
On the Code Length of TCAM Coding Schemes
Ori Rottenstreich and Isaac Keslassy

Department of Electrical Engineering
Technion, Haifa 32000, Israel
{or@tx,isaac@ee}.technion.ac.il

Abstract—All high-speed Internet devices need to implement
classification, i.e. they must determine whether incoming packet
headers belong to a given subset of a search space. To do it,
they encode the subset using ternary arrays in special high-speed
devices called TCAMs (ternary content-addressable memories).
However, the optimal coding for arbitrary subsets is unknown.
In particular, to encode an arbitrary range subset of the space
of all W -bit values, previous works have successively reduced
the upper-bound on the code length from 2W−2 to 2W−4, then
2W−5, and finally W TCAM entries. In this paper, we prove that
this final result is optimal for typical prefix coding and cannot
be further improved, i.e. the bound of W is tight. To do so, we
introduce new analytical tools based on independent sets and
alternating paths.

I. INTRODUCTION

A. Background

High-speed Internet devices distinguish between packets
using classification, i.e. they apply different actions depending
on whether the incoming packet header belongs to a given
subset of a search space. For instance, they could accept all
packets belonging to this subset, and drop all other packets.

Classification is a key building block in networking theory.
It is the core function behind many network applications,
such as routing, filtering, intrusion detection, accounting,
monitoring, load-balancing, policy enforcement, differentiated
services, virtual routers, and virtual private networks [1]–[4].

Today, high-speed packet classification is implemented
using hardware-based TCAMs (Ternary Content-Addressable
Memories) [5], [6]. TCAMs are special devices that encode the
searched subset using a sequence of fixed-width ternary arrays
composed of 0s, 1s, and ∗s (don’t-care). Given an incoming
packet header, they return the action associated with the first
matched ternary array. The goal of a TCAM coding scheme
is to minimize the code length, i.e. minimize the number of
TCAM ternary arrays needed to encode a given subset.

Throughout this paper, given some W ≥ 1, we will define
the search space as the set of all W -bit values. This search
space contains 2W elements. We will want to encode an
arbitrary range subset, i.e. an arbitrary contiguous set of
values.

The following examples illustrate how TCAMs work.
Example 1: Assume that W = 3. We want to code the W -

bit range R = [1, 6] ⊆ [
0, 2W−1

]
, so that only packets in

R are accepted, while all other packets are denied (default
action). Fig. 1(a) shows R in a binary tree. R consists of
all values from 001 to 110. It can be coded as the union of
{001}, {01∗} = {010, 011}, {10∗} = {100, 101}, and {110}.

010 011001 110100 101

10* 11001*001

111000

(a)

(b)

Fig. 1. Internal TCAM coding of R = [1, 6]

Therefore, it has a code length of 4.
Fig. 1(b) illustrates how this code is implemented in a TCAM.
This code for R is presented on the left side and consists of 4
consecutive entries. Then, on the right side, for each incoming
header, the TCAM picks the first matched entry and outputs
the associated action.
For instance, consider an incoming header x = 011. The
header x belongs to the range R. Indeed, it matches the second
TCAM entry {01∗}, as shown in parentheses. Since the first
(and only) matched TCAM entry is this second entry, the
output is the action displayed in the second line, and the
packet is accepted. Incidentally, note that if no TCAM entry is
matched, for instance for header 000, then the TCAM outputs
a default action, which is assumed to be deny.

The code in the example above is a simple code. However,
it is not optimal, because it does not consider the full potential
of TCAM coding, and in particular the order of the entries.
The following example shows how we can further reduce the
TCAM code length.

Example 2: Fig. 2(a) illustrates again the range R = [1, 6]
from Example 1. It now shows how R can be coded with a
code length of 3 instead of 4. The new code uses external
coding, which exploits a different entry order by coding the
complementary of R first. It starts by coding this comple-
mentary using the two entries {000} and {111}, and then
associates all remaining entries to R using {∗ ∗ ∗}. Note that

010 011001 110100 101

111000

111000

(a)

(b)

Fig. 2. External TCAM coding of R = [1, 6]

the code length is equal to W = 3; in this paper, we want to
prove that encoding a range indeed needs a code length of at
least W in the worst case.
Fig. 2(b) shows how the TCAM implements this code. When
header x = 011 arrives, the third entry is the only one to
match it, and the output of the third line is indeed the same as
above, i.e. accept. Incidentally, note that if header 111 arrived,
it would match both the second and the third entries; then, the
second entry would be selected, because it appears first, and
the output would be deny as expected.

