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Abstract—Hardware-based packet classification has become an
essential component in many networking devices. It often relies
on TCAMs (ternary content-addressable memories), which need
to compare the packet header against a set of rules. But efficiently
encoding these rules is not an easy task. In particular, the most
complicated rules are range rules, which usually require multiple
TCAM entries to encode them. However, little is known on the
optimal encoding of such non-trivial rules.

In this work, we take steps towards finding an optimal encoding
scheme for every possible range rule. We first present an optimal
encoding for all possible generalized extremal rules. Such rules
represent 89% of all non-trivial rules in a typical real-life
classification database. We also suggest a new method of simply
calculating the optimal expansion of an extremal range, and
present a closed-form formula of the average optimal expansion
over all extremal ranges. Next, we present new bounds on the
worst-case expansion of general classification rules, both in one-
dimensional and two-dimensional ranges. Last, we introduce
a new TCAM architecture that can leverage these results by
providing a guaranteed expansion on the tough rules, while
dealing with simpler rules using a regular TCAM. We conclude
by verifying our theoretical results in experiments with synthetic
and real-life classification databases.

I. INTRODUCTION

A. Background

Packet classification is the key function behind many net-
work applications, such as routing, filtering, security, account-
ing, monitoring, load-balancing, policy enforcement, differenti-
ated services, virtual routers, and virtual private networks [1]–
[4]. For each incoming packet, a packet classifier compares
the packet header fields against a list of rules, e.g. from access
control lists (ACLs), then returns the first rule that matches the
header fields, and applies a corresponding action on the packet.
Typically, a tuple of five fields from the packet header is used,
namely the source IP address, destination IP address, source
port number, destination port number, and protocol type.

Today, hardware-based TCAMs (ternary content-addressable
associative memories) are the standard devices for high-speed
packet classification [5], [6]. They match the concatenation
of the five-tuple from the packet header into a fixed-width
ternary array composed of 0s, 1s, and ∗s (don’t care bits). For
each packet, a TCAM device checks all the rules in parallel,
and therefore reaches higher rates than other software-based or
hardware-based classification algorithms [1]–[3], [7], [8].

There are two types of rules: simple rules that specify a fixed
value (or a specific prefix-range as defined formally below) for
each field of the header, and range rules. Typically, a range

rule applies when the source port and/or the destination port
are in specific intervals. Encoding range rules requires several
TCAM entries (this is called range expansion), and therefore
although most rules are simple rules, most entries are used to
encode range rules [9]. In addition, there is evidence that the
percentage of range-based rules is increasing [10].

TCAM devices have a large set of rules which can be
encoded together. However, understanding how to do this
efficiently (using as few TCAM entries as possible) requires us
first to understand how a single rule can be encoded. Therefore,
a large body of work has been devoted to this question. Still,
no practical algorithm can give an optimal encoding for any
arbitrary range rule, i.e. the encoding that minimizes the
needed number of TCAM entries. Instead, because of the high
complexity of devising such an optimal algorithm, past works
have limited themselves to sub-optimal encoding. They have
either restricted the degrees of freedom of the algorithm, e.g.
by forcing it to be prefix [11] or only with accept entries [12],
or employed heuristic approaches [1]–[3], [13]–[15].

B. Our Contributions

In this paper we study the fundamental complexity of
encoding a single rule, using both accept and deny entries. We
focus on the optimal encoding of any single range, and explore
the theoretical hardness of encoding one-dimensional and two-
dimensional ranges. Then, we deduce practical results for
providing guaranteed-expansion TCAM encoding algorithms.

As illustrated in Table I and Fig. 1, we mainly provide three
new contributions in this paper.

We first provide a theoretical contribution. Consider a set
{0, 1, · · · , 2W − 1} of 2W points, also represented as a tree
with 2W leaves. Extremal ranges in this set are ranges that
cover the first or last leaves of the tree, i.e. ranges of the form
[0, y] or [y, 2W − 1]. Generalized extremal ranges are ranges
that are extremal for a subtree of this tree. For instance, within
a tree with 64 leaves, [5, 7] is extremal for the subtree that
represents [4, 7], and therefore is a generalized extremal range.

The first contribution of this paper is that we achieve an
optimal-encoding goal for generalized extremal ranges. Specif-
ically, we present a simple linear-time algorithm that finds an
optimal encoding for any given generalized extremal range. The
main insight that allows us to obtain this result is the proof that
there is an optimal TCAM encoding for generalized extremal
ranges that uses only prefix TCAM entries. In other words,
we prove that for generalized extremal ranges, restraining



TABLE I
SUMMARY OF THE NOVEL PAPER RESULTS (IN BOXED BOLD). (A) PRESENTS IN THE LAST ROW AN OPTIMAL ALGORITHM FOR THE ENCODING OF

ONE-DIMENSIONAL (GENERALIZED) EXTREMAL RULES (WITH RANGES LIKE [0, y]). AS SHOWN, THIS IS THE FIRST OPTIMAL RESULT WHEN THE DEGREES
OF FREEDOM OF THE ALGORITHM ARE NOT LIMITED. PREVIOUS PAPERS EITHER ASSUMED ADDITIONAL CONSTRAINTS ON THEIR ALGORITHMS OR DID

NOT PROVIDE OPTIMAL ALGORITHMS.(B) PRESENTS THE NEW RESULTS OBTAINED BY THIS PAPER FOR GENERAL RANGES. AS SHOWN IN THE LAST ROW,
WHEN THE DEGREES OF FREEDOM OF THE ALGORITHM ARE NOT LIMITED, THE PAPER ACHIEVES A TIGHT BOUND OF W FOR ONE-DIMENSIONAL

GENERAL RANGES. IN ADDITION, IN TWO-DIMENSIONAL RANGES, THE PAPER OBTAINS TIGHT BOUNDS OF W + 1 FOR EXTREMAL RULES (ASSUMING
EVEN W FOR SIMPLICITY), AS WELL AS 2W FOR GENERAL RULES.

