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Abstract—There has been much research effort on using small
buffers in backbone routers, to provide lower delays for users and
free up capacity for vendors. Unfortunately, with small buffers,
the droptail policy has an excessive loss rate, and existing AQM
(active queue management) policies can be unreliable.

We introduce QueuePilot, an RL (reinforcement learning)-
based AQM that enables small buffers in backbone routers,
trading off high utilization with low loss rate and short delay.
QueuePilot automatically tunes the ECN (early congestion no-
tification) marking probability. After training once offline with
a variety of settings, QueuePilot produces a single lightweight
policy that can be applied online without further learning. We
evaluate QueuePilot on real networks with hundreds of TCP
connections, and show how its performance in small buffers
exceeds that of existing algorithms, and even exceeds their
performance with larger buffers.

I. INTRODUCTION

Efficiently reducing buffer sizes in Internet routers may
be one of the main outstanding open problems in network-
ing [1]–[10]. The networking community has worked on small
buffers for nearly 20 years [3], even organizing dedicated
workshops [11], albeit with limited impact on real routers. In
this paper, we claim that using RL (reinforcement learning)
may help solve this longstanding problem, and demonstrate a
first step in this direction.

Small buffers. Internet router buffers help deal with conges-
tion and traffic variability. They trade off three key measures:
output link utilization, packet loss and packet delay. If they
are too small, they may quickly lead to under-utilization when
there are no arrivals, and high loss rates upon many arrivals.
If they are too large, they may lead to large delays.

In 1990, Van Jacobson [1] noted that to prevent under-
utilization, a single long-lived TCP flow going through a router
bottleneck link using droptail needs a router buffer size B of at
least B ≥ BDP = C ·RTT , i.e., the bandwidth-delay product
(BDP ) of its capacity C and the propagation round-trip time
RTT . This is known as the BDP rule-of-thumb [2].

In 2004, Appenzeller et al. [3] found that under several
assumptions, to achieve a high utilization in a similar setting,
N long-lived TCP flows would need a smaller buffer size
B ≥ BDP/

√
N . For example, a 400-Gbps backbone router

link carrying 100 K flows with an average RTT of 60 ms would
need 9 MB instead of 3 GB, a

√
N ≈ 300× reduction [12],

[13]. In this paper, we define buffers of size BDP/
√
N as

small buffers. Smallness is relative: 9 MB allows for some
6,000 Ethernet-sized packets. Similar small-buffer results have
since been confirmed for additional congestion control algo-
rithms (Cubic, BBR, etc.) [10] and for real backbone networks

(Level 3, Google, Microsoft, etc.) [8], [10]. Additional papers
have argued that buffer sizes could be further reduced and
that by using tiny buffers of about 50-100 packets, a backbone
network could still reach over 90% utilization, as long as there
is packet pacing at the sender or at the edge [4], [6].

Router vendors would be eager to reduce buffer sizes. The
BDP rule of thumb is still the basis for designing current
backbone router buffers, albeit with a reduction because of
its huge size [9]. For example, Cisco’s 400-Gbps linecards
offer either 18 ms (Q100 linecard) or 13 ms of buffering
(Q200 linecard) [14]. Modern forwarding ASICs can waste
half their capacity accessing off-chip memory, while smaller
buffers could enable on-chip SRAM buffering, as in datacenter
switches [8], [15]. Thus, smaller buffers could translate into
cheaper, less power-hungry and faster routers.

Users would also be eager to reduce buffer sizes. Many
papers have reported large increases in queueing delays at the
core during times of congestion [10]. A buffer-sizing experi-
ment at Netflix found an impact on video performance [7].

Unfortunately, with a droptail policy, small buffers incur
high drop rates that can violate SLAs (service-level agree-
ments), preventing operators from implementing them [5],
[8]. An ECN (early congestion notification)-based AQM (ac-
tive queue management) policy such as RED (random early
detection) [16] is appealing, as it can mark packets instead
of dropping them, and consequently lower the drop rate.
However, it also lowers utilization, and more significantly, it is
deemed too sensitive to parameter tuning to be implemented
in backbone networks [17]–[20].

Automatic AQM. Among the many AQM algorithms [21],
three have been standardized as IETF RFCs [22]–[24]:
RED [16] which was updated later with its adaptive vari-
ant (ARED) [25], CoDel [20], and PIE [17]. ARED was
introduced to solve the sensitivity to parameters and traffic
load changes. Nonetheless, selecting the target queue size is
left to the network operator. In later work, CoDel and PIE
were crafted to manage large buffer sizes and offer a ”no-
knobs” AQM without parameter tuning. Nevertheless, later
studies [26], [27] found that ARED provides comparable
results to CoDel and PIE, and that their parameters of choice
do not achieve the best results and also need to be tuned. AQM
can be cast as a sequential decision-making problem, for which
RL is a powerful tool. Four recent papers have introduced RL
for AQM: QRED [28] learns to adjust the RED thresholds for
dropping; DRL-AQM [29] and RL-AQM [30] directly adjust
the packet drop probability; and ACC [31] learns to adjust



