
Compressing Forwarding Tables
Ori Rottenstreich∗, Marat Radan∗, Yuval Cassuto∗, Isaac Keslassy∗,
Carmi Arad§, Tal Mizrahi§∗, Yoram Revah§ and Avinatan Hassidim¶

∗Technion, {or@tx, radan@tx, ycassuto@ee, isaac@ee}.technion.ac.il
§Marvell Israel, {carmi, talmi, yoramr}@marvell.com

¶Google Israel and Bar-Ilan University, avinatanh@gmail.com

Abstract—With the rise of datacenter virtualization, the number
of entries in forwarding tables is expected to scale from several
thousands to several millions. Unfortunately, such forwarding
table sizes can hardly be implemented today in on-chip memory.

In this paper, we investigate the compressibility of forwarding
tables. We first introduce a novel forwarding table architecture
with separate encoding in each column. It is designed to keep
supporting fast random accesses and fixed-width memory words.
Then, we suggest an encoding whose memory requirement per
row entry is guaranteed to be within a small additive constant of
the optimum. Next, we analyze the common case of two-column
forwarding tables, and show that such tables can be presented
as bipartite graphs. We deduce graph-theoretical bounds on
the encoding size. We also introduce an algorithm for optimal
conditional encoding of the second column given an encoding of
the first one. In addition, we explain how our architecture can
handle table updates. Last, we evaluate our suggested encoding
techniques on synthetic forwarding tables as well as on real-life
tables.

I. INTRODUCTION

A. Background

The rapid growth of forwarding tables in network switches
raises serious concerns in the networking industry. Layer 2
(L2) networks are no longer constrained to small local area
networks. On the contrary, they are now used in datacenter
networks, which will soon have a need for millions of hosts in a
single L2 domain, while current L2 domains are only restricted
to several thousands [1]. As a result, current forwarding tables
cannot handle such datacenter networks.

The main driver of this expected dramatic growth rate is
the deployment of host virtualization in datacenter networks.
Whereas traditional servers would only use one or two globally-
unique MAC addresses per server, contemporary servers use
tens of MAC addresses, corresponding to their tens of virtual
machines (these generated MAC addresses are not necessarily
globally unique anymore). Assuming one MAC address per
thread, and considering the joint increase of the numbers of (a)
threads per core, (b) cores per processor (socket), (c) sockets
per server, and (d) servers per datacenter, it is clear that the
product of all these numbers is expected to dramatically in-
crease in the coming years [1]–[3]. In addition to this expected
strong growth in the number of entries per forwarding table, we
can also expect a moderate growth in the number of attributes
per entry, such as the quality-of-service and security attributes,
as well as in the size of these attributes. All in all, we need to
be able to handle dramatically larger forwarding tables.

Unfortunately, forwarding tables must be accessed on a per-
packet basis. Therefore, they are performance sensitive, and are
often implemented in hardware using on-chip memory. This
makes scaling forwarding tables challenging, because on-chip
memory is too small to hold millions of forwarding-table entries
in raw form [4], [5].

The goal of this paper is to study the compressibility of
forwarding tables, providing both an analytical framework and
experimental insight toward the effective compression of such
tables.

B. Compressing Forwarding Tables

Forwarding tables, also referred to as Forwarding Informa-
tion Bases (FIBs), consist of several entries, which associate
a lookup key to its corresponding forwarding information. For
instance, the lookup key can be a (VLAN, destination MAC
address) pair, and the forwarding information can include
the switch target port, the quality-of-service attributes, the
security attributes, and additional information used for various
modifications that need to be applied to the packet.

Forwarding tables are typically arranged as two-dimensional
tables. Each row entry in a forwarding table corresponds to
a different lookup key, and contains several columns, with
the lookup key and forwarding information. Forwarding tables
can then be accessed using a hashing mechanism. Upon each
incoming packet, the packet lookup key is hashed into one (or
several) of the hash table entries. If this entry contains indeed
the lookup key, then the forwarding table returns the associated
forwarding information.

Forwarding tables are typically redundant, because their
fields (columns) can have a highly non-uniform value dis-
tribution, and because the values in different fields can be
correlated. Therefore, we are interested in studying whether
these properties can be used to compress them. However, we
would like to keep two key properties that are specific to
forwarding tables:
(i) The ability to access each row entry directly regardless of
its row index, and
(ii) The ability to store each row entry in a fixed-width memory
word.

Such criteria prevent or make less attractive traditional en-
coding techniques. For instance, if the entries are compressed
using a Lempel-ZivWelch (LZW) technique and sequentially
stored in the memory, it is then difficult to calculate the memory

Fig. 1. An illustration of an access to the encoded forwarding table. First, a
single encoded entry of (at most) P bits is retrieved. Then, d pipelined accesses
to d dictionaries are performed based on the d binary codewords (of different
lengths) composing this encoded entry.

address of a specific entry, and to access it directly based on
its entry index.

C. Overview of the Suggested Solution

As illustrated in Figure 1, we suggest a novel compression
technique for forwarding tables that supports random accesses.

We propose to encode each of the forwarding-table columns
separately, using a dedicated variable-length binary prefix en-
coding, i.e. an encoding in which any codeword is not a
prefix of any other codeword. Therefore, each row entry in
a d-column table is represented by the concatenation of d
codewords representing the content of each of its d fields.
Accordingly, its width equals the sum of the d corresponding
codeword lengths. For each row entry we allocate a fixed
memory size P . In addition, each column i is associated to a
dictionary Di, which is stored separately in the memory. This
dictionary Di maps each binary codeword into its represented
field value in column i.