(A) Optimal algorithm for any range

Constraints References Extremal Ranges General Ranges
No deny Prefix Gray One Dimension Two Dimensions One Dimension Two Dimensions
entries code codes

x x - [16]
√

-
√

-
x - x - - - -
x - - - - - -
- x - [11]

√ √ √ √

- - -
√

- - -

(B) Bounds on worst-case expansion over all ranges

Constraints References Extremal Ranges General Ranges
No deny Prefix Gray One Dimension Two Dimensions One Dimension Two Dimensions
entries code codes

Upper Lower Upper Lower Upper Lower Upper Lower
Bound Bound Bound Bound Bound Bound Bound Bound

x x - [16] W W W 2 - 2W − 2 2W − 2 (2W − 2)2 -
x - x [9] - - - - 2W − 4 W (2W − 4)2 -
x - - [12] W - W 2 - 2W − 4 2W − 4 (2W − 4)2 -

- x - [11], [17]
⌈

W+1
2

⌉ ⌈
W+1

2

⌉
W + 1 W + 1 W W 2W 2W

- - - [17]
⌈

W+1
2

⌉ ⌈
W+1

2

⌉
W + 1 W + 1 W W 2W 2W

the degrees of freedom of our encoding does not affect its
optimality. We can then use a simple dynamic programming
algorithm to find the smallest TCAM that uses only prefix
TCAM rules, based on an existing algorithm [11].

As shown in the last row of Table I(A), for the first time, we
achieve optimal encoding for non-trivial ranges. Former results
had to limit the degrees of freedom of the algorithms, e.g. by
constraining the encoding to be prefix, and therefore achieved
sub-optimal encoding.

This result is particularly appealing because the set of gener-
alized extremal ranges is significant in practice. To estimate the
potential impact of our results we consider a union of 120 real-
life classification databases from [10]. It contains 214,941 rules.
We find that 97.2% of these rules are generalized extremal rules
(i.e. 208,850 rules). Even after excluding the exact-match rules,
which are trivial to encode, 89.4% of the non-exact-match rules
are generalized extremal (51,055 rules out of 57,146).

Our discovery of an optimal algorithm for extremal ranges
also allows us to analyze the expected length of the optimal
encoding over all extremal ranges. To our knowledge, this is the
first formula known in the literature for the average encoding
size of a non-trivial range set. We show that it is only 2/3 of
the worst case.

Our second main contribution is that we find the exact worst-
case expansions of the one-dimensional as well as the two-
dimensional ranges (last rows of Table I(B)). In particular, we
first present a simple algorithm that is optimal for general one-

dimensional ranges in the worst case. Specifically, we first show
that it encodes any range in [0, 2W − 1] in at most W entries
and exhibit a range that cannot be encoded with less than W
TCAM entries. Thus, our algorithm is optimal for the worst
case, and it improves substantially on a best previously-known
lower-bound of ⌈(W +1)/2⌉ [17]. In addition, we also present
an algorithm that is optimal in the worst case for general two-
dimensional range rules. Such rules include two ranges, one
for the source port and the other for the destination port. If
W is the length of each of the two fields, we present an
algorithm that encodes any two-dimensional range with at most
2W entries and present again a matching lower bound, i.e. a
tough two-dimensional range such that any TCAM encoding
it will necessarily contain at least 2W entries. Therefore, our
presented algorithm is optimal again in the worst case.

Finally, our third and last contribution is a new joint TCAM
architecture. As Fig. 1 illustrates, the architecture combines a
regular TCAM together with a modified TCAM, which can
provide a guaranteed improved expansion for the tough classi-
fication rules. More specifically, given a set of classification
rules, we split the rules between the two TCAMs. We set
the first TCAM to encode the simple rules, while the second
TCAM encodes the complex ones (e.g., the two-dimensional or
the non-extremal one-dimensional rules). Then, each incoming
header is sent to both TCAMs. The first TCAM outputs the in-
dex of its first matching entry. The second TCAM provides the



index of the first matching entry to its simplified PE (priority
encoder), which corresponds to the index of its first matching
rule. To do so, it decomposes its PE logic into a hierarchical
structure, in which the first module determines whether there is
a match on each rule, then the second one determines the first
matching rule. Then, a modified conversion module considers
both indices. From each index, it can deduce the respective
rule index in the original classification list. Thus, it knows
which rule has higher priority, and can output the corresponding
action. It is therefore slightly more complex than a regular
TCAM conversion module, which can be implemented using
a simple SRAM with the action for each index. Here, the
modified conversion module needs to use two SRAM-based
memory tables, where each table entry may contain the original
rule index and the associated action corresponding to each
index.

This new architecture is especially interesting because the
fraction of complex classification rules is increasing, and is
expected to increase dramatically with the introduction of
virtualization and the related flexible flow matching in SDN
(Software-Defined Networking) [10], [18]. Therefore, this new
architecture may help solve future scaling bottlenecks, since
it provides tight guarantees on the worst-case number of
entries needed for each rule. In addition, updates are easier
to implement in the modified TCAM architecture [17], and
therefore in the combined architecture. On the other hand, note
that the modified TCAM involves additional logic, and is not
an off-the-shelf component. Therefore, it is more costly, which
may limit the current appeal of the new architecture.