the RED parameters for ECN marking in datacenter switches.
These papers make the case that learning can help obtain
better results than existing AQM policies. They also show
how learned policies are typically more resilient to changes
than existing ones. However, only ACC performs experiments
on real networks. Furthermore, none of these papers focuses
on the impact of small buffer sizes, which is the focus of this
paper.
Contributions. The main contribution of this paper is
QueuePilot, an RL-based algorithm for improving perfor-
mance in a backbone router with small buffers. We design
QueuePilot to be fully autonomous and run in a backbone
router using local buffer information only, as do current AQM
algorithms. We also opt to train a single policy offline in a
variety of settings and keep reusing this single policy online
in any setting. QueuePilot adopts a general RL-based AQM
policy that directly controls ECN marking. Furthermore, we
keep the implementation and training process simple, in order
to enable a backbone router to run it in real time with no GPU.
Finally, we implement QueuePilot using eBPF, leveraging fast
kernel access that enables us to use short time-steps of 5 ms.

To evaluate QueuePilot, we run experiments with hundreds
of flows on a real testbed. Our experimental results show the
following: (1) In a congested router, QueuePilot displays stable
performance across a wide range of buffer sizes, outperform-
ing a) droptail, b) ARED with various parameters and c) ACC.
(2) The reward performance of QueuePilot at the small-buffer
size B = BDP/

√
N exceeds that of these algorithms at

any buffer size. At the small-buffer size, QueuePilot further
exhibits strong FCT (flow completion time) tail properties.
QueuePilot also displays promising performance at an even
smaller buffer size. (3) QueuePilot adapts to varying degrees
of congestion, always obtaining the best performance in known
environments, and generally obtaining better performance in
previously unseen conditions. It also displays some unexpected
marking strategies. (4) When training QueuePilot on a single
congested router and testing it on a parking-lot topology with
two congested routers, we find that it can generalize and obtain
good performance. QueuePilot code is available at [32].

II. QUEUEPILOT

In this section, we introduce our QueuePilot algorithm. We
present our key design choices (§ II-A), then delve into the
details of the RL formulation (§ II-B), and conclude with our
RL-agent and eBPF implementations (§ II-C).

A. Key design choices

We begin by presenting the key choices we made in the
process of designing the characteristics of QueuePilot.
Autonomous. We designed QueuePilot to be fully au-
tonomous. It runs for a specific router buffer, and only
considers information local to this router buffer. While we
have considered the benefit of obtaining information from
neighboring buffers or neighboring routers, we settle on a
simpler solution where QueuePilot can incrementally replace
current AQMs.

Offline training. We opt for a train-once-offline-and-reuse-
online policy. Unlike ACC, we do not allow online training,
for two reasons. First and foremost, we want to avoid the
well-known catastrophic forgetting phenomenon [33]–[35],
whereby new samples cause a learned policy to forget old
information and lose some of its generalization properties. Sec-
ond, a static policy is amenable to better debugging properties.
Single policy. We attempt to train a single policy that will
be valid for all buffer sizes and all topology settings. This is
a significant decision. As we show in the experiment results
in § III-B, such a policy may trade off performance for
generality, and perform slightly worse than a policy that is
custom-trained on a single scenario, e.g., for a given buffer
size. However, adopting a different policy for each setting
combination (e.g., buffer size, bandwidth, estimated number of
flows, proportion of TCP traffic, proportion of ECN-capable
traffic, etc.) could involve an exponential number of policies.
A single policy is appealing to operators for its simplicity.
General policy. To keep our policy as general as possible and
allow it to take the widest possible set of actions, we do not
restrict our action choices to the parameters of RED (which is
the approach taken by QRED and ACC). Instead, the actions
of our agent directly control the ECN marking probabilities.
ECN marking. We opt to mainly signal congestion using
ECN marking, and only drop packets when the buffer is full.
This enables a softer state-signaling than dropping packets,
especially as we would like to reduce drop rates to fit SLAs.
This is made possible by the increased adoption of ECN-
capable hosts (above 81% in 2018 [36], probably around 90%
today). When attempting to mark a packet which is not ECN-
capable (e.g., UDP), we choose not to drop it, which makes
it even harder to maintain small queues. This is a well-known
fairness issue [37], [38].
Compatibility. QueuePilot should easily fit within the AQM
library of router vendors. Therefore, we only rely on simple
existing aggregate buffer measures (e.g., queue size or in/out
throughput) rather than on per-flow measures. Tracking ele-
phant flows may improve performance, but is outside the scope
of this work.
Long history. Since we do not know the exact RTT, QueuePi-
lot should rely on a history of unspecified length. We equip our
model with an LSTM (long short-term memory) module [39]
that does not take as input a fixed-length history. The standard
RL practice of using a discount factor regulates the impact of
temporally remote events.
No GPU. We aim for a lightweight policy that a backbone
router could run in real-time on real traffic. The policy should
be simple enough that it can run reasonably fast on a computer
without a GPU.
Low-level access. We implement and train QueuePilot on a
network of Linux-based PCs and run it in real-time. We use
eBPF, enabling a user program to access the packets in the
kernel-space for marking and dropping, for example. Using
unoptimized Python, we collect the observations, then compute
and apply the policy decisions every 5 ms.



