON channel is found. The second term represents the
reward earned over the interval once the ON channel is
found. While the transmitter waits for the second-best
channel to be OFF, a reward of

R̄2
SB = E

[
(N2 − 1)

T−1∑
i=0

pi
11 +

T−1∑
i=0

pT+i
11

]
(15)

is accumulated. The average reward per time slot is given
by

R̄1
SB + R̄2

SB

X̄SB
=

π +
πpT

10(π + p2T
10 )

(p+ q)T [π2 + p2T
10 (1− (1− p− q)T + π)]

(16)

We can compute the difference between (16) and (5)
from Lemma 1 as

R̄1
SB + R̄2

SB

X̄SB
− R̄B

X̄B
=

((1− p− q)TπpT
10)2

T (p+ q)(π + pT
10)(π2 + p2T

10 (π + 1− (1− p− q)T ))
(17)

Since p ≤ 1
2 and q ≤ 1

2 , we have 0 ≤ (1 − p − q)T ≤ 1
for all T . Therefore, the expression in (17) is positive,
completing the proof.

Theorem 1 states that probing the channel with the
second highest belief is a better policy than probing the
channel with the highest belief. A numerical comparison
between these two policies is shown in Figure 2. This
result is in sharp contrast to the result in [8] that shows that
probing the channel with the highest belief is optimal. In
our model, when a probed channel is OFF, the transmitter
uses its knowledge of the system to transmit over another



Fig. 2. Comparison of the probe best policy and the probe 2nd
best policy for varying probing intervals T. In this example, p =
q = 0.05.

channel believed to be ON. In the model of [8], when an
OFF channel is probed, the transmitter can not schedule a
packet in that slot. This difference in reward after probing
leads to significantly different probing policies.
B. Round Robin Policy

It is of additional interest to consider a min-max policy,
the round robin policy, which probes the channel for which
the transmitter has the least knowledge. In a system with
finitely many channels, the round robin policy probes all
of the channels sequentially, but since there are infinitely
many channels, the policy always probes a channel that
has previously never been probed. Consider channel state
beliefs x1, x2, x3, . . . where x1 ≥ x2 . . . ≥ xi . . . ≥ π.
The immediate reward of round robin is given by:

π + (1− π)x1 = π + x1 − πx1. (18)

By comparing (18) to (10), it is clear the immediate reward
of the round robin policy is less than the probe best
policy. Interestingly, the following Theorem shows that the
average per-slot throughput is the same for the round robin
policy as the myopic probe best policy.

Theorem 2. For all fixed T , the round robin policy has a
per-slot average throughput of

E[Thpt] = π +
πpT

10

T (p+ q)(pT
10 + π)

, (19)

the same as the probe best policy.

Proof: Let a renewal occur every time a new channel
is probed and found to be ON. Since the result of each
probe is an i.i.d. random variable with parameter π, the
inter-renewal intervals are i.i.d. The inter-renewal time
XRR = T ·N , where T is the time between probes, and
N is a geometric random variable with parameter π, as
defined in (3). Over that interval, the transmitter transmits
over the last channel known to be ON, until a new ON
channel is found. The expected reward earned over each
renewal period is given by

R̄RR = E
[N∗T−1∑

i=0

pi
11

]
= E

[
πNT +

pNT
10

p+ q

]
(20)

= T +
pT
10

p+ q − q(1− p− q)T
. (21)

Policy Theory Simulation
Probe Best 0.7659 0.7657

Probe Second Best 0.7806 0.7806
Round Robin 0.7659 0.7662

TABLE II
THROUGHPUT COMPARISON FOR DIFFERENT PROBING

POLICIES WITH p = q = 0.05, T = 6. SIMULATION ASSUMES
500 CHANNELS AND A TIME HORIZON OF 1,000,000 PROBES.

Thus, the time-average reward is given by

R̄RR

X̄RR
= π +

πpT
10

T (p+ q)(π + pT
10)

, (22)

which is the same as the reward of the probe best policy
in Lemma 1.

This result is surprising, since the round robin policy
trades off immediate reward for increasing knowledge of
the channel states, but yields the same average throughput
as a myopic policy.

C. Optimal Probing Policy

In order to confirm the results in the previous section,
we simulate a system of 500 channels assuming a time
horizon of 1,000,000 slots, and apply different probing
policies at a fixed probing interval of 6 slots. We compute
the average throughput obtained over the total horizon. The
results are shown in Table II. In this simulation, the probe
second best policy is optimal over all policies considered,
while the probe best policy and round robin policies have
the same average throughput. These results lead to the
following conjecture.