We further simulate the new architecture on the set of
120 real-life rule files mentioned above. We encode two-
dimensional rules in the modified TCAM using the schemes
in our paper, and other rules in the regular one using a simple
binary prefix scheme. We find that the number of entries needed
to encode the two-dimensional rules decreases by 73.4%, and
the total number of entries needed decreases by 19.5%.

Due to space limits, some proofs are fully presented in [19].

C. Related Work

As further illustrated in Table I, several previous papers
have tried to find bounds on the worst-case expansion of a
single rule. It is well-known that each range defined over a
field of W bits can be encoded in at most 2W − 2 prefix
TCAM entries for W ≥ 2, where all TCAM entries have
an action of accept [16]. For example, assume that W = 4,
and that we want to encode the single range R = [1, 14] ⊆[
0, 2W − 1

]
so that packets in that range are accepted while

others are denied (default action). Then we need the following
2W −2 = 6 TCAM entries, not counting the last default entry:
(0001 → accept, 001∗ → accept, 01 ∗ ∗ → accept, 10 ∗ ∗ →
accept, 110∗ → accept, 1110 → accept, (∗∗∗∗→deny)).

Using a non-prefix TCAM encoding, the upper bound of
2W − 2 was improved to 2W − 4 [20]. To show that, the
disjunctive normal form representation of a range function was
studied. In addition, Gray codes can be used instead of binary

(a) Regular TCAM architecture. A priority encoder (PE) is used to select the
first matching entry. Then, an action is selected based on the entry index.

(b) Suggested joint TCAM architecture. It includes a regular TCAM and a
modified TCAM. In the modified TCAM, each range is encoded separately,
and the regular PE is replaced by a hierarchical PE that is used to select the
first matching range. Finally, the action is selected based on the indices sent
by the two TCAMs.

Fig. 1. Comparison of a regular TCAM architecture with the suggested TCAM
architecture. Components that also appear in the regular TCAM are presented
in gray.

codes to reduce the worst-case TCAM size for any range from
2W − 2 to 2W − 4 as well [9].

The previous examples only used entries with the action of
accept. In general, we also allow entries with the action of deny.
In this case, the order of the TCAM entries becomes significant
and the first entry that applies to a given input determines the
action on that input. When both actions are allowed, there is
an upper bound of W entries [17]. For instance, the range
R = [1, 14] could be encoded using 3 ≤ W entries: (0000→
deny, 1111 → deny, **** → accept).

Other than the papers mentioned above, there is an extensive
literature on efficient heuristics of how to encode ranges in
TCAMs [1]–[3], [13]–[15], [21]–[24].

Some rules specify a range both for the source IP’s and for
the destination IP’s. This motivates considering rules that are
the product of d ranges defined on d different fields of W bits
each. It is easy to see that they can be simply encoded using
up to (2W − 2)d prefix TCAM entries each accepting some
part of the range. This gives a bound of 900 TCAM entries for
a pair of (d = 2) port ranges of 16 bits each [1].

There are not many known lower bounds on the number of
TCAM entries required to encode a range. If the encoding is
constrained to the use of only accepting entries, then there is a
range for which the encoding length has to contain at least W
entries [9]. Furthermore, for binary codes, it was shown in [12]
that there is a range whose encoding requires at least 2W − 4
accepting TCAM entries.



When both denying and accepting entries are used, [17]
presented a lower bound of

⌈
W+1

2

⌉
for extremal ranges given

in binary codes, even when the entries are not limited to be
prefix. For general ranges, a lower bound of W was suggested
only when the entries are limited to be prefix.

Finally, an algorithm for finding an optimal prefix encoding
for a given range is presented in [11]. However, its optimality
is limited to encodings that contain only prefix entries.

II. MODEL AND NOTATIONS

A. Terminology

We first formally define the terminology used in this paper.
Unless mentioned otherwise, we assume a binary code rep-
resentation. For simplicity, as long as there is no confusion,
we also do not distinguish between a W -bit binary string (in
{0, 1}W ) and its value (in [0, 2W − 1]). We denote by xy
the concatenation of the strings x and y, and by (x)k the
concatenation of k copies of the string x.

Definition 1 (Range, prefix range, extremal range). A range
R of width W is defined by two bit strings r1 and r2 of W
bits each, such that r1 ≤ r2. The range R is the set of all bit
strings x of W bits such that x ∈ [r1, r2]. A bit string x of
W bits is said to match the range (or be in the range) R if
x ∈ [r1, r2].

In particular, a range R is a prefix range, with a prefix
r′ ∈ {0, 1}k of length k ∈ [0,W ] if r1 = r′(0)W−k, and
r2 = r′(1)W−k. It is a single point or an exact match if r1 =
r2. We say that the range is a general range when we want
to emphasize that it is not necessarily a prefix range. When
r1 = 0 or r2 = 2W − 1 we call the range an extremal range.

Definition 2 (TCAM entry, prefix TCAM entry). A TCAM
entry S of width W is a ternary string S = s1 . . . sW ∈
{0, 1, ∗}W , where {0, 1} are bit values and ∗ stands for don’t-
care. A W -bit string b = b1 . . . bW matches S, denoted as
b ∈ S, if and only if for all i ∈ [1, W ], si ∈ {bi, ∗}. We will
use S to denote also the set of strings that it matches, when
no confusion will arise.

A TCAM entry S = s1 . . . sW ∈ {0, 1, ∗}W is a prefix TCAM
entry if sj = ∗ for some j ∈ [1, W ] implies that sj′ = ∗ for
any j′ ∈ [j,W ].