B. Reinforcement learning

We assign the AQM task to an RL agent that controls one
egress-port router buffer in a partially-observable environment.
We divide time into slotted sequential intervals denoted as
steps. At each time step, the agent receives statistics about its
controlled buffer and produces an action that is held for the
rest of that step.
Formulation. In the RL literature, a decision-making problem
is described as an MDP (Markov decision process) [40] param-
eterized by the tuple {S,A, T , r, γ}, where s ∈ S describes a
state of the system, {a ∈ A} are the actions available to the
agent and T (st+1|st, at) is the transition probability at time
step t from the current state st to the next, given the action at
applied by the agent. In addition, r : S ×A → R is a reward
function, providing reward rt to the agent at each time step
given the current st and at. Finally, γ ∈ (0, 1) is a discount
factor controlling the effect of temporally remote states. The
objective of the agent is to maximize the expected cumulative
discounted reward Es,a

∑
t γ

trt(st, at) by learning a policy
π : S → A governing its behavior. In some cases, the agent
cannot directly access the state of the system st, but instead
views some observation ot ∈ O generated from the state at
each time step by an emission function g : S → O (e.g.,
QueuePilot can access the current buffer utilization but not
the state of the end-host CCAs). The policy then operates on
the observations, and not directly on the states: at ∼ π(ot).
This extension of the RL formulation is known as a Partially-
observable MDP (POMDP) [41].
Raw statistics. As Fig. 1 illustrates, we monitor the following
raw statistics: 1) number of received (Rx) packets and 2) trans-
mitted (Tx) packets; 3) number of dropped packets; 4) number
of packets marked for congestion; and 5) queue length.
Observations. We construct an observation space for the AQM
task using the above raw metrics that are available within the
router where the agent operates. At each step t, we compute
the following observations: 1) Relative Rx rate Rx/C, defined
as Rx divided by C, the output link capacity in a single time
step; 2) link utilization Ut = Tx/C (Ut ∈ [0, 1]); 3) packet
drop rate, defined as the number of dropped packets relative
to C; 4) packet marking rate, i.e., share of marked packets
out of all Rx packets; 5) average queue length Qt, an EWMA
(exponentially-weighted moving average) of the queue length;
6) average queue delay Dt = Qt/C for a new incoming
packet [17] (excluding transmission time).

We use the average queue length to consolidate the occur-
rences in the queue within the step with increased importance
to recent values. We use normalized or relative observations,
which is a common practice to avoid policy dependency on
absolute values and to improve generalization.
History. Our agent receives observations sequentially over the
course of interaction with the system, and aggregates them
using an LSTM module, a type of Recurrent Neural Network
module that collects sequential information and maintains
an internal calculated state. In this manner, the agent can
implicitly store a history of observations, which may depend

Fig. 1. System overview separating the hardware, kernel-space and user-
space layers: an eBPF code (purple, left) collects statistics, organized as an
observation vector, and passes them to the RL agent. The agent’s action is a
marking probability that is applied by the eBPF marking code (right).

on previous actions, and infer the underlying system state st
as part of its decision-making process.

Actions. ECN can signal to the sender to adjust its rate without
requiring a loss of goodput. Our agent sets the probability for
ECN marking, i.e., marking packets with a CE (congestion
experienced) bit in the IP header. It does not drop packets
at any point other than when the buffer overflows. We use
a simple non-uniform quantization of the probability range to
construct a small action space: A = {0, 0.01, 0.05, 0.1, 0.5, 1}.
This action space is sufficient as high probabilities have a dras-
tic effect on the traffic load and induce a drop in throughput
by the senders; therefore, we did not find an advantage in
including more fine-grained actions between 0.5 and 1. After
the agent receives the step observations ot, it samples an action
at ∈ A that is applied to the current step. Each packet’s CE
bit is then marked with probability at at the enqueue stage.
We use random marking to reduce synchronization between
different flows. To allow the agent full control of its policy,
we do not set restrictions on consecutive marking probabilities
and the action set A is never masked.

Reward. A network operator would define a reward function
that reflects a high throughput while maintaining a low queu-
ing delay and low loss rate. As a result, we directly optimize
the metrics that are pertinent to our task, notably by using the
delay itself and not the queue size. To that end, we define the
following reward function:

rt =

{
−1, if packet drop at time t > 0,

Ut
2

√
1+Dt

, otherwise,
(1)

using the previously-defined utilization Ut and average delay
Dt. This non-linear reward ranges within [−1, 1]. Packet drops



are punished (1st line), signaling to the agent that overflow
is allowed only if it is worthwhile in an accumulated reward
perspective. When there is no packet drop (2nd line), the reward
increases with the utilization and decreases as the average
delay accumulates. While we focus on small buffer sizes, this
reward is suitable for any buffer size.