Figure 1 illustrates an access to the encoded forwarding table.
At each packet arrival, we first retrieve the P bits representing
the encoding of its ith entry. Then, we look up each of the d
dictionaries in a pipelined manner. This way, we sequentially
obtain the corresponding values of the d fields in the ith entry
after d pipelined lookups.

Note that the combination of the bounded-width entry prop-
erty and the prefix property of individual fields yields our two
desired properties specified above.

Example 1. Table I presents an example of a forwarding table
and a possible encoding of that table. There are h = 7 entries
in the table, each with d = 3 fields: Target Port, MAC Address
and VLAN.

First, Table (A) presents the original table without encoding.
Next, Table (B) illustrates a possible encoding of the for-

warding table (the presented spaces in the encoded table are
just shown to distinguish between the different fields, and do
not exist in practice). For instance, the two possible values in
the VLAN field are encoded by a simple fixed-length single-bit
encoding. In addition, variable-length encodings are used to
encode the three distinct values in the Target Port field, as well
as the five distinct values of the MAC Address field. With these

(A) The original forwarding table
Target Port MAC Address VLAN
Te12/1 00:1b:2b:c3:4d:90 Vlan10
Gi11/8 00:00:aa:6c:b1:10 Vlan10
Te12/1 00:00:aa:65:ce:e4 Vlan10
Gi11/24 00:00:aa:65:ce:e4 Vlan200
Gi11/24 00:13:72:a2:a2:0e Vlan200
Te12/1 00:21:9b:37:7e:14 Vlan10
Gi11/8 00:13:72:a2:a2:0e Vlan200

(B) Encoded
table

0 110 0
10 00 0
0 01 0
11 01 1
11 10 1
0 111 0
10 10 1

(C) The encoding dictionaries
D1 (Target Port) D2 (MAC Address) D3 (VLAN)
0 - Te12/1 00 - 00:00:aa:6c:b1:10 0 - Vlan10
10 - Gi11/8 01 - 00:00:aa:65:ce:e4 1 - Vlan200
11 - Gi11/24 10 - 00:13:72:a2:a2:0e

110 - 00:1b:2b:c3:4d:90
111 - 00:21:9b:37:7e:14

TABLE I
AN EXAMPLE OF A FORWARDING TABLE WITH d = 3 COLUMNS AND ITS

ENCODED REPRESENTATION. (A) SHOWS THE ORIGINAL TABLE WITHOUT
ENCODING. THE ENTRY SELECTION MECHANISM IS NOT PRESENTED. (B)
ILLUSTRATES THE CORRESPONDING ENCODED FORWARDING TABLE WITH

A MAXIMAL ENCODED ENTRY WIDTH OF P = 5 BITS. (SPACES ARE
PRESENTED JUST FOR SIMPLICITY AND DO NOT EXIST IN PRACTICE.) (C)

DESCRIBES THE d = 3 DICTIONARIES REPRESENTING THE PREFIX
ENCODINGS OF THE d COLUMNS.

d = 3 encodings, the obtained maximal width of an encoded
entry is P = 5 bits. Thus, in order to support the random-
access requirement, we keep P = 5 bits in the memory for each
encoded entry, even if it may actually be shorter. For instance,
the third entry only needs 4 bits, and therefore wastes 1 bit.

Finally, Table (C) illustrates the encodings used by the d = 3
dictionaries representing the d = 3 columns. The number of
entries in each dictionary equals the number of distinct values
in the corresponding column in (A).

This example illustrates how prefix encoding enables us
to simply concatenate the codewords without a need for any
additional separating flags.

In addition, it also shows how the memory size is directly
determined by the worst-case entry width, i.e. the maximum
number of concatenated bits per entry. This is one reason for
example why encoding each column using Huffman coding [6]
would not necessarily address this problem: while it is optimal
for the average entry width, it may yield a worst case that
ends up wasting a significant number of bits. Therefore, for a
given forwarding table with d columns, our goal is to suggest
a set of d prefix encodings that minimizes the maximal encoded
entry width. This makes it particularly hard, because each entry
width involves all columns, and the maximal one also involves
all row entries. Therefore, any strong solution may need to
jointly look at all the elements.

D. Related Work

The forwarding table scaling problem has been thoroughly
analyzed and discussed in networking industry forums and
standards organizations, both in the L2 and the L3 layers
(e.g. [1], [3]–[5], [7]). These analyses raise the concern that

the steep growth rate of forwarding tables has outrun the steady
technology growth rate of memory density.

Various creative methods have been proposed to mitigate
this scaling problem. First, FIB aggregation [8] is an approach
that reduces the size of a forwarding table by aggregating
table entries with identical forwarding information, i.e identical
entries without the lookup part. However, this approach does
not allow efficient representation when FIB entries are highly
correlated but not identical. This is increasingly the case, as the
number of columns per entry grows, and therefore the potential
for two row entries to be different in at least one column grows
as well. Similar solutions can be found in [9], [10].

Another approach to scaling forwarding tables is by distribut-
ing the forwarding table among multiple nodes in the network.
An example of this approach is FIB suppression with virtual
aggregation [11], which distributes the L3 forwarding table
among several routers, thus allowing each router to maintain a
small subset of the full address set. Distributed table approaches
yield a management overhead and are typically applicable to
L3 address tables, but are also less relevant to L2 tables.