Note that prefix TCAM entries of width W are in one-to-one
correspondence with prefix ranges of width W . A range with
a prefix r corresponds to the prefix TCAM entry r(∗)W−k.

We assume that each TCAM entry S is associated with
an action a that is either accept or deny. We denote a pair
consisting of an entry S and an action a by S → a. Depending
on the context, we shall refer by a TCAM entry either to S or
to the pair S → a.

To simplify our presentation we assume at first that the
packet header consists of a single field of width W . We focus
on a single classification rule defined by a general range over
this field and its action is to accept all bit strings in the range.
We call such a rule a range rule. Later we also discuss headers

with two fields of width W each, in which case the width of
the header and of the TCAM entries would be 2W .

Definition 3 (TCAM Encoding of a range). A TCAM encoding
ϕ of a range R of width W is a set of TCAM entries
(S1 → a1, . . . , Sn → an) where each ai is either accept or
deny. Then, for each header x ∈ {0, 1}W such that x ∈ R, the
first TCAM entry Sj matching x is associated with aj = accept;
and likewise, for each x ̸∈ R, either the first TCAM entry Sj

matching x is associated with aj = deny, or no TCAM entry
matches x (we assume a default action of deny). The number
of rules, n, is called the size of ϕ and denoted by |ϕ|.

A prefix TCAM encoding ϕ of a range R is a TCAM
encoding of R in which all entries are prefix TCAM entries.

B. Optimal Range Encoding Schemes

For each range R we denote by OPT (R) a smallest TCAM
encoding of R, and by OPTp(R) a smallest prefix TCAM
encoding of R. We also denote opt(R) = |OPT (R)| and
optp(R) = |OPTp(R)|. Let opt(R) be the range expansion of
R, or just the expansion of R for short. Likewise let optp(R)
be the prefix range expansion of R, or just the prefix expansion
of R for short.

We define r(W ) to be the maximum expansion of a range
in {0, 1}W , that is r(W ) = maxR opt(R). Similarly we define
re(W ) to be the maximum expansion of an extremal range,
that is re(W ) = max{opt(R) | R = [0, y]∨R = [y, 2W − 1]}.
Analogously, we define the maximum expansion with prefix
TCAM entries to be rp(W ) = maxR optp(R), and for extremal
ranges re

p(W ) = max{optp(R) | R = [0, y]∨R = [y, 2W −1]}.
Our main goal is to find an algorithm that encodes a range

R with opt(R) rules and to understand the expected value of
opt(R) over all ranges. Another goal is to find r(W ), re(W ),
rp(W ), and re

p(W ).

III. EXTREMAL 1-D RANGES

In this section, we consider the expansion of one-
dimensional extremal ranges over the set of prefix encoding
schemes denoted by Φp, and over the set of all encoding
schemes denoted by Φ.

For y ∈ [0, 2W −1], an extremal range may be a left-extremal
range of the form RLE = [0, y], or a right-extremal range of
the form RRE = [y, 2W − 1].

Given a TCAM encoding scheme ϕ that encodes a left-
extremal range R = [0, y] with |ϕ| TCAM entries, we can
obtain a TCAM encoding scheme ϕ′ that encodes the right-
extremal range R′ = [2W − 1 − y, 2W − 1] in exactly |ϕ|
TCAM entries. To do so, invert each of the bit values 0 and
1 (and ignore the don’t-cares) in all the |ϕ| entries. The range
expansion of left-extremal ranges is the same as that of right-
extremal ranges. In this section, we consider only left-extremal
ranges.

Likewise, note that while we deal with extremal ranges,
the results below also apply to generalized extremal ranges.
This is because each generalized extremal range is simply an
extremal range in its subtree. For simplicity, we will therefore
only consider extremal ranges.



A. Prefix Encoding Vs. General Encoding of Extremal Ranges

The next theorem compares, for any extremal range R, the
size of the smallest TCAM encoding of R and the size of the
smallest prefix TCAM encoding of R. It shows that they are
actually identical.

Theorem 1. For any extremal range R = [0, y] (where y ∈
[0, 2W − 1]), the range expansion of R is exactly the prefix
range expansion of R, i.e.

optp(R) = opt(R). (1)

Proof: We consider an extremal range R = [0, y] =
{(0)W , . . . , y1 . . . yW } and want to show that optp(R) =
opt(R).

As Φp ⊆ Φ, we trivially get optp(R) ≥ opt(R). Therefore
we need to prove that optp(R) ≤ opt(R). Consider all the
encoding schemes in Φ that encode the extremal range R in the
minimal number of entries. Among them, consider the schemes
with the minimal number of non-prefix entries, and in this
subset, the schemes with the minimal number of ∗s in their
non-prefix entries. Let ϕ = (S1 → a1, . . . , Sn → an) ∈ Φ be
such a minimal encoding scheme. We will show that we can
encode R in a prefix encoding scheme with at most |ϕ| entries.

If all the TCAM entries of ϕ are prefix TCAM entries, we
have that ϕ ∈ Φp is the required prefix encoding scheme.

Otherwise, among the non-prefix TCAM entries of ϕ, we
look at the index of the left-most * in each entry. We then
consider the entry with the minimal index among these indices.
If there are several non-prefix entries with the same index of
their left-most *, we consider the last one. We denote this entry
by S → a such that S = (s1, . . . , sW ) ∈ {0, 1, ∗}W and
distinguish two different cases depending on the action a ∈
A = {accept, deny}. Let j ∈ [1,W ] be the minimal index such
that sj = ∗. Further, let k ∈ [1, n] be the index of this TCAM
entry such that Sk = S and ak = a.