B. Related Work

There have been several past results on the upper-bounds
for the range code length. First, each range defined over W -
bit values can be coded in at most 2W−2 TCAM entries for
W ≥ 2 using an internal coding as in Example 1, i.e. a coding
that only uses entries from within the range [7].

This upper-bound on the code length can be reduced to
2W−4 (for sufficiently large W) using internal TCAM coding
that is non-prefix, i.e. with an arbitrary position of the “∗”
symbols, and a connection to Boolean Disjunctive Normal
Form (DNF) [8]. It can also be reduced to 2W−4 using Gray
codes instead of binary codes with prefix internal coding [9].
This result has since been improved to 2W−5 using a more
complex coding [10].

Recently, external coding that exploits a different entry
order was used to improve the bound on the worst-case code
length to W [11], [12].

Lower bounds on coding length have more rarely been
considered. If coding is constrained to be internal, the worst-
case code length is known to be at least W [9]. Also, an
independent set of minterms in sum-of-products expressions
is presented in [13]. However, none of these consider external
coding, and therefore they do not fully exploit TCAM prop-
erties.

Last, in the general case, TCAMs can be used to code
multidimensional rules of many range subsets with many
actions [14]. We restrict this paper to the analysis of the single-
dimensional case with a single range and a binary action.

II. MODEL AND NOTATIONS

A. Terminology

We first formally define the terminology used in this paper.
For simplicity we do not distinguish between a W -bit binary
string (in {0, 1}W) and its value (in [0, 2W−1]).

Definition 1 (Header): A packet header x =
(x1, . . . , xd) ∈ {0, 1}W is defined as a W -bit string.

Definition 2 (Range Rule): The range rule R is defined as
an integer range [r1, r2], where r1 and r2 are W -bit integers
and r1 ≤ r2. A packet header x ∈ {0, 1}W is said to match
R whenever x ∈ [r1, r2].

For instance, in Example 1, x = 001 matches R = [1, 6].
Definition 3 (TCAM Entry): A TCAM entry S → a is

composed of a TCAM line S = (s1, . . . , sW) ∈ {0, 1, ∗}W ,
where 0, 1 are bit values and ∗ stands for don’t-care, and a
binary action a ∈ {0, 1}, with default action ad = 0. A W -bit
string b = (b1, . . . , bW) matches S, denoted as b ∈ S, if for
all i ∈ [1,W], si ∈ {bi, ∗}.

Definition 4 (TCAM Coding Scheme): Consider the indica-
tor function α : {0, 1}W → {0, 1} of a searched subset. Then
a TCAM coding scheme φ maps α to an ordered set of nφ(α)
TCAM entries

(
S1 → a1, . . . , Sn → anφ(α)

)
if and only if for

any header x ∈ {0, 1}W , α(x) is the action associated with
the first TCAM entry that matches x (and α(x) = ad = 0 if
no TCAM entry matches x).
The number nφ(α) of TCAM entries is the code length of
coding scheme φ for function α. Let Φ denote the set of all
TCAM coding schemes.

Each range R is uniquely characterized by its range indica-
tor function αR, which takes a value of 1 on R and 0 outside
R. We will use range to indicate either R or its indicator
function αR.

For instance, in Example 1, the range R = [1, 6] is defined
using αR(1) = ... = αR(6) = 1 (i.e., accept) and αR(0) =
αR(7) = 0 (i.e., deny). The code length is nφ(αR) = 4, and
the TCAM entries are (001 → 1, 01∗ → 1, 10∗ → 1, 110 →
1).

We now define a TCAM prefix coding scheme, in which the
0’s and 1’s are restricted to appear as prefixes in the TCAM
entries, and the *’s as suffixes.

Definition 5 (Prefix Coding Scheme): A TCAM prefix cod-
ing scheme φ is a TCAM coding scheme such that for any
TCAM entry S → a with S = (s1, . . . , sW) ∈ {0, 1, ∗}W , if
sj = ∗ for some j ∈ [1,W], then sj′ = ∗ for any j′ ∈ [j,W].
Let Φp denote the set of all prefix coding schemes, so that
Φp ⊂ Φ.

B. Optimal Range Coding Problem

We want to find a TCAM prefix coding scheme φ ∈ Φp that
minimizes the worst-case TCAM prefix code length nφ(αR)
over all possible range functions αR. We first focus on prefix

coding schemes, and later consider non-prefix schemes. To
do so, we will first define extremal ranges, then define the
TCAM code-length minimization problem over all extremal
ranges, before defining the TCAM code-length minimization
problem over all possible ranges.