In addition, there have been studies in other related fields.
Clearly, in information theory, there are many results on com-
pression and on lower bounds based on entropy [6]. Likewise,
database implementations also attempt to scale systems by
introducing compression techniques [12]–[14]. However, these
studies do not consider the forwarding table restrictions that
we mention above, and in particular the bounded entry length.

Finally, as mentioned, an orthogonal and complementary
consideration is the implementation of the forwarding table
using hashing, in order to easily find the row that corresponds
to a given key [15]–[17].

E. Contributions

This paper investigates a novel technique for efficient repre-
sentation of forwarding tables, with a support for fast random
access and fixed-width memory words.

We start by studying an offline encoding scheme for a given
static FIB table. We prove that it is possible to formulate the
encoding problem as an optimization problem, and that the
relaxed optimization problem is convex. As a result, we propose
a novel algorithm that achieves the optimal worst-case entry
width within a guaranteed constant additive factor of d− 1 in
any forwarding table with d columns, independently of their
values and of the number of rows.

In addition, we also consider the special case of forwarding
tables with d = 2 columns, which may only consist of the key
and the action. We first suggest tight upper and lower bounds
on the optimal encoding width of a two-column table in the
general case. We also show a sufficient condition for a fixed-
length encoding to be optimal. Moreover, we present an optimal
conditional encoding of a second column when the encoding of
one column is given. Later, we also introduce a bipartite graph
that can model the forwarding table, and present additional
graph-theoretic bounds on its optimal encoding width. These
improved bounds make use of combinatorial properties of the
graph, such as the size of its edge cover.

Finally, we also discuss the limits of our offline model, by
analyzing how our compressed forwarding tables may be able
to handle updates. We show that an additional bit per column
and an additional small memory may be sufficient to cope with
temporary loads of entry additions, modifications or deletions.

We conclude by evaluating the suggested encoding tech-
niques on real-life forwarding tables as well as on synthetic
tables. We demonstrate how our introduced techniques fare
against alternative algorithms such as fixed-width and Huffman
coding. In particular, we get closer to the compression lower
bound, albeit at the cost of an increased complexity.

Due to space limitations, some of the proofs in this paper
are deferred to [18].

II. MODEL AND PROBLEM FORMULATION

A. Terminology

We start with the formal definition of terminology used in
this paper. For a binary codeword (string) x, let ℓ(x) denote
the length in bits of x.

Definition 1 (FIB Table). A FIB table A =
((a1

1, . . . , a
1
d), . . . , (a

h
1 , . . . , ah

d)) is a two-dimensional matrix
of h rows (entries) and d columns (fields).

Given a FIB table A, we denote by Sj (for j ∈ [1, d]) the
set of element values in the jth column, i.e. Sj =

∪h
i=1{ai

j}.
We also denote by nj the number of distinct elements in the jth

column, i.e. nj = |Sj |. Let sj,1, . . . , sj,nj denote the elements
of Sj .

For example, in Table I, there are n1 = 3 values in the first
column, and S1 = {Te12/1,Gi11/8,Gi11/24}.

Definition 2 (Prefix Encoding). For a set of elements S, an
encoding σ is an injective mapping σ : S → B, where B is
a set of binary codewords of size |B| = |S|. An encoding is
called a prefix encoding if no binary codeword in B is a prefix
(start) of any other binary codeword in B.

Definition 3 (FIB Encoding Scheme). An encoding scheme
CA of a FIB Table A is an ordered set of d prefix encodings
CA = (σ1, . . . , σd). That is, each σj encodes column j, and is
constrained to be a prefix encoding.

Definition 4 (FIB Encoding Width). Let CA = (σ1, . . . , σd) be
a FIB encoding scheme of the FIB table A. The encoding width
ℓ(CA) of CA is defined as the maximal sum of the lengths of
the d codewords representing the d elements in a row of A, i.e.

ℓ(CA) = max
i∈[1,h]

 d∑
j=1

ℓ(σj(ai
j))

 . (1)

Example 2. Let A be the FIB table from Example 1 with
h = 7, d = 3, also described in Table I.(A). Likewise, let
CA = (σ1, σ2, σ3) be the FIB encoding scheme of A. Then,
as shown in Table I.(C), σ1(Te12/1) = 0, σ1(Gi11/8) = 10,
σ1(Gi11/24) = 11. As described in Table I.(B), ℓ(CA) =
maxi∈[1,h]

(∑d
j=1 ℓ(σj(ai

j))
)

= max
(
5, 5, 4, 5, 5, 5, 5

)
= 5.

Let’s compare this scheme with a fixed-length encoding of
each column. Since the number of distinct elements in the d = 3
columns of A are n1 = 3, n2 = 5 and n3 = 2, if IA a fixed-
length encoding of A then the elements in the jth column are
encoded in ⌈log2 nj⌉ bits, and ℓ(IA) =

∑d
j=1 ⌈log2 nj⌉ =

2 + 3 + 1 = 6.

B. Optimal FIB Table Encoding Scheme

For each FIB table A, we denote by OPT (A) the optimal
encoding width of A, i.e. the smallest possible encoding width
of any encoding scheme of A such that

OPT (A) = min
CA=(σ1,...,σd)

ℓ(CA). (2)

Our goal is to find an encoding scheme CA that minimizes the
encoding width ℓ(CA), and therefore reaches this minimum.

III. GENERAL FIB TABLES

A. Optimization Problem

We first want to rewrite the problem of finding the optimal
encoding scheme for any FIB table A as an optimization
problem.