We first assume that a = accept. The case a = deny is
similar and is discussed in [19]. For this range R = [0, y], we
compare the first j − 1 symbols of y and S. By definition of
j, we have that ∀i ∈ [1, (j − 1)], si ∈ {0, 1} and therefore
y1 . . . yj−1, s1 . . . sj−1 are both binary strings. The proof now
splits into several cases:

(i) We have s1 . . . sj−1 > y1 . . . yj−1. In this case, the entry
accepts strings which are not in the range, and therefore have
been denied earlier on. Therefore, an equivalent encoding of R,
with one less entry, would be to remove the entry Sk → accept.
This is a contradiction to the selection of ϕ.

(ii) We have s1 . . . sj−1 < y1 . . . yj−1. In this case, one can
replace Sk → accept with s1 . . . sj−1(∗)W−j+1 → accept, to
get an encoding of R with less non-prefix entries.

(iii) We have s1 . . . sj−1 = y1 . . . yj−1 and yj = 0. In this
case, replace Sk → accept with s1 . . . sj−10sj+1 . . . sW →
accept.

(iv) We have s1 . . . sj−1 = y1 . . . yj−1 and yj = 1, and there
exists an entry Sℓ that begins with s1 . . . sj−10. If the entry Sℓ

is of the form Sℓ → deny, deleting the entry ℓ would leave us
with a more efficient encoding of R. If the entry Sℓ is of the

form Sℓ → accept, change the encoding of R by removing the
entry Sℓ, changing Sk to s1 . . . sj−11sj+1 . . . sW → ak, and
add as a first entry the entry s1 . . . sj−10(∗)W−j → accept.

(v) Finally, we have s1 . . . sj−1 = y1 . . . yj−1 and yj = 1,
and no entry that begins with s1 . . . sj−10 exists. Let A denote
the set of 2W−j strings that begin with s1 . . . sj−10. If Sk is not
the first matching entry for any string in A then we can change
Sk to be s1 . . . sj−11sj+1 . . . sW → accept. We denote by ℓ the
index of the first entry in Sk+1 → ak+1, . . . , Sn → an that at
least one of the strings in A matches. As described below,
sometimes such an entry does not exist. There are two cases:

(v.a) The entry Sℓ is of the form Sℓ → accept. In this case,
since there is no entry (anywhere) that begins with s1 . . . sj−10,
it must be that the index of the leftmost ∗ in Sℓ is at most j. As
the entry k is the non-prefix entry with the minimal leftmost ∗,
and the last non-prefix entry among all the non-prefix entries
with ∗ in place j, we have that Sℓ is a prefix entry, of the
form s1 . . . sr(∗)W−r with r < j. Then, for every string in A,
and in particular for such strings that are first matched by Sk,
the first matching entry in Sk+1 → ak+1, . . . , Sn → an is Sℓ.
Therefore, changing Sk to be s1 . . . sj−11sj+1 . . . sW → ak

produces an encoding of ϕ with less *s in the non-prefix entries
- strings that begin with s1 . . . sj−10 will be accepted by Sℓ.

(v.b) The entry Sℓ is of the form Sℓ → deny or it does
not exist, i.e. any string in A is not matched by any of the
entries after Sk. In [19], we show that in both cases we can
change Sk to be s1 . . . sj−1(∗)W−j+1 → accept while still
encoding R. This decreases the number of non-prefix entries
in the encoding.

B. Optimal Encoding Scheme For Any Given Extremal Range
In this section we present an algorithm that computes, for

any given extremal range R, an optimal encoding of R. By
Theorem 1, it is sufficient to find the optimal encoding with
prefix TCAM entries.

Let T be a subtree of the tree describing the entire space
[0, 2W − 1]. Each such subtree T corresponds to all binary
strings starting with a particular prefix x(T ). That is, all the
strings matching the TCAM entry c(T ) = x(T )(∗)W−|x(T )|.
Given a range R ⊆ [0, 2W − 1], and a subtree T , we call a
prefix TCAM encoding of R ∩ T , such that all of its entries
start with x(T ), a prefix TCAM encoding of T .

For a subtree T we define A(T ) to be an optimal prefix
encoding of T in which the last entry is of the form c(T ) →
accept, and let nA(T ) be the number of entries in this encoding.
If there are more than one possible optimal encodings with
such last entry, A(T ) is an arbitrary one of them. Similarly,
let D(T ) be an optimal prefix encoding of T with last entry
c(T ) → deny, and let nD(T ) be the number of entries in such
an optimal encoding.

Example 1. If a subtree T satisfies T ⊆ R then T can be
encoded by A(T ) = (c(T ) → accept) in nA(T ) = 1 entries
or by D(T ) = (c(T ) → accept, c(T ) → deny) with nD(T ) =
2. Likewise, if T ⊆ Rc then T can be encoded by A(T ) =
(c(T ) → deny, c(T ) → accept) with nA(T ) = 2 or by D(T ) =
(c(T ) → deny) with nD(T ) = 1.



If a subtree T contains a single input header (i.e. |T | = 1),
then either T ⊆ R or T ⊆ Rc. Thus A(T ), nA(T ), D(T ), and
nD(T ) can be computed as in Example 1. In preparation for our
dynamic programming algorithm, the following propositions
shows how we can compute A(T ), nA(T ), D(T ), and nD(T )
for |T | ≥ 2 based on the corresponding value for the left and
the right subtrees of T . They also relate the value of optp(R)
and nD(T ) for the complete tree T . Their simple proofs can
be found in [19].