Since the reward balances different objectives, it requires
some refinement. We initially designed the 2nd line of the
reward as a linear combination of Ut and Dt. However, we
found that a linear design does not perform as well as a non-
linear one in extreme conditions. In particular, with low queue
delays, it suffers from a lower-magnitude gradient (a point
established in [31]). Thus, we considered Ut

1+Dt
. We then found

that the resulting algorithm assigns too much weight to the
delay at the expense of utilization. For instance, a utilization
of 1 with a delay of 5 ms (one step) yields a step reward of 0.5,
equivalent to a utilization of 0.5 with zero delay. Therefore,
we give more weight to utilization by squaring it and less to
delay by taking its square root.

C. Implementation

The implementation is driven by the key design choices
defined in § II-A. We implement and train QueuePilot on a
real network testbed, and run it in real-time with hundreds of
TCP connections and UDP background flows.

RL agent. As our RL framework, we use the RLlib v1.11 [42],
[43] implementation of PPO [44], a widely-used actor-critic
algorithm. We integrate this framework with a custom OpenAI
Gym [45] environment that interacts with the Linux kernel
using eBPF. See Fig. 1 for an overview of our implementation
and agent integration. As our agent architecture, we use a
shared initial LSTM feature extractor, which receives new
observations at each time step and aggregates them in its 32-
dimensional hidden state vector. This is followed by two fully-
connected neural networks for the actor and critic components,
each with two layers of 64 hidden units.

eBPF. QueuePilot runs on Linux-based PCs that form our
network. In this setting, packet ECN marking and observation
sampling are tasks that require access to kernel space. eBPF
is a technology that provides the option to run a user program
within the OS kernel space, without the need to recompile the
entire kernel. Particularly, we are interested in network event
tracepoints and packet processing functions. We use BCC [46]
to implement and load our eBPF programs. We construct a
set of functions that are attached to tracepoints, probes and
filters, as shown in Fig. 1 (dashed lines). For example, queuing
events are monitored with tracepoints and probes at dequeue
and enqueue events respectively, and a filter is placed to apply
ECN random marking following the agent’s action. The ECN
marking is applied prior to the enqueuing of the packets,
similarly to how ARED operates. We use maps to get gathered
statistics to the agent and to pass the agent’s action to the
random marking function.

Step size. QueuePilot uses a step size of 5 ms, which is shorter
than the average RTT. A short step allows the policy to better

monitor changes in traffic patterns and be more responsive to
them. Since we design QueuePilot to operate under various
RTTs, it is an added benefit that the step size is uncoupled
from any RTT assumptions.

III. EXPERIMENTS

In this section, we evaluate the performance of QueuePilot
with real testbed experiments. We compare QueuePilot to
droptail, ARED and ACC. We first evaluate a simple topology
with a single congested router; then, we experiment in a
more complex parking-lot topology. We seek to answer the
following questions regarding QueuePilot:

1) How does it perform across several buffer sizes? How
does it trade off the various reward components? (§ III-B)

2) In small buffers, does its better reward translate into a
better FCT tail? (§ III-C)

3) In small buffers, how does it perform in both seen and
unseen configurations? (§ III-D)

4) In small buffers, does it automatically adapt in real time
to varying traffic intensities? (§ III-E)

5) In small buffers, can it generalize to a multi-router topol-
ogy where AQMs at congested points interact? (§ III-F)

Note that we also implemented QueuePilot in Mininet [47],
with the hope of evaluating QueuePilot in extensive topologies.
However, several issues convinced us to train and test on
the testbed only. First, due to computational limitations, we
could at most run a few dozens of TCP connections on
Mininet. Second, we found that with our small step size,
Mininet queue and flow dynamics greatly differ from those
of a real network, probably due to OS resource-allocation
issues. Thus, a successfully trained algorithm on Mininet
would underperform when evaluated on real computers.

A. Testbed settings

Topology. We begin our testbed experiments with a dumbbell
topology having a single congested router. 300 TCP sources
are connected to 300 destinations through two intermediate
routers R1 and R2 that share a congested link. We host all
the sources on a single computer, connected to R1 using a
40-Gbps link rate. Then the congested link rate between R1

and R2 is 1 Gbps. R2 is connected to the destinations hosted
on a separate computer using a 1-Gbps link. Link rates are
symmetric. The routers are output-queued. Congestion takes
place in an egress buffer of R1, where we run our AQM agent.

Implementation. Our configuration is composed of four
Ubuntu 20.04 PCs. They respectively implement the sources,
R1, R2, and the destinations. The PC for R1 is equipped with
an Intel Core i7–11700K CPU and 32 GB DDR4 SDRAM,
without a GPU. Router R2 is essentially pass-through since its
output rate is equal to its input rate. R2 adopts a droptail dis-
cipline. All offload operations to the NICs, e.g., segmentation
offloading, are disabled to provide reliable measurements and
packet marking of the traffic passing through the congested
router. An equal delay is added with a NetEm [48] implemen-
tation in the Linux kernel at the egress of the sending and



receiving hosts. For instance, an RTT of 30 ms reflects an
added delay of 15 ms at the egress of each end-host. We use
iproute2 v5.18 [49] for Linux’s tc (traffic control) updates.
MTU is left unchanged at 1500 Bytes. ECN is enabled by
default for TCP and ECN fallback is disabled as we guarantee
ECN support in our setup.