First, it is well known that the set of codeword lengths in a
prefix encoding exists iff it satisfies Kraft’s inequality [6].

Property 1 (Kraft’s inequality). There exists a prefix encoding
σ of the elements in a set S with codeword lengths {ℓ(σ(a))|a ∈
S} iff ∑

a∈S

2−ℓ(σ(a)) ≤ 1. (3)

Therefore, we can now formally present the problem of
finding an optimal FIB table encoding scheme for table A =
((a1

1, . . . , a
1
d), . . . , (a

h
1 , . . . , ah

d)) as the following optimization
problem.

min P

s.t.
d∑

j=1

ℓ(σj(ai
j)) ≤ P ∀i ∈ [1, h] (4a)∑

a∈Sj

2−ℓ(σj(a)) ≤ 1 ∀j ∈ [1, d] (4b)

ℓ(σj(a)) ≥ 0 ∀j ∈ [1, d], ∀a ∈ Sj (4c)
ℓ(σj(a)) ∈ Z ∀j ∈ [1, d], ∀a ∈ Sj (4d)

In this optimization problem, we try to minimize the maximal
encoding width of a row (denoted here by P) while having four
sets of constraints. The first set (4a) represents the limitation
on the total width of each row. The second set of constraints
(4b) requires that each of the encodings σ1, . . . , σd should
satisfy Kraft’s inequality. The last two sets (4c, 4d) illustrate
the fact that the codeword length of any element should be
a non-negative integer (the constraints (4b) and (4c) together
guarantee that if the number of distinct elements in a column
is at least two, the codeword lengths are positive). For an

optimal solution to this optimization problem, the equality
P = OPT (A) is satisfied.

The optimization problem can be also described as being
dependent only on the codeword lengths. To do so, we replace
(for j ∈ [1, d], a ∈ Sj) the value of ℓ(σj(a)) by a corresponding
variable. In addition, as explained in [18], it is easy to derive
the sets of codewords given their lengths.

We also denote by the relaxed FIB encoding problem the
problem achieved by omitting the fourth set of constraints
(4d). In this relaxed problem, the codeword lengths are not
necessarily integers.

B. Approximation of the Optimal Encoding

In [18], we prove that finding the optimal encoding of a given
FIB table is NP-hard in the general case. We now show how to
find for each FIB table A of d columns a solution to the FIB en-
coding problem that is guaranteed to be within a fixed additive
approximation of the optimal encoding width OPT (A). More
specifically, we find an encoding scheme CA with encoding
width ℓ(CA) that satisfies ℓ(CA) ≤ OPT (A) + (d − 1), i.e.
its encoding width is larger than the optimal encoding width
(in bits) by at most the number of columns in A minus one.
We emphasize that this bound on the additive error of (d− 1)
depends neither on the number of distinct elements nj ≤ 2Wj

(for j ∈ [1, d]) in each of the columns, nor on the number of
rows h in A.

To obtain such an encoding, we consider the relaxed FIB en-
coding problem defined above, in which the codeword lengths
are not necessarily integers. We show that this optimization
problem is convex, and thus its solution can be found by one
of several known algorithms for such problems. We then build
as a solution to the original optimization problem, an encoding
with codeword lengths achieved by taking the ceiling of each
of the codeword lengths in the solution of the relaxed problem.
We show that these new codeword lengths lead to an encoding
that satisfies the additive approximation from above.

Theorem 1. Let
(
ℓ(σ̄j(sj,1)), . . . , ℓ(σ̄j(sj,nj))

)
be the code-

word lengths of an optimal solution to the relaxed FIB encoding
problem. Further, let CA = (σ1, . . . , σd) be an encoding
scheme satisfying ℓ(σj(sj,i)) = ⌈ℓ(σ̄j(sj,i))⌉ for all j ∈
[1, d], i ∈ [1, nj]. Then we have:
(i) The relaxed FIB encoding problem is convex.
(ii) The encoding width ℓ(CA) of the encoding scheme CA

satisfies

ℓ(CA) ≤ OPT (A) + (d − 1). (5)

Proof: We first examine the convexity of the relaxed
problem. Clearly, its simple objective function is convex. We
would like to show that each of the inequality constraint
functions (as a function of the codeword lengths) is convex
as well. Simply, constraints in the first and the third sets of
inequality constraints (4a, 4c) are convex due to their linearity.
In addition, we would now like to examine the convexity of the
second set of constraints (4b) representing Kraft’s inequality.
To do so, we define d functions f1, . . . , fd for the constraints on

each of the d prefix encodings. The function fj (for j ∈ [1, d])
receives as a parameter the set of codeword lengths of the
elements in Sj . The function fj

(
ℓ(σj(sj,1)), . . . , ℓ(σj(sj,nj))

)
is defined as

∑
a∈Sj

2−ℓ(σj(a)) =
∑nj

i=1 2−ℓ(σj(sj,i)).