Proposition 1. Let T be the complete tree of [0, 2W − 1] (i.e.
c(T ) = (∗)W ). The prefix range expansion of a range R is
nD(T ) − 1, i.e.

optp(R) = nD(T ) − 1. (2)

Proposition 2. Let T a subtree such that |T | ≥ 2. Let LT , RT

be the left and right subtrees of T , respectively. Then,

nA(T ) = min{nA(LT ) + nA(RT ) − 1, nD(LT ) + nD(RT )}
nD(T ) = min{nA(LT ) + nA(RT ), nD(LT ) + nD(RT ) − 1}.

Proposition 3. Let T be a subtree. Then, nD(T ) ≤ nA(T )+1
and nA(T ) ≤ nD(T ) + 1, i.e. |nA(T ) − nD(T )| ≤ 1.

Based on Proposition 2, we suggest a simplified version
of a dynamic-programming algorithm presented in [11] to
compute an optimal encoding of any extremal range. Our
suggested version is original in several ways. First, we demon-
strate its optimality among all encoding schemes rather than
just among prefix schemes. Second, it is significantly easier
to compute. This is because we only consider the subtrees
Ti = y1 . . . yW−i(∗)i (for i ∈ [1,W ]). In each step of the
algorithm we calculate the parameters of a subtree based on
its left and right subtrees, while the parameters of one of these
two subtrees can be obtained immediately from Example 1.
The full details can be found in [19].

Example 2. Fig. 2(a) illustrates the results of the algorithm
for the range R = [0, 22] = {(0)W , . . . , y1 . . . yW } for W =
5 and y1 . . . yW = 10110. First, for T0 = {y1 . . . yW }, we
clearly have nA(T0) = 1 and nD(T0) = 2. Similarly, for i ∈
[1,W ], the values nA(Ti) and nD(Ti) of the subtree Ti where
c(Ti) = y1 . . . yW−i(∗)i are also presented. By Proposition 1,
opt(R) = optp(R) = nD(TW )− 1 = 4− 1 = 3 and R can be
encoded as (10111 → deny, 11∗∗∗ → deny, ∗∗∗∗∗ → accept).

C. The Range Expansion of a Given Extremal Range

We derive from our algorithm a simple deterministic finite
automata (DFA) that computes the optimal range expansion of
a given extremal range R = [0, y] = {(0)W , . . . , y1 . . . yW }.
This automata will be useful for analyzing the expected range
expansion over all extremal ranges.

The DFA, shown in Fig. 2(b), consists of three states
Q = {A,B, C}. These three states represent the three pos-
sible values of nA(T ) − nD(T ) ∈ {−1, 0, 1} for a subtree
T . The state A = (a, a + 1) represents a subtree T with
nA(T ) + 1 = nD(T ), the state B = (b, b) represents a subtree

T with nA(T ) = nD(T ), and the state C = (c+1, c) represents
a subtree T with nA(T ) = nD(T ) + 1.

The input to the DFA would be the binary string y1 . . . yW

in a right to left order. The starting state is A and the transition
function δ : Q × Σ → Q is defined such that δ(A, 0) = B,
δ(A, 1) = A, δ(B, 0) = C, δ(B, 1) = A, δ(C, 0) = C, and
δ(C, 1) = B. (Since we are not interested in the language this
DFA accepts we do not define accepting states.)

We want to show how to derive the expansion of R from the
computation of this DFA. To do so, we suggest the following:

Theorem 2. Let ny be the number of transitions of the form
δ(B, 1) = A or δ(C, 1) = B while the DFA processed
yW , . . . , y1. Then, the range expansion of the extremal range
R = [0, y] = {(0)W , . . . , y1 . . . yW } satisfies opt(R) = ny +1.

Proof Outline: We calculate the value of nD(Ti) by
induction on i. We show its dependency on the number of
transitions of the two specific forms in the DFA. Finally, by
Proposition 1, optp(R) = nD(T ) − 1 = nD(TW ) − 1, which
leads to the result.

D. Average Range Expansion For Extremal Ranges

We now use the DFA of Section III-C to derive a closed-
form formula for the average range expansion of an extremal
range formally defined as

G(W ) = Ey: 0≤y≤2W −1 (opt([0, y]))

Theorem 3. The average extremal range expansion function
G(W ) satisfies

G(W ) =
4
9

+
W

3
+

4
9
·
(1

2

)W

if W is odd, and

G(W ) =
4
9

+
W

3
+

5
9
·
(1

2

)W

if W is even. (3)

Proof Outline: To calculate G(W ), we derive a Markov
chain from the DFA of Section III-C. This Markov chain is
shown in Fig. 2(c). It has the same states as the DFA with the
same interpretation. At each state it flips a coin and takes the
transition that corresponds to an input of 1 with probability
1/2, and the transition that corresponds to an input of 0 with
probability 1/2. This simulates the DFA on an extremal range
drawn uniformly at random. We then find that G(W ) = 1 +
1
2 ·

∑W−1
i=0

(
1 − (P i)(1,1)

)
, where P is the transition matrix.

Since for any j, (P 2j−1)(1,1) = (P 2j)(1,1) = 1
3 + 2

3 ·
(

1
2

)2j ,
we end up solving simple recursive equations and obtain the
needed results.

To our knowledge, this is the first formula in the literature
for the average encoding size of a non-trivial range set.

By [17], the worst case expansion for an extremal range is
re(W ) = re

p(W ) =
⌈

W+1
2

⌉
. Thus clearly G(W ) ≤

⌈
W+1

2

⌉
.