Traffic. We use iperf3 v3.11 [50] to generate TCP and UDP
traffic. TCP connections are split equally between CUBIC
and New-Reno connections [51]. TCP connections for the
FCT (flow completion time) experiment are sent with nuttcp
v6.1.2 [52], since iperf3 handles closing connections differ-
ently [53], and are measured with TShark v3.6.5 [54]. All
tests have (non-ECN capable) UDP background traffic, at a
constant rate of 80 Mbps (8% of the 1-Gbps congested link
rate).

Algorithms. We compare our results to droptail, ARED and
ACC when applicable. With the exception of droptail, we set
all algorithms to use ECN to mark packets upon congestion
instead of dropping them, as one of our goals is to decrease
drop rate. When we train QueuePilot and ACC, training time is
the same for both and long enough for the agents to converge.
Note that the bottleneck in the training time is in running on a
real network, rather than the computation required for updating
the agent’s policy, which is orders of magnitude shorter.

Droptail. Droptail uses a single-priority pfifo queue [55].

ARED. We use Linux’s tc default ARED implementation in
the Linux kernel with the ECN option set. We compare at
first three ARED variants {AREDi}i=1,2,3, with minimum
threshold minth = 0.1 · i · B given buffer size B. Other
parameters are chosen to provide empirical best results and
set according to the guidelines in [25] whenever possible.
Additional eBPF functions are applied to monitor observations
under ARED with added probes to retrieve ARED internal
variables.

ACC. Due to the lack of an open implementation of ACC, we
implement the algorithm as described in [31] based on Linux’s
tc RED, and complete missing details with the same choices
we make in QueuePilot. ACC’s training process combines
2 phases: (1) offline and (2) online. The offline training
is done with data from various network scenarios, and the
subsequent online training takes place in a particular switch
and aims to fine-tune its performance to the current scenario.
We implement the two ACC policies resulting from both
phases. When running experiments over a set of network
settings (e.g., with a set of different buffer sizes): (1) ACCPhase1
is a single policy trained similarly to QueuePilot on the entire
set of settings; while (2) ACC is additionally trained each time
for the specific setting on which it is tested.

QueuePilot. Like droptail, we implement QueuePilot in a
single-priority pfifo queue, and can trigger new actions (e.g.,
change the marking probability) every 5 ms. QueuePilot uses
a single policy that we train on the entire set of settings. In
addition, we attempt to better understand the cost of our choice
of adopting a single QueuePilot policy rather than training a set

Fig. 2. Single congested router: accumulated reward as a function of buffer
size for different algorithms.

of policies. To this end, we introduce QueuePilot∗, a version
of the previous single-policy agent which we continue to train
each time for the specific tested setting.
Test process. Unless otherwise stated, we repeat each test 10
times and present the average test results and their standard
deviation. In each test, TCP flows start and run for 5 seconds
to stabilize before we begin our measurements for 5 additional
seconds, or longer when stated. Note that we also ran tests that
included the slow-start stage, to similar results.

B. Reward sensitivity to the buffer size

Setup. We start by testing the performance of QueuePilot with
different buffer sizes

{
BDP ·2−i

}
i∈[0,5]

, from BDP down
to BDP ·2−5-sized buffers, while keeping the other network
settings unchanged. We run 300 long-lived TCP flows with
RTT =30 ms, thus buffer sizes are B=BDP =2439 packets
down to B = BDP ·2−5 = 76 packets, which reaches the tiny
buffer range of 50-100 packets [4]. The target small-buffer
size of B = BDP/

√
N = 141 packets is also added. We train

QueuePilot and ACCPhase1 on the whole range of buffer sizes.
QueuePilot∗ and ACC are additionally trained on each buffer
size separately, generating a different policy per buffer size.
Reward. Fig. 2 compares the accumulated reward for different
algorithms, given different buffer sizes (higher is better).
Each point illustrates the average accumulated reward over
all test runs, and its associated bar shows ± one standard
deviation (which can often barely be seen). QueuePilot∗ and
ACC are represented without lines connecting the dots to
reflect the additional policy training specifically for each buffer
size. QueuePilot and QueuePilot∗ obtain the highest rewards
across the range of buffer sizes. QueuePilot’s reward slightly
decreases with the smallest buffer sizes. We can see that
QueuePilot∗ does not significantly improve over single-policy
QueuePilot in most buffer sizes, despite its targeted training.

Focusing on the small-buffer size B = BDP/
√
N , it is

significant that QueuePilot’s reward is barely worse than its



(a) Utilization (b) Average drop rate (c) Normalized average queue length (d) Util. vs. drop rate at BDP/
√
N

Fig. 3. Single congested router: understanding the reward components. (a-c) present measures that impact the reward, (d) plots utilization vs. drop rate.

own reward for the large buffers, and better than the rewards
of any competing algorithm (droptail, ARED, ACC) for any
buffer size. Droptail has weak performance across the range.
ACC collapses for the small-buffer size. Therefore it does not
perform as well as ARED in this setting, despite being an auto-
tuning RED AQM. The reward of QueuePilot∗ is within the
margin of error of its reward in the larger buffers (and in fact,
slightly higher). Finally, note that for the smallest buffer on
the left, QueuePilot∗ performs well, yielding promising results
for learning policies below the small-buffer size.