We consider two arbitrary encoding schemes
(σ̄1, . . . , σ̄d), (σ̂1, . . . , σ̂d) with codeword lengths(
ℓ(σ̄j(sj,1)), . . . , ℓ(σ̄j(sj,nj

))
)
,
(
ℓ(σ̂j(sj,1)), . . . , ℓ(σ̂j(sj,nj

))
)

for the elements in Sj for j ∈ [1, d], respectively. We would
like to show that fj(α · σ̄ + β · σ̂) ≤ α · fj(σ̄) + β · fj(σ̂) for
all j ∈ [1, d] and α, β ∈ [0, 1] with α + β = 1. Here, when
performing linear operations on the set of codeword lengths,
we refer to a new set of codeword lengths, so that each of
its codeword lengths is obtained by performing the linear
operations on the corresponding length in the original set.
Based on the convexity of the function g(x) = 2−x, we have

fj(α · σ̄ + β · σ̂) =
nj∑
i=1

2−
(
α·ℓ(σ̄j(sj,i))+β·ℓ(σ̂j(sj,i))

)
≤

nj∑
i=1

(
α · 2−ℓ(σ̄j(sj,i)) + β · 2−ℓ(σ̂j(sj,i))

)
= α ·

nj∑
i=1

2−ℓ(σ̄j(sj,i)) + β ·
nj∑
i=1

2−ℓ(σ̂j(sj,i))

= α · fj(σ̄) + β · fj(σ̂). (6)

Based on these properties, we can finally deduce that the
relaxed FIB encoding problem is convex. With this observation,
an optimal solution, i.e. a generalized encoding (with non-
necessarily integer codeword lengths) can be found by using
one of the several known (polynomial time) algorithms for
such convex problems (e.g. the ellipsoid algorithm [19]). Let
us denote by

(
ℓ(σ̄j(sj,1)), . . . , ℓ(σ̄j(sj,nj))

)
the codeword lengths of an optimal solution to the relaxed
problem. Let OPTr(A) = maxi∈[1,h]

(∑d
j=1 ℓ(σ̄j(ai

j))
)

be
the maximal encoding width of a row in this optimal solution of
the relaxed problem. Again, OPTr(A) is not necessarily inte-
ger. Clearly, since the set of constraints in the relaxed problem
is a subset of the constraints in the FIB encoding problem,
the inequality OPTr(A) ≤ OPT (A) holds. Further, since
OPT (A) is an integer, we have that ⌈OPTr(A)⌉ ≤ OPT (A),
i.e. ⌈OPTr(A)⌉ is a lower bound for OPT (A). Clearly, since
ℓ(σj(sj,i)) = ⌈ℓ(σ̄j(sj,i))⌉ ≥ ℓ(σ̄j(sj,i)), all the d constraints
representing the Kraft’s inequality, satisfied by the solution of
the relaxed problem, are also satisfied by the set of codeword
lengths in CA = (σ1, . . . , σd).

We now show that the encoding width of the encoding
scheme CA is within a guaranteed additive approximation of
the optimal encoding width of A, OPT (A). Directly from the

definition of CA, we can have that

ℓ(CA) = max
i∈[1,h]

(d∑
j=1

ℓ(σj(ai
j))

)
= max

i∈[1,h]

(d∑
j=1

⌈
ℓ(σ̄j(ai

j))
⌉)

< max
i∈[1,h]

(d∑
j=1

(
ℓ(σ̄j(ai

j)) + 1
))

= max
i∈[1,h]

(d∑
j=1

ℓ(σ̄j(ai
j))

)
+ d = OPTr(A) + d

≤ OPT (A) + d. (7)

Finally, since ℓ(CA) as well as OPT (A) are both integers, we
can deduce from the (strong) inequality ℓ(CA) < OPT (A)+d
that ℓ(CA) ≤ OPT (A) + (d − 1).

C. Upper Bound on the Optimal Encoding

We now present a simple upper bound on the optimal
encoding of any FIB table with an arbitrary number d of
columns.

Consider a fixed-length encoding scheme IA that encodes
each column j using a fixed-length encoding (as seen in
Example 2). Then in each column j, it uses codewords of size
Wj = ⌈log2 nj⌉, since it needs at least nj > 2Wj−1 codewords
to represent the nj different values. As a consequence, the total
width of each row in also fixed, and we have

ℓ(IA) =
d∑

j=1

Wj =
d∑

j=1

⌈log2 nj⌉. (8)

The fixed-length encoding yields an upper bound on the optimal
encoding width of the FIB table.

Property 2. Let A be a FIB table of d columns such that the
set of distinct elements in the jth column is Sj with |Sj | =
nj ≤ 2Wj . Then,

OPT (A) ≤
d∑

j=1

Wj . (9)

IV. TWO-COLUMN FIB TABLES

A popular class of FIB tables are L2 MAC tables that
contain two columns. The first describes the Target Port,
while the second can be viewed as an aggregation of columns
representing a collection of other attributes. Indeed, we see in
real-life table traces that these additional attributes are hardly
ever used. Thus their aggregation has a relatively small set of
possible values.

Therefore, from now on, we consider the special case of
two-column FIB tables, i.e. FIB tables that satisfy d = 2. We
would like to fundamentally study this case to obtain some
intuition on the problem. We show that in this case, in order to
find its optimal encoding scheme, a FIB table A can be simply
represented as a bipartite graph. We also suggest an analysis
of the FIB encoding width of such two-column FIB tables.

For the sake of simplicity, we assume, unless mentioned
otherwise, that the number of distinct elements in each of the

(a) (b)

Fig. 2. A two-column forwarding table with h = 6 entries and n = 2W = 4
(for W = 2) distinct elements in each column with (a) the table, and (b) its
corresponding bipartite graph. The number of edges in the graph equals the
number of distinct entries in the forwarding table.

d = 2 columns of A is the same, and that it is a power of two,
i.e. |S1| = |S2| = n = 2W .

A. The Optimal Encoding Width of a Two-Column FIB Table

The next theorem suggests a lower bound and an
upper bound on the FIB encoding width of A =
((a1

1, a
1
2), . . . , (a

h
1 , ah

2)) for W ≥ 2.