Theorem 3 and its corollary below show that the average
encoding length is only about 2/3 of the worst case.



(a) Illustration of the algorithm (b) A Deterministic Finite Automaton (DFA) (c) The corresponding Markov Chain

Fig. 2. Illustration of the algorithm results for the extremal range R = [0, 22] from Example 2. The parameters (nA(Ti), nD(Ti)) of each tree Ti ∈
{T0, . . . , TW } are illustrated. The parameter nA(Ti) is the number of entries in the smallest encoding of Ti with a last entry of the form c(Ti) → accept.
Likewise, nD(Ti) is the size of the smallest encoding with a last entry c(Ti) → deny. The smallest encoding of R has opt(R) = nD(T5) − 1 = 4 − 1 = 3
entries. (b) presents a Deterministic Finite Automaton (DFA), as discussed in Section III-C. It has three states representing the three possible values of
(nA(T ) − nD(T )) ∈ {−1, 0, 1} in a subtree T . (c) shows the corresponding Markov Chain of the DFA with the same 3 states.

Corollary 4. The average extremal range expansion function
G(W ) satisfies

lim
W→∞

G(W )
W

=
1
3
. (4)

IV. BOUNDS ON WORST-CASE EXPANSION

A. General 1-D Ranges

The next theorem shows that the upper-bound on the max-
imum range expansion r(W ) ≤ W is actually tight. Unlike
the limited result from [17] that shows its tightness among
only prefix encoding schemes, we show its tightness among all
TCAM encoding schemes. Incidentally, this theorem answers
the open question left in [17].

Theorem 5. For all W ≥ 1, the maximum range expansion
satisfies

r(W ) = rp(W ) = W. (5)

Proof Outline: See [19] for the full proof. We first
suggest a new analytical tool called a conflicting set of pairs.
Intuitively, a conflicting set of pairs of size n is composed of
n pairs of points, each with one point within the range and
one outside the range. We show that the pairs are pairwise
conflicting, so that we cannot encode together two points within
the range or alternatively two points outside the range from
two different pairs. We show that a range R (either 1D or 2D)
with a conflicting set of pairs of size n cannot be encoded
in less than n TCAM entries. It is known from [17] that
r(W ) ≤ rp(W ) ≤ W . To show that r(W ) ≥ W , we exhibit a
range R with a conflicting set of pairs of size W .

B. General 2-D Ranges

We now consider the encoding of two-dimensional ranges.
The input here is a pair of strings (a, b). A two-dimensional
range is a product of two one-dimensional ranges R1×R2, and
the encoding of such a range should accept exactly the pairs
of strings (a, b) such that a ∈ R1 and b ∈ R2.

We generalize the definition of r(W ) to multi-dimensional
ranges, and define rd(W ) as the maximum expansion of a d-
dimensional range in [0, 2W −1]d. Likewise, define re,d(W ) as

the maximum expansion of a d-dimensional extremal range, i.e.
the maximum expansion of a range whose projection on each
dimension is an extremal range. Finally, let rd

p(W ) (respec-
tively re,d

p (W )) be the maximum expansion of a (an extremal)
d-dimensional range when we use only prefix encodings.

Theorem 6. The worst-case expansion of a two-dimensional
classification rule satisfies,

r2(W ) = r2
p(W ) = 2W. (6)

Proof Outline: We first show that r2(W ) ≤ r2
p(W ) ≤

2W . To do so, we consider for a two-dimensional range R2 =
Rx × Ry , two possible encodings. First, we can negatively
encode the complementary of Rx (with don’t-cares for the
second field) and then positively Ry . Alternatively, we can
start by encoding negatively the complementary of Ry and then
positively Rx. We show that at least one of these encodings
has the required expansion. Finally, to show the tightness of
this lower bound, we suggest a two-dimensional range R with
a conflicting set of pairs of size 2W .

C. Extremal 2-D Ranges
As in the case of one-dimensional ranges, the upper bound

for general two-dimensional ranges from Theorem 6 can be
improved when only extremal ranges are considered.

Theorem 7. The worst-case expansion of a two-dimensional
extremal classification rule satisfies

2 ·
⌈

W + 1
2

⌉
− 1 ≤ re,2(W ) ≤ re,2

p (W ) ≤ W + 1. (7)

More specifically, if W is even, re,2(W ) = re,2
p (W ) = W + 1

and W ≤ re,2(W ) ≤ re,2
p (W ) ≤ W + 1 if W is odd.

Proof Outline: See [19] for the full proof. We again
consider the same two possible encodings suggested earlier
for non-necessarily extremal two-dimensional ranges. We prove
that for two-dimensional extremal ranges the best one achieves
the improved upper bound. Later, we exhibit a range with a
conflicting set of pairs of the required size to get the lower
bound.



(a) The average extremal range expansion G(W )
presented in Theorem 3.

(b) The normalized average extremal range ex-
pansion G(W )/W . We can see that indeed
limW→∞

G(W )
W

= 1
3

as stated by Corollary 4.

(c) Extremal range expansion distribution for
W = 32. The minimal expansion is 1 and the
maximal expansion is

⌈
W+1

2

⌉
= 17.

Fig. 3. Simulations of extremal range expansion

V. EXPERIMENTAL RESULTS

A. One-Dimensional Extremal Ranges

We conduct simulations to examine the results of the average
range expansion for extremal ranges presented in Section III-D.
Fig. 3(a) presents the function G(W ) for W ∈ [1, 32]. For each
value of W , the average expansion is calculated based on 2W

extremal ranges. We can see that the simulated average expan-
sion exactly matches the theory from Theorem 3. For instance,
G(W = 3) = 1.5 since the ranges [0, 0], [0, 1], [0, 3], [0, 7] can
be encoded in one TCAM entry while the encodings of the
ranges [0, 2], [0, 4], [0, 5], [0, 6] requires 2 entries.