Conjecture 1. The probe second best policy is optimal
among all channel probing policies for fixed probing
intervals T .

Intuition on Potential Proof : We believe this statement
can be proven using reverse induction over a finite horizon
of N probing times. As a terminal reward, the probe
second best policy and probe best policy are optimal, as
they maximize the immediate reward. Conditioned on the
optimality of probe second best for probes n+ 1, . . . , N ,
we prove that probe second best has a higher expected
reward than probe kth best at probe n for all k. The
difficulty in this proof lies in showing that the gain in
expected future reward of probe kth best over probe
second best is less than the gain in immediate reward from
probing the 2nd best at the current time. Note that the
simple coupling argument used to prove the optimality of
the probe best policy in [8] cannot be used here, as the
probe second best policy does not induce a cyclic ordering
of probed channels like the probe best policy.

IV. DYNAMIC OPTIMIZATION OF PROBING EPOCHS

Consider the policy where at each time, the transmitter
either probes the channel with the highest belief for a
fixed cost c, or does not probe. The optimal decision as to
whether to probe is a function of the state, and is described
by the following Theorem.



Theorem 3. Given that the transmitter only probes the
channel with the highest belief, the optimal probing de-
cision is to probe immediately after probing an OFF
channel, and to probe k∗ slots after probing an ON
channel, where k∗ is given by

k∗ = arg max
k

1
kπ + pk

10

(
πpk

10

(p+ q)
− c(π + pk

10)
)

(23)

Proof: Under the probe best policy, the belief of the
best channel x1 at every slot satisfies x1 ≥ π, and the
belief of every other channel equals π. When a probed
channel is OFF, the belief of every channel is π, and the
system remains in that state until an ON channel is probed.
Therefore, the optimal decision at this state is either to
never probe, or to always probe2. When a probed channel
is ON, the highest belief is always 1−q in the next slot, and
so there exists an optimal time k∗ to wait before probing
again.

Assume a probe occurs in the slot immediatly after
probing an OFF channel, and k slots after probing an ON
channel. Define a renewal to occur when the transmitter
probes an OFF channel. It follows that the expected inter-
renewal time is given by

X̄B = 1 + πkE[N ], (24)

where N is the number of ON probes before an OFF
probe, and is geometrically distributed with parameter pk

10.
The reward accumulated over this interval is given by

R̄B = (π − c) + πE[N ](
k−1∑
i=0

pi
11 − c). (25)

Therefore, the average per-time slot reward is given by

R̄B

X̄B
=
pk
10(π − c) + π(

∑k−1
i=0 p

i
11 − c)

pk
10 + kπ

(26)

= π − c
(
π + pk

10

kπ + pk
10

)
+

πpk
10

(p+ q)(kπ + pk
10)

(27)

The maximizing value of k in equation (27) is the optimal
time k∗ to wait after an ON probe.

While Theorem 3 is specific to the probe best policy, a
similar result holds for the round robin policy in Section
III-B, in that it is optimal to probe in the next slot after
an OFF channel is probed, and it is optimal to wait k′

after an ON channel is probed to probe again. However,
the k′ here is different than k∗ in Theorem 3. To illustrate,
Figure 3 plots the average reward of round robin and probe
best for different values of k. While under fixed probing
intervals, Theorem 2 states that both policies have the
same average reward, the probe best policy outperforms
the round robin policy after dynamically optimizing over
the probing intervals. For probe second best, the optimal
time until the next probe depends on the belief of the best
channel after an ON channel is probed, and consequently,
probe second best does not have a single solution for the

2We assume the policy that never probes is suboptimal. One can
characterize the value of c for which probing is necessary, but it is omitted
here for brevity.

Fig. 3. Comparison of the probe best policy and round robin
for varying values of k, the minimum interval between probes.
In this example, p = q = 0.1, and c = 0.5.

optimal probing interval after an ON channel has been
probed.

V. CONCLUSION

In contrast to the work in [8], [9] that established the
optimality of the myopic probe best policy, we showed that
for a slightly modified model, probing the best channel
is no longer optimal. Using renewal theory, we proved
that a simple alternative, the probe second best policy,
outperforms the probe best policy in terms of average
throughput. As noted in Section III, we conjecture that
probing the second best channel is the optimal decision at
all probing instances. Proving this conjecture is interesting,
and remains an open problem.
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