Theorem 2. Let A be a two-column FIB table with |S1| =
|S2| = n = 2W for W ≥ 2. Then, the encoding width of A
satisfies

W + 2 ≤ OPT (A) ≤ 2W. (10)

Proof Outline: In [18], we present the full proof and also
prove the tightness of these bounds by exposing, for each of
them, a FIB table that achieves the bound.

The upper bound of W + W = 2W can be simply achieved
using Property 2, based on a fixed-length encoding. To show
the lower bound, we consider two options for the codeword
lengths of the elements in S1. If all of them equal W bits, at
least one of them shares a row with an element in S2 encoded
with two or more bits. Likewise, if the codeword lengths are
not fixed, we have an element in S1 with a codeword length of
at least W +1 that shares a row with another arbitrary element
in S2 encoded in at least a single bit. Both cases then suffice
to conclude.

Any two-column FIB table A = ((a1
1, a

1
2), . . . , (a

h
1 , ah

2))
can be represented by a corresponding bipartite graph GA as
follows. The two disjoint sets are the sets of distinct elements
in each of the two columns. Thus, if an element appears in both
of the two columns, it is represented by two different vertices
in each of the two disjoint sets. Edges connect elements in the
two sets if they appear at least once on the same row of the FIB
table. Formally, we define the graph GA =<L + R, E> such
that L = S1, R = S2 and E = {(x, y)|(∃i ∈ [1, h]), (ai

1, a
i
2) =

(x, y)}. Therefore, duplicated rows have no influence on the
construction of the bipartite graph, and the graph does not
contain parallel edges. It is also easy to see the independence
in the order of the rows of the FIB table.

Example 3. Figure 2(a) presents an example of a two-column
forwarding table with h = 6 entries and n = 2W = 4 (for
W = 2) distinct elements in both columns. The corresponding
bipartite graph appears in Figure 2(b). The vertices on the

left side of the graph represent the n = 4 distinct elements in
the first column, while the vertices on the right side represent
the n distinct elements in the second column. The number of
edges in the graph equals the number of distinct entries in the
forwarding table.

Given a FIB encoding scheme CA = (σ1, . . . , σd) of A =
((a1

1, a
1
2), . . . , (a

h
1 , ah

2)), we can present its FIB encoding width
based on GA as

ℓ(CA) = max
(x,y)∈E

ℓ(σ1(x)) + ℓ(σ2(y)). (11)

From the construction of GA, we can clearly see that the last
equation is compatible with Definition 4.

The representation of a FIB table as a bipartite graph can
help us to further understand the FIB encoding width based on
tools from graph theory. The next theorem relates the existence
of an independent set of a specific size in the bipartite graph
GA to the value of OPT (A).

Theorem 3. Let A be a two-column FIB table with |S1| =
|S2| = n = 2W and let GA =<L+R, E> be its corresponding
bipartite graph. If there does not exist an independent set of
vertices U = U1

∪
U2 in GA, so that U1 ⊆ L = S1, U2 ⊆

L = S2 and |U1| = |U2| = n
2 + 1, then the optimal encoding

width of A necessarily satisfies

OPT (A) = 2W. (12)

Namely, the optimal encoding width is achieved by the fixed-
length encoding and it cannot be improved by any variable-
length encoding.

Proof Outline: In any encoding scheme, there are at least
n
2 +1 elements in S1 (respectively S2) whose codeword lengths
in σ1 (σ2) are at least W bits. If OPT (A) < 2W then any two
such elements cannot share an entry in A.

B. Optimal Conditional Encoding of the Second Column

We now consider the conditional problem of finding an
optimal two-column encoding given that the encoding of the
first column is known.

Formally, given a two-column FIB table A and a known
prefix encoding of one of its columns σ1 := σ̄1, we want
to find a prefix encoding σ2 of the second column such
that the encoding width ℓ(CA) of the FIB encoding scheme
CA = (σ1 := σ̄1, σ2) is minimized. We denote the FIB
encoding width of such scheme by OPT (A|σ1 := σ̄1), i.e.

OPT (A|σ1 := σ̄1) = min
CA=(σ1:=σ̄1,σ2)

ℓ(CA). (13)

We would like to suggest an algorithm to find such an optimal
conditional encoding. Let A be a two-column FIB table with
two sets of distinct elements in each of the columns S1, S2

and an encoding of the first column σ1 := σ̄1. For y ∈ S2, we
denote by ϕσ̄1(y) the maximal codeword length ℓ(σ̄1(x)) of an
element x ∈ S1 that shares a row with y in A.

ϕσ̄1(y) = max{ℓ(σ̄1(x))|x ∈ S1, (x, y) ∈ E}. (14)

(a) (b)

Fig. 3. Two examples of bipartite graphs with n = 2W = 8 (for W = 3)
vertices in each graph side representing two two-column FIB tables A1 and
A2. In the first graph (a), there is a perfect match and the size of the (minimal)
edge cover is 8 = n = α · n with α = 1 and OPT (A1) = 2W = 6. In
the second (b), the size of the edge cover is 14 = α · n with α = 1.75 and
OPT (A2) ≥ 5.