Definition 6 (Extremal Ranges): We define two types of
extremal ranges over [0, 2W − 1].
(i) A left-extremal range RLE denotes a range of the form
RLE = [0, y] for some arbitrary value of y.
(ii) Likewise, a right-extremal range RRE denotes a range of
the form RRE = [y, 2W − 1] for some arbitrary value of y.

A non-extremal range R = [y1, y2] is a range such that
0 < y1 ≤ y2 < 2W − 1. Therefore, a range is either left-
extremal, right-extremal, or non-extremal. Let ER(W) be the
set of all extremal ranges.

Definition 7 (Extremal Range Code Length): Define the
extremal range code length g(W) as the best-achievable code
length given all coding schemes φ ∈ Φ for extremal ranges.
Then,

g(W) = min
φ

max
R∈ER(W)

nφ(αR). (1)

Likewise, define gp(W) over all prefix coding schemes φ ∈
Φp.

Definition 8 (Range Code Length): For any positive inte-
ger W and any TCAM coding scheme φ ∈ Φ, the range
code length of φ, denoted fφ(W), is the worst-case TCAM
expansion nφ(αR) over all possible range functions αR, i.e.

fφ(W) = max
R⊆[0,2W−1]

nφ(αR), (2)

The range code length f(W) is defined as the best-achievable
range code length for W -bit ranges given all coding schemes,
i.e.

f(W) = min
φ∈Φ

(
max

R⊆[0,2W−1]
nφ(αR)

)
(3)

Likewise, we define fp(W) as the best-achievable range code
length given all prefix coding schemes φ ∈ Φp.

C. Past Results

The following results are known from [11].
Property 1: For all W ≥ 1, the extremal range code length

satisfies the following upper-bound:

g(W) ≤ gp(W) ≤
⌈

W + 1
2

⌉
(4)

Property 2: For all W ≥ 1, the worst-case range code
length satisfies the following upper-bound:

f(W) ≤ fp(W) ≤ W. (5)

III. MAIN RESULTS

Our main results consist in proving the code-length opti-
mality of specific coding schemes. In particular, we first prove
their optimality over the set of all extremal ranges.

Theorem 1: For all W ∈ N∗, the extremal range code
length satisfies

g(W) ≥
⌈

W + 1
2

⌉
. (6)

It follows from Property 1 that the bound is tight, i.e. g(W) =⌈
W+1

2

⌉
.

Then, we also prove the optimality of known prefix coding
schemes over the set of all ranges. Note that this optimality is
restricted to prefix coding schemes, which are by far the most
common among all coding schemes.

Theorem 2: For all W ∈ N∗, for prefix coding schemes,
the range code length satisfies

fp(W) ≥ W. (7)

It follows from Property 2 that the bound is tight, i.e. fp(W) =
W.

To provide these two results, we introduce novel analytical
tools that are suited for TCAM analysis. We first define the
hull property, and use it to define an independent set of n
points. We further demonstrate that an independent set of n
points cannot be encoded in less than n TCAM entries. This
property is true given any arbitrary TCAM entries, in any
order, and with any corresponding actions. To our knowledge,
it is the first characterization of TCAM coding properties using
independent sets.

IV. HULL, INDEPENDENCE, AND ALTERNATING PATHS

We now want to introduce new general analytical tools that
will help us analyze the minimum number of TCAM entries
needed to code a classifier function. Intuitively, given any
range that we need to encode, we will want to exhibit n points
that are independent in some sense, and prove that they cannot
be encoded in less than n TCAM entries.

First, we define the hull of a set of W -bit strings in
the W -dimensional string space (this hull is also known as
the isothetic rectangle hull, minimum bounding rectangle, or
minimum axis-aligned bounding box in different contexts).

Definition 9 (Hull): Let (n,W) ∈ N∗2, and consider n
strings a1, . . . , an of W bits each, with ai = (ai

1, . . . , a
i
W)

for each i ∈ [1, n]. Then the hull of {a1, . . . , an}, denoted
H(a1, . . . , an), is the smallest cuboid containing a1, . . . , an

in the W -dimensional string space, and is defined as

H(a1, . . . , an) = {x = (x1, . . . , xW) ∈ {0, 1}W |
∀j ∈ [1,W], xj ∈ {a1

j , . . . , a
n
j }} (8)

We can now relate the hull of a set of points to the TCAM
entries that they jointly match.