Deep dive into the reward components. Fig. 3 illustrates
three measures that impact the reward function: the link utiliza-
tion in Fig. 3(a), the drop rate in Fig. 3(b), and the normalized
average queue length, i.e., Q/B where Q is the average queue
size, in Fig. 3(c). We plot this last component instead of the
average expected delay D = Q/C to better understand how
each algorithm uses the available buffer resource. Note that B
varies, so doubling B will double the delay given the same
normalized queue size.

For each buffer size, there is a tradeoff between these three
components, and we can better understand the decisions of
each algorithm. QueuePilot attempts to obtain a reasonable
value in all three components, but is not necessarily the best
in each. In particular, in the small-buffer size B = BDP/

√
N ,

it only obtains a throughput of 95%, which is reasonably good,
but below the great throughput of ACC and droptail. On the
other hand, its loss rate is under 0.04%, well below ACC
and droptail, which exceed 1%. Its average queue size (and
therefore average delay) is also significantly lower, although
this is less significant in a small buffer. The three components
also help us understand why in Fig. 2, different ARED
parameters are optimal for different buffer sizes in a non-
monotonous way, displaying how ARED is hard to tune:
e.g., aggressive ARED1 (red line) performs better at the large
BDP buffer because of its lower delay; worse in middle-sized
buffers because the other variants reduce their delays; and best
for smaller buffers because the drop rates of other variants
increase. Finally, it is interesting that for the large buffers
B = BDP · 2−1 and B = BDP , QueuePilot∗ converges to
a policy that is quite different from QueuePilot, even though
the resulting total reward is close (in Fig. 2): it sacrifices its
utilization in exchange for a lower queue length.

Pareto efficiency. Fig. 3(d) visualizes the tradeoff between
utilization and drop rate for the small-buffer B = BDP/

√
N .

It shows how QueuePilot lies on the Pareto-efficient frontier

Fig. 4. Mean and 99th-percentile FCT for different flow sizes

vs. droptail, ARED and ACC. While QueuePilot has a lower
utilization than droptail and ACC, it compensates by attaining
a particularly low loss rate. As expected, QueuePilot∗ reaches
an even better point, since it optimizes for this buffer size only.

C. FCT tail

Setup. We seek to understand the effect of the QueuePi-
lot policy on the end-to-end flow performance in small
buffers. To do so, we borrow the FCT (flow completion
time) benchmark from [31] and modify it to run with TCP
instead of RDMA, achieving near-100% load in our tests.
We keep the same network settings as previously used, and
focus on the small-buffer size B = BDP/

√
N . We then

measure the FCT of TCP flows carrying messages of size
{1KB, 10KB, 100KB, 1MB, 10MB}. We start 300 TCP con-
nections with 80-Mbps UDP background traffic and then
measure the FCT of 50 additional TCP flows of the same
message size. Overall, by repeating the test, we measure 1000
flows for each message size with ARED, ACC and QueuePilot.
The QueuePilot agent is the same agent from the previous
experiment (§ III-B) trained on the whole range of buffer sizes,
while ACC is trained specifically for this buffer size.

Results. Fig. 4 shows the mean and 99th-percentile FCT of
each algorithm, normalized by the mean FCT of QueuePilot.
For the mean FCT, QueuePilot achieves comparable results
with ARED, even slightly worse at times, while ACC obtains
50% longer mean FCT in small messages and comparable
results in large messages. The tail of the FCT distribution, as
shown by the 99th percentile, shows that in small messages
(1 KB and 10 KB) QueuePilot significantly outperforms
ARED and ACC, which suffer from up to 4× and 14×
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Fig. 5. Single QueuePilot policy performance with (a-d) 100, (e-h) 200 and (i-l) 300 TCP flows in different RTT scenarios

normalized FCTs respectively, vs. up to 1.4× for QueuePilot.
With large messages, ARED’s tail is the longest with 33%
longer FCT for 10 MB messages.

This is another tradeoff example. High drop rates can be
extremely costly to the user when the message size is small,
but throughput takes the upper hand in importance for a large
message size. Note that the FCT achieved by a TCP flow
correlates to all 3 metrics: link utilization, drop rate and delay.
In that sense, QueuePilot offers a suitable balanced solution
with the BDP/

√
N buffer size, with extremely low drop rate

and relatively high link utilization.

D. QueuePilot sensitivity to the environment

Setup. We argue that RL has the capability to learn various
traffic patterns and to react to them properly with a single
policy. In this experiment we show that QueuePilot can steer
small buffers through various traffic environments. We first
train a single QueuePilot agent in our dumbbell topology
while constantly changing the training environment: At each
training run, we randomly select a number N of TCP flows
within {100, 200, 250}, and RTT within {20, 40, 60, 80} ms.
We update the buffer size B = BDP/

√
N accordingly.