We obtain the following closed-form solution:

Theorem 4. The optimal conditional FIB encoding width of A
satisfies

OPT (A|σ1 := σ̄1) =

log2

(∑
y∈S2

2ϕσ̄1 (y)
) . (15)

Proof Outline: We first prove that there exists a prefix
encoding σ̄2 of S2 such that (σ̄1, σ̄2) achieves the minimal en-
coding width within all the FIB encoding schemes (σ̄1, σ2) and
satisfies (∀y ∈ S2), ϕσ̄1(y) + ℓ(σ̄2(y)) = OPT (A|σ1 := σ̄1).
Then, we use this formula, Kraft’s inequality, and convexity
arguments to conclude. We also further explain in [18] how to
obtain such a solution.

V. LOWER BOUNDS ON THE OPTIMAL ENCODING WIDTH
OF TWO-COLUMN FIB TABLES

We would like now to suggest an additional lower bound on
the optimal encoding width of a given two-column FIB table A
as defined above. We can calculate this bound without solving
the relaxed FIB encoding problem.

Let again GA =<L + R, E>=<S1 + S2, E> with |S1| =
|S2| = n = 2W . In our case, note that GA does not include
any isolated vertices, i.e. any vertex is connected to at least
one vertex and the value it represents appears in at least one of
the rows of A. Therefore, an edge cover always exists. For a
graph G, we denote by ρ(G) the edge covering number of G,
i.e. the minimal number of edges in an edge cover of G. Let
α = ρ(GA)/n. The next theorem suggests a lower bound on
the optimal encoding width of A based on the value of ρ(GA).

Theorem 5. The optimal encoding width of A satisfies

OPT (A) ≥
⌈

2 · (W + α − 1)
α

⌉
. (16)

Proof Outline: The full proof can be found in [18]. We
first prove that the edge covering number ρ(GA) of GA satisfies

n ≤ ρ(GA) ≤ 2 · (n − 1). (17)

Then, we consider a subset of the rows of A of size ρ(GA) =
α · n, such that the corresponding edges in GA belong to a
minimal edge cover, and use it to conclude.

Example 4. Figure 3 illustrates the two corresponding bi-
partite graphs for two-column FIB tables A1 and A2, with
n = 2W = 8 (for W = 3) distinct elements in each column.

For A1, the bipartite graph includes a perfect match and the
size of the edge cover is 8 = n = α ·n with α = 1. Theorem 5
implies that OPT (A1) ≥

⌈
2·(W+α−1)

α

⌉
= 2W . By the upper

bound from Theorem 2 we deduce that OPT (A1) = 2W .
For A2, the size of the minimal edge cover is 14 = 2 · (n −

1) = α ·n with α = 1.75. Thus OPT (A2) ≥
⌈

2·(3+1.75−1)
1.75

⌉
=

5. Further, by encoding the first element in a column in a single
bit and others in four bits, we have that indeed OPT (A2) = 5.

VI. SUPPORTING UPDATES

Forwarding tables need to support updates. These updates
can include an insertion of a new entry, a deletion of an existing
entry, or a modification of some of the fields of an entry. In
this section, we discuss how such updates can be supported.

Let P be the fixed allocated number of bits for the encoding
of each entry. If the support of such updates is required, we
assume that each entry includes an additional bit that indicates
its validity.

In general, the update process includes two steps: an imme-
diate step required for coherency, and another procedure that
can occur offline to improve performance. This second step
can be run, for instance, either periodically in time or after a
fixed number of updates. Meanwhile, in addition to the encoded
table, we make use of a small dedicated memory for keeping
a small number of entries.

Dealing with a change in an entry or with an insertion can be
done in a similar way. We describe several possible scenarios.
First, if all the elements in the updated entry appear in the
current dictionaries, we simply encode a new entry based on
these dictionaries. If its total width is not greater than P , no
further changes are required. If it is greater than P , we set the
original entry (in case of a change) as invalid and temporarily
add the new entry (without encoding it) to the small memory.

If the updated entry includes a new element, we try to
associate it with a codeword. In a specific column, we can
do so only if the sum that appears in the Kraft’s inequality
is smaller than one. Further, the minimal possible codeword
length depends on the value of this sum. For the sake of
simplicity, we suggest to allocate for each new element a
codeword with the minimal possible length. If we cannot
allocate any new codeword in one of these columns (due to
an equality in the corresponding Kraft’s inequality), or if the
allocated codewords yield an entry that is too long, the updated
entry is again added to the small memory.

Dealing with an entry deletion is easy and requires setting
the entry as invalid. Reduction in the maximal width of the
table after an entry removal may be achieved by running the
compression algorithm as part of the offline procedure.

The offline process includes the calculation of an efficient
encoding for the existing encoded entries and for the unencoded
entries stored in the small memory. Later, this memory is
cleared. The value of P may be changed, as well as the encoded

Fig. 4. Effectiveness of the encoding algorithm on synthetic FIB tables with
d = 2 columns and W = 8, as a function of the Zipf parameter. Elements
are selected according to the Zipf distribution with the given parameter. By
Theorem 2, the optimal encoding width is at least W + 2 = 10 and at most
2W = 16. Since d = 2, our suggested convex scheme takes at most d−1 = 1
bit more than the theoretical lower bound. In comparison, the fixed-length
encoding has a fixed width of 2W = 16 bits, while the Huffman encoding
sometimes achieves a greater width.

(a) Effectiveness of the encoding algorithm as a function of the
number of columns with 2W = 32 distinct elements per column.

(b) Effectiveness of the encoding algorithm as a function of the
number of distinct elements per column with d = 10 columns.