Proposition 3: Let (n,W) ∈ N∗2, and consider n strings
a1, . . . , an of W bits each. Then a1, . . . , an match the same
TCAM entry iff all the strings in the hull H(a1, . . . , an) match
this TCAM entry.

Proof: First, by Equation (8) defining the hull, we always
have {a1, . . . , an} ⊆ H(a1, . . . , an). Therefore, if all strings
in H(a1, . . . , an) match a TCAM entry, so does any ai.

10 110100

RLE

Fig. 3. Alternating path: RLE requires at least two TCAM entries using
any coding scheme.

On the other hand, assume that a1, . . . , an match a TCAM
entry S → a, with S = (s1, . . . , sW) ∈ {0, 1, ∗}W . Then
by Definition 3 of TCAM entry matching, for all i ∈ [1, n]
and for all j ∈ [1,W], sj ∈ {ai

j , ∗}. Now consider x =
(x1, . . . , xW) ∈ H(a1, . . . , an). Then by Equation (8), for all
j ∈ [1,W], xj ∈ {a1

j , . . . , a
n
j }. Therefore, for each bit j, either

all ai
j are equal, and xj obviously matches sj like all ai

j , or
some of them are distinct, and then sj = ∗, so xj matches sj

again.
Using the definition of the hull, we now define independent

sets of points, and then show that an independent set of n
points cannot be coded in less than n TCAM entries. There-
fore, this result enables us to simply exhibit an appropriate
independent set of points whenever we want to prove a lower
bound on the code length of a classifier function.

Definition 10 (Alternating Path and Independent Set): Let
n and W be positive integers, and let α : {0, 1}W → {0, 1}
be a classifier function. Then an alternating path An of
size n is defined as an ordered set of 2n − 1 W -bit strings
An = (a1, . . . , a2n−1) that satisfies the following two
conditions:
(i) Alternation: For i ∈ [1, 2n− 1],

α(a1) = α(a3) = · · · = α(a2n−1) = 1, and

α(a2) = α(a4) = · · · = α(a2n−2) = 0. (9)

(ii) Hull: For any i1, i2, i3 such that 1 ≤ i1 < i2 < i3 ≤ 2n−1,

ai2 ∈ H(ai1 , ai3). (10)

In such an alternating path, (a1, a3, a5, . . . , a2n−1) is an
independent set of size n.

Example 3: As shown in Fig. 3, let W = 2, n = 2,
and consider the left-extremal range RLE = [0, 2] =
{{00}, {01}, {10}} . Let a1 = 2 = {10}, a2 = 3 = {11},
and a3 = 1 = {01}. Then A2 = (a1, a2, a3) is an alternating
path of size 2 and (a1, a3) is an independent set, because they
satisfy the two needed conditions:
(i) Alternation: a1 ∈ RLE , a2 6∈ RLE , a3 ∈ RLE .
(ii) Hull: a2 ∈ H(a1, a3), i.e. {11} ∈ H({10} , {01}), because
it shares its first bit with a1 and its second bit with a3.

Lemma 4: Let n be a positive integer, and (a1, . . . , a2n+1)
be an alternating path of size n + 1. Then removing any two
successive elements in the alternating path yields an alternating
path of size n.

Proof: Removing elements ai and ai+1 yields
(a1, . . . , ai−1, ai+2, . . . , a2n+1) for any i ∈ [1, 2n]. Then the
two conditions defined above for the alternating path still
hold. First, odd elements should still yield action 1, and even
elements action 0. Second, for any three elements in the list,
the middle element is still in the hull of the two others, since
it was already before the removal of the two elements.

Proposition 5: A classifier function with an alternating path
of size n cannot be coded in less than n TCAM entries.

Proof: The proof is by induction on n.
Induction basis: For n = 1, we need to code at least one

element with a non-default action of 1, therefore we need at
least one TCAM entry.

Induction step: We assume that we cannot code a classifier
function with an alternating path of size n in less than n
TCAM entries, and want to show it for n + 1 as well.

Assume by contradiction that we can code a classifier
function with an alternating path An+1 = (a1, . . . , a2n+1) of
size n + 1 in less than n + 1 TCAM entries. Then consider
the first TCAM entry S → a (as defined in Definition 4), and
distinguish several cases.