When testing, we vary the number N of TCP flows within
{100, 200, 300}, keeping in mind that N = 300 falls outside
the training range of QueuePilot. We also vary RTT within
{20, 40, 60, 80, 100} ms, noting again that 100 ms falls outside
the training range of QueuePilot. We update the buffer size
B = BDP/

√
N according to each chosen setting.

In this and the following experiments, we compare QueuePi-
lot to droptail and ARED only, since droptail is the current
default solution, and since in small buffers ACC reward col-
lapses vs. ARED as ACC becomes a less successful adaptive
RED AQM. In addition, for readability, the following figures
contain only one parameter set for ARED. We find that other
parameters lead to similar results.

Results. Fig. 5 plots the experiment results and their standard
deviation. Each line corresponds to a different number of
TCP flows. Each column presents a different metric: reward,
utilization, drop rate, and normalized average queue length.
The x-axis represents the RTT. As shown in Figs. 5(a), 5(e),
and 5(i), QueuePilot always achieves a higher reward than
ARED and droptail across the different environments on which
it was trained, and generally achieves a higher reward in the
new environments. We find that QueuePilot is weak in two
corner cases, both outside its training range, corresponding to
the smallest and largest buffer sizes in the testing set: (1) Its
reward is worse than ARED in the setting with N = 300 TCP
flows and RTT = 20 ms (Fig. 5(i)). Since the buffer size is
B = BDP/

√
N , a low RTT and a large N corresponds to

the smallest buffer size in the testing set (B = 94 packets,
within the tiny range). QueuePilot has trouble adapting to the
increased traffic burstiness and yields a higher drop rate than
ARED. (2) Its reward is still the best one with N = 100 TCP
flows and RTT = 100 ms (Fig. 5(a)), but like QueuePilot∗ in
Fig. 3, it sacrifices its utilization in exchange for a lower queue
length. This may not intuitively be the preferred behavior. Note
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Fig. 6. Dynamic traffic intensity with a small buffer: packet drops, utilization and average queue length with 200 flows at t=0, 300 at t=10 sec and 150
at t=20 sec.

that we keep using the small-buffer size formula throughout
this experiment; therefore, queue length and delay are less
significant as they are low anyway.

To sum up, in this experiment we find that QueuePi-
lot always obtains the best reward performance on known
environments, and generally, but not always, better reward
performance with unseen conditions.

E. Automatic tuning

Setup. In this experiment we analyze how QueuePilot can
adapt in real-time to changing traffic patterns while maintain-
ing high utilization and low drop rate. We continue using the
same trained QueuePilot policy from the previous experiments.
We set RTT = 40 ms on our dumbbell topology. At time
t = 0, we begin sending N = 200 TCP flows through the
network. At t = 10 sec, we increase N to 300 flows. Then
at t = 20 sec, we drop N to 150. UDP background traffic
is set to 80 Mbps. Buffer size is set to our target small-
size B = BDP/

√
N = 230 packets, where N = 200, i.e.,

it does not change throughout the experiment. We compare
QueuePilot to droptail and ARED.
Results. Fig. 6 plots the utilization and queue length changes
over time for droptail, ARED and QueuePilot. The two metrics
are averaged over 100-ms windows. We also use a red circle
to mark when the buffer overflows and packets are dropped.
Recall that we show the average queue, while packet drops
are caused when the instantaneous queue overflows the buffer.

As expected, droptail keeps a near-constant utilization at
1, but its average queue length and drop rate are extremely
high. ARED does not seem to change its policy when the
traffic intensity changes. It is also near-periodically causing
under-utilization of the link in all traffic load options, because
the instantaneous queue length can grow fast resulting in
ARED’s aggressive marking and the flows backing down
quickly. QueuePilot achieves almost full utilization in the
first two traffic patterns with 200 and 300 TCP flows respec-
tively, but lower utilization in the last pattern with 150 flows
([20− 30] sec). Nevertheless, its average utilization is always
higher than ARED’s.

We note an interesting marking strategy of QueuePilot: It
repeatedly uses small marking probabilities, but both their
frequency and selected marking probability increase with the

queue size and with the load. Interestingly, even with low
queue sizes and low loads, QueuePilot still marks packets at
times even though signs of developing congestion are barely
distinguishable. However, the policy completely stops marking
when utilization falls, e.g., in the [20, 22]-sec interval.

Note that some utilization values are greater than 1 in our re-
sults. In our implementation we sample all observations every
time step of 5 ms. Since we use unoptimized Python running
as a user-space program, the sampling may occasionally be
triggered in periods that are slightly longer than 5 ms, thus
leading to values larger than 1.