Next, Fig. 3(b) presents the function G(W )
W for similar values

of W . We can see that indeed limW→∞
G(W )

W = 1
3 as stated

by Corollary 4. For instance, for W = 16, G(W )/W ≈ 0.3611
and for W = 32, G(W )/W ≈ 0.3472.

Last, Fig. 3(c) presents the distribution of the extremal range
expansion for W = 32. The minimal expansion is of course
1 and the maximal expansion is

⌈
W+1

2

⌉
= 17, both with

negligible probability. The most popular expansion is 11, and
there are about a billion (1, 053, 445, 120) different extremal
ranges with such an expansion, out of about 4 billion (232)
left-extremal ranges.

B. Two-Dimensional Ranges

We would like to examine the average expansion of two-
dimensional ranges in [0, 2W−1] × [0, 2W−1]. We consider the
suggested encoding scheme for two-dimensional ranges from
Section IV (with an improved worst-case expansion of 2W ) in
comparison with other well-known encoding schemes such as
the Binary Prefix encoding [16], the SRGE encoding [9] and
the external encoding for two-dimensional ranges from [17].

Table II summarizes the results. The improvement in the
average expansion is more significant for larger values of W .
For instance, for W = 8 the average expansion of the suggested
scheme is 4.85 in comparison with 36.56, 26.42 and 12.98 in
the first three schemes, an improvement of 86.7%, 81.6% and
62.6%, respectively.

C. Real-Life Database Statistics

We examine the frequency of generalized extremal rules in
a real-life database of 120 separate rule files with 214, 941

TABLE II
RANGE EXPANSION FOR TWO-DIMENSIONAL RANGES IN [0, 2W − 1] ×

[0, 2W − 1].

Encoding Worst-Case Average Expansion
Scheme Expansion W = 4 W = 5 W = 6 W = 7 W = 8

Binary Prefix (2W − 2)2 6.14 10.72 17.26 25.86 36.56
SRGE (2W − 4)2 4.03 6.96 11.51 17.95 26.42

External Encoding 4W − 3 5.24 7.06 9.00 10.98 12.98
Suggested Scheme 2W 1.84 2.45 3.18 3.99 4.85

rules originating from various applications (such as firewalls,
and ACL in routers). The same database was previously used
in [1], [9], [10]. In this database, the source port and the
destination port are W -bit fields (with W = 16). The rules
might include ranges in these fields. We find that out of the
214,941 rules, 97.2% (208,850) are generalized extremal rules,
i.e. all their fields contain generalized extremal ranges. Even
when excluding the exact-match rules, 89.4% of the remaining
rules are still generalized extremal (51,055 rules out of 57,146).

D. Effectiveness on Real-life Packet Classifiers

Fig. 4(a) presents the total expansion of the two-dimensional
ranges in twelve artificial classifiers generated by the Class-
Bench benchmark tool [25] and on the union of the 120 real-life
rule files. It compares the expansion of the suggested encoding
scheme for two-dimensional ranges (with the upper bound of
2W ) versus Binary Prefix encoding [16] and SRGE encod-
ing [9]. For the classifier fw4, for instance, the total expansion is
33,774 entries in comparison with 154,813 and 153,691 entries.
An improvement of 78.2% and 78.0%, respectively. Likewise,
for the real-life files, the improvement is 73.4% in comparison
with Binary Prefix.

Fig. 4(b) compares the total expansion of all rules in these
classifiers in the regular TCAM architecture using Binary Prefix
and SRGE (illustrated in the two left bars in each group of
three) and in the suggested joint TCAM architecture from
Fig. 1 (in the right bar). In this simulation, we choose to
encode all the two-dimensional ranges in the second part of
the architecture using also deny entries in order to improve
their average expansion. Therefore, the expansion of exact-
match rules and one-dimensional rules (encoded in the first
part of the architecture with only accept entries), is exactly



(a)

(b)

Fig. 4. Effectiveness of the suggested encoding scheme and the suggested
joint TCAM architecture (illustrated in Fig. 1) on twelve artificial classifiers
generated by ClassBench benchmark tool and on a real-life database. For
each classifier, the two left bars present the expansion of Binary Prefix and
of SRGE, while the third bar illustrates our suggested solution. In (a), we
compare the total expansion of the two-dimensional ranges in the classifiers.
In (b), we examine the expansion using the joint TCAM architecture when the
two-dimensional ranges are encoded in the second (modified) TCAM, i.e. the
white bars correspond to (a).

as in Binary Prefix encoding. Thus, the total improvement is
less significant but still not negligible. For instance, for the
real-life files, the improvement in the total expansion is 19.5%
in comparison with Binary Prefix. This essentially serves as a
proof of concept to our joint TCAM architecture.

VI. CONCLUSION

In this paper, we took a first step towards finding an
optimal TCAM encoding algorithm for all classification rules.
We presented an encoding algorithm that is optimal for all
possible generalized extremal rules, which represent 89% of
all non trivial rules in a typical real-life classification database.
We also obtained new tight bounds on the worst case for
general classification rules, both for one-dimensional and two-
dimensional ranges. Finally we presented a novel combined
TCAM architecture, composed of a regular TCAM and a
modified TCAM, which can provide a guaranteed improved
expansion for the tough classification rules.
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