(i) If none of the elements of An+1 are in this first TCAM
entry, which we denote An+1∩S = ∅, then S does not impact
An+1, and we can actually code the elements of An+1 in
the next (at most) n − 1 TCAM entries. But by Lemma 4,
we can extract from An+1 an alternating path of size n, e.g.
(a1, . . . , a2n−1), and by induction we know that it cannot be
coded in n− 1 TCAM entries.

(ii) If a single element ai out of An+1 is in this first TCAM
entry, i.e. An+1∩S = {ai}, then by Lemma 4, we can remove
two successive elements from An+1, including ai, and obtain
an alternating path An of size n that does not contain ai. But
then we need to code An in the next n − 1 TCAM entries,
because An ∩ S = ∅, and by induction we know that it is
impossible.

(iii) If at least two elements out of An+1 are in this first
TCAM entry, i.e. |An+1 ∩ S| > 1, then they all must yield
the same action by definition of the TCAM entry. Without
loss of generality, assume that {ai1 , ai2} ⊆ An+1 ∩ S, with
i1 < i2. Then since they yield the same action, we have
i1 < i1 + 1 < i2, and therefore ai1+1 ∈ H(ai1 , ai2) (Def-
inition 10). Therefore, by Proposition 3, ai1+1 also matches
the same TCAM entry, even though it should yield a different
action than ai1 and ai2 . Contradiction again.

V. RANGE CODE-LENGTH OPTIMALITY

A. Extremal Range Code-Length Optimality

Thanks to the tools developed above, we can now prove
the following theorem, which shows that the upper-bound
g(W) ≤ ⌈

W+1
2

⌉
is tight, and therefore that their iterative cod-

ing scheme reaches the optimal extremal-range code length.
We are now ready to prove Theorem 1.

Proof: We have to show that g(W) ≥ ⌈
W+1

2

⌉
.

The case of W = 1 is trivial. To distinguish between the
two left-extremal ranges RLE

1 = [0, 0] and RLE
2 = [0, 1], it is

clear that we need at least one TCAM entry.

Assume W ≥ 2. First, notice that for each even value of
W ∈ N∗, the upper-bound is the same for g(W) and g(W +1),
and is equal to

(
W
2 + 1

)
, i.e.

⌈
W+1

2

⌉
=

⌈
(W+1)+1

2

⌉
=(

W
2 + 1

)
. Therefore, to prove the tightness of the upper-

bound, it is sufficient to do it for the positive even values
of W .

More specifically, for each positive even value of W , we
simply need to exhibit a left-extremal range RLE(W) ⊆
[0, 2W −1] that cannot be coded in less than

(
W
2 + 1

)
TCAM

entries. As a consequence, this left-extremal range RLE(W)
would also suffice to prove the tightness of the upper-bound
for W + 1, because RLE(W) ⊆ [0, 2W − 1] ⊆ [0, 2W+1 − 1],
and

⌈
(W+1)+1

2

⌉
= W

2 + 1.
Therefore, we assume that W ≥ 2 is even. Define W -bit

string c = 1010...10 = {10}W
2 . The binary value of c is

c =

W
2 −1∑

k=0

2 · 22k =
2
3

(
2W − 1

)
(11)

Consider the left-extremal range RLE(W) =[
0, 2

3

(
2W − 1

)]
=

{{0}W , . . . , c
} ⊆ [0, 2W − 1]. Then

by Proposition 5, it suffices to show that in RLE(W) there
exists an alternating path of size W

2 +1. Note that we showed
this already for W = 2 in Example 3, and will now generalize
the proof for any even W ≥ 2.

We define a1 = {01}W
2 , and then construct the alternating

path (a1, . . . , aW+1) by flipping each time the ith bit of ai

to obtain ai+1: by flipping the first bit of a1, we get a2 =
{11}{01}W

2 −1. Then by flipping the second bit of a2, we get
a3 = {10}{01}W

2 −1, and likewise until aW+1 = {10}W
2 =

c. Therefore, for i ∈ [1,W + 1], ai has the same first i −
1 bits as aW+1 and the same last W − (i − 1) bits as a1.
As a consequence, by the hull definition (Definition 9), for
any i1, i2, i3 such that 1 ≤ i1 < i2 < i3 ≤ W + 1, ai2 ∈
H(ai1 , ai3), because ai2 shares its first i2 − 1 bits with ai3 ,
and its other bits with ai1 .