F. Parking-lot topology

Setup. We evaluate QueuePilot in a testbed with two congested
routers, after training it with a single congested router, in order
to test its topology generalization properties. As Fig. 7(a)
illustrates, we form a parking-lot topology through two in-
termediate routers R1 and R2. Two computers, H1 and H2,
are connected to R1 via 40-Gbps and 10-Gbps link rates
respectively. H3 and H4 are connected to R2 with 10-Gbps
and 1-Gbps link rates respectively. The connection between R1

and R2 is 1 Gbps. We send traffic along three paths: (1) from
H1 to H4; (2) from H2 to H3; and (3) from H3 to H4. In
this pattern, congestion is formed in output-queued buffers of
both routers: in R1 before the link to R2 and in R2 before the
link to H4. TCP flows in path (1) experience the congestion
in both R1 and R2, while flows in (2) or (3) experience
congestion in R1 or R2 respectively. Lastly, a 20-ms delay
is set at the egress link of each source or destination, thus
RTT = 40 ms. We send 150 TCP flows along path (1), 100
along (2) and 100 along (3). We evaluate performance at the
buffers of the congested 1-Gbps links in R1 and R2. The buffer
size in both routers is set to B = BDP/

√
N = 206 packets,

as RTT = 40 ms and N = 250 in each buffer. Each path
also contains 50-Mbps background UDP traffic, thus totaling
100 Mbps for every congested buffer, i.e., 10% of the link
capacity. We run 100 tests with QueuePilot on R1 and R2,
and repeat for ARED on both routers. We omit droptail, since
we know that it has good utilization but prohibitive loss rate.
We continue using the same policy for QueuePilot that was
trained with a single congested router (§ III-D).



(a) Two-router parking-lot topology

(b) Utilization distribution in two-router topology with small buffers

Fig. 7. Two-router (a) topology and (b) utilization CDF

Results. Fig. 7(b) shows the empirical CDF of the average
utilization in each router for QueuePilot and ARED. As shown,
despite the complex two-router interactions, QueuePilot man-
ages to maintain relatively high utilization in both routers
independently, along with relatively low standard deviation.
This augurs favorably for its ability to generalize to unseen
and more complex topologies.

Note that QueuePilot and ARED also achieve low drop
rates: for QueuePilot, 7.5 · 10−7 in R1 and 1.35 · 10−5 in
R2, and for ARED, 8.78 · 10−6 in R1 and 5.1 · 10−5 in
R2. Likewise they achieve low normalized average queue
lengths: for QueuePilot, 0.117 in R1 and 0.11 in R2, and for
ARED, 0.085 in R1 and 0.09 in R2. Due to the small-buffer
size, queue size and delay are low anyway and therefore less
significant.

IV. DISCUSSION: LIMITATIONS AND FUTURE WORK

Additional settings. Clearly, it is hard to convince operators to
adopt a new AQM policy. There is an endless list of additional
settings that should be tried in future work, beyond those that
could be presented in this limited space: e.g., consider more
complex topologies; consider more complex traffic patterns,
including a wide range of mixed RTTs; consider more CCAs
(congestion control algorithms), including ECN-insensitive
CCAs, RL-generated CCAs, and BBRv2 (as in [10] and
Fig. 16 of [56]); introduce TCP short flows; mix different
AQMs on different routers; etc.

More metrics. Beyond the FCT presented in this paper, we
could consider the impact of backbone queueing properties on
traffic from specific applications.
Fairness. The current reward does not consider fairness among
flows. A more complex reward could introduce fairness, at the
cost of increased implementation complexity.
Guarantees. As a model-free deep-RL solution, QueuePilot
is entirely devoid of performance guarantees.

V. RELATED WORK

The introduction (§ I) has provided an extended overview
of buffer-sizing and AQM related work. We expand here on
remaining topics:
Learning the buffer size. Given an existing AQM policy,
ABS [57] learns to tune the buffer size online. It is also
possible to do so without learning [58], [59]. This approach
is complementary to QueuePilot: e.g., it could use QueuePilot
as an AQM policy.
CCA for short buffers. CCAs can be designed to perform
well under short buffers. Flashpass [60] relies on a proactive
sender-driven CCA to withstand small buffers. Moreover,
additional approaches rely on a distributed joint CCA-router
approach. MACC [61] suggests a clean-slate policy that in-
troduces learning in both the AQM and CCA and trains all
agents in a multi-agent RL system. It may be more relevant to
private datacenters than to the internet. Moreover, PERC [62]
assumes routers can tell flows about their preferred rates. In
contrast, QueuePilot assumes existing CCAs and only manages
the AQM policy.
Buffer management. ABM [63] proposes to extend the AQM
policy by combining it with the buffer management scheme.
QueuePilot could be extended in the same manner.

VI. CONCLUSION

In this paper we introduced QueuePilot, an RL-based AQM
for backbone routers that trades off high utilization with low
loss rate and short delay. In our testbed experiments, we
showed how QueuePilot obtains consistently high performance
across a large range of buffer sizes, despite being a single
lightweight policy that is applied online in each setting without
further learning. Finally, we showed promising results for
QueuePilot in a multi-router topology, suggesting appealing
lines of future work for generalizing QueuePilot.

In future work, we hope to investigate whether a learned
policy could provide some limited guarantees given a simpli-
fied TCP model.

We have provided public access to the QueuePilot code [32].
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