Now we only need to prove the alternation property of
(a1, . . . , aW+1). As defined in the alternating path definition
(Definition 10), we only need to show that the odd-indexed
elements are in RLE(W) = [0, aW+1] while the even-indexed
are not, i.e. ai ≤ aW+1 for i = 1, 3, . . . , W − 1, while
ai > aW+1 for i = 2, 4, . . . , W .

To compare between the two W -bit binary strings ai and
aW+1, we use the lexicographic order, i.e. ai < aW+1 iff there
exists some most significant different bit j such that their first
j−1 bits are equal, and the jth bit of ai is 0 while the jth bit of
aW+1 is 1. In addition, we know that ai only shares the first
i−1 bits with aW+1, and all other bits are different. Therefore,
for i ∈ [1,W], the most significant different bit between ai and
aW+1 is the ith bit. Since the ith bit of aW+1 = c = {10}W

2

is 1 for odd i and 0 for even i, the result follows.

B. Range Code-Length Optimality

We will now prove that the upper bound on the range
code length fp(W) from [11] is actually tight among all

TCAM prefix coding schemes, and therefore their prefix
coding scheme is optimal among all prefix coding schemes
for the worst-case range code length.

Let’s now provide an outline of the proof of Theorem 2.
Please refer to [14] for the full proof.

Proof Outline: We first assume that W is odd,
and define R1 =

[
1
3

(
2W−1 − 1

)
, 2W−1 − 1

]
, R2 =[

2W−1, 2W−1 + 2
3

(
2W−3 − 1

)]
, and R = R1

⋃
R2 =[

1
3

(
2W−1 − 1

)
, 2W−1 + 1

3

(
2W−2

)− 2
3

]
. We show by iter-

ation on odd W ’s that R cannot be coded in less than W
TCAM prefix entries, whether the first TCAM entry codes
the range R (internal coding) or its complementary (external
coding). Then, we do the same for even W ’s, and conclude.

VI. CONCLUSION

The paper deals with the fundamental capacity region of
TCAMs. This paper is unique in that it introduces fundamental
analytical tools based on independent sets and alternating paths
which can be used to prove the optimality of previous coding
schemes. In particular, we demonstrate that a previous upper
bound on the code length of extremal ranges is tight over all
coding schemes. We also prove the optimality of a previous
coding scheme over all prefix coding schemes for general
ranges.

While we proved the optimality over all prefix coding
schemes, the range-coding optimality over all general non-
prefix coding schemes is left as an open question for future
research.

ACKNOWLEDGMENT

This work was partly supported by the European Research
Council Starting Grant no. 210389. We would also like to
thank David Hay, Danny Hendler and Tuvi Etzion for their
helpful participation and suggestions.

REFERENCES

[1] D. E. Taylor, “Survey and taxonomy of packet classification techniques,”
ACM Comput. Surv., vol. 37, no. 3, pp. 238-275, 2005.

[2] G. Varghese, Network Algorithmics. Morgan Kaufmann, 2005.
[3] J. Chao and B. Liu, High Performance Switches and Routers. Wiley,

2007.
[4] J. Naous, D. Erickson, A. Covington, G. Appenzeller, and N. McKeown,

“Implementing an OpenFlow switch on the NetFPGA platform,” in ACM
ANCS, 2008.

[5] NetLogic Microsystems, http://www.netlogicmicro.com/.
[6] Renesas, http://www.renesas.com/.
[7] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and

scalable layer four switching,” 1998, pp. 191–202.
[8] B. Schieber, D. Geist, and A. Zaks, “Computing the minimum DNF

representation of Boolean functions defined by intervals,” Discrete
Applied Mathematics, vol. 149, no. 1-3, pp. 154-173, 2005.

[9] A. Bremler-Barr and D. Hendler, “Space-efficient TCAM-based classi-
fication using Gray coding,” in IEEE Infocom, 2007, pp. 1388–1396.

[10] R. Roth, Personal communication.
[11] O. Rottenstreich and I. Keslassy, “Worst-case TCAM rule expansion,”

in IEEE INFOCOM Mini-Conference, 2010.
[12] R. Cohen and D. Raz, “Simple efficient TCAM based range classifica-

tion,” in IEEE INFOCOM Mini-Conference, 2010.
[13] T. Sasao, “On the complexity of classification functions,” in ISMVL,

2008, pp. 57–63.
[14] O. Rottenstreich and I. Keslassy, “Worst-case TCAM rule expansion,”

Comnet, Technion, Israel, Technical Report TR09-01, 2009. [Online].
Available: http://webee.technion.ac.il/∼isaac/papers.html