Fig. 5. Analysis of the encoding algorithm as a function of table parameters.

version of existing entries. It is possible to endow the table
encoding algorithm with better update capabilities by choosing
an encoding with a slightly larger value of P that guarantees
short codeword lengths for possible future inserted elements.
Meanwhile, between two offline processes, any lookup should
consider the encoded entries in the FIB and the unencoded
entries in the small dedicated memory.

VII. EXPERIMENTAL RESULTS

We now turn to conducting experiments to examine the
distribution of the optimal encoding width and the performance
of our suggested encoding algorithm from Section III-B. In the
experiments, we rely on both synthetic and real-life FIB tables.

(a) United States (b) China

Fig. 6. Total memory size of encoded real-life tables including the dictionary
size.

A. Effectiveness on Synthetic FIB tables

We first evaluate our suggested scheme on synthetic two-
column FIB tables. Each table has 1000 entries with 2W = 256
(for W = 8) distinct elements in each of the d = 2 columns.
To generate the table, we first make sure that each element
appears at least once in each column by adding an entry
containing it with an additional random element in the other
column. This additional random element is selected according
to a Zipf distribution of parameter s. Then, we add additional
entries with d = 2 random elements selected according to the
same distribution. Intuitively, a Zipf distribution with a lower
parameter s is closer to the uniform distribution.

First, in Fig. 4, we compare our suggested scheme, de-
noted “convex”, with the fixed-length and Huffman encoding
schemes. The results are based on the average of 10 simu-
lations. We present the lower bound given by the fractional
solution of the relaxed optimization problem (Section III-B).
We also show our suggested scheme, which takes the ceiling of
the fractional solution of the relaxed problem, unless it exceeds
2W , in which case it simply uses fixed-length encoding. As
suggested by Theorem 1, our scheme is always within d−1 = 1
bit of the fractional-optimum lower bound. For instance, for a
Zipf parameter s = 4, the widths for the Huffman, fixed-length,
and our suggested encodings are respectively 17.6, 2W = 16,
and 12.1, while the lower bound is 11.2. More generally, the
lower the Zipf parameter, the closer the lower bound to 2W .

Next, in Fig. 5, we plot the encoding efficiency as a function
of the number of columns (a) and of the number of elements
appearing in each column (b). In both plots we take h = 1000
entries and a Zipf parameter s = 2. In Fig. 5(a) the number
of elements is 32, i.e. W = 5, and in Fig. 5(b) the number of
columns is d = 10. We can see that in (a), Huffman becomes
better for the worst-case entry width. Intuitively, it is because
the ratio of the standard deviation of the sum of the encodings
of d columns to the expected sum decreases with d as 1√

d
.

B. Real-Life FIB tables

We also conduct experiments on two typical real-life
enterprise-network tables. The tables are collected from two
different switches of two different switch vendors, each switch
using a different number of columns. All tables were collected
in enterprise networks, the first in the United States with 2790
entries and the other in China with 903 entries. For each table,
we present the size of the original raw table without compres-
sion. We compare it to the total size of the compressed table,

Fig. 7. Effectiveness of the encoding algorithm on the extended table (based
on the China table), as a function of the number of columns.

including the dictionary for three compression algorithms: the
fixed-length encoding, the Huffman encoding and our suggested
encoding. The results are presented in Fig. 6.

For instance, in the second real-life table (China), presented
in Fig. 6 (b), we consider the 903 entries of two columns
representing the VLAN and the Target-Port fields. Without
encoding, each entry is allocated 29 bits per entry and thus
the raw data without encoding requires 903 · 29 = 26187 bits.
Using the three encodings, the size of the dictionaries is almost
fixed and equals approximately 2900 bits. An entry width of
11 and 14 bits is achieved in the fixed-length encoding and
in the Huffman encoding, respectively, while in the proposed
encoding we achieve an entry width of only 8 bits. This leads
to an improvement of 20.7%, 34.9%, and 61.3% in the total
memory size (including the dictionary) compared to the fixed-
length, Huffman and Raw solutions, respectively.

C. Extrapolated Tables

We want to extrapolate the behaviors of these schemes from
real-life limited data sets to the larger expected data sets to be
encountered in future network architectures. The approach we
take herein is to amplify the available data sets by scaling out
the number of columns in the table, so as to model a table with
a scaled-out number of attributes.

We extend the China table by duplicating and appending the
port column several times. In each new column, we permute
the appearances of the elements uniformly at random. The
motivation is to model additional forwarding attributes that
would follow a distribution that is similar to an existing one.
Rearranging the row locations of the duplicated elements adds
randomness. As seen in Fig. 7, for each additional column
the fixed encoding increases by a constant, as expected since
the number of unique elements in each column does not vary.
The Huffman and convex encodings increase at a slower pace,
thereby increasing the encoding effectiveness as the number
of columns grows. Of course, since this table is extended
synthetically, we urge caution in over-interpreting the results.

VIII. CONCLUSION

In this paper, we saw how datacenter virtualization is causing
a dramatic rise in the number of entries in forwarding tables,
such that it becomes impossible to implement forwarding tables
in current memory sizes without any compression algorithm.

We then investigated the compressibility of forwarding tables,
by introducing a novel forwarding table architecture with
separate encoding in each column. Our architecture supports
fast random accesses and fixed-width memory words. We also
later explained how our architecture can handle table updates.

Later, we suggested an encoding whose per-entry memory
requirement is guaranteed to be within a small additive constant
of the optimum. Finally, we evaluated this new scheme against
the fixed-width and Huffman schemes, using both synthetic
and real-life forwarding tables from different switches, switch
vendors, and network country locations. As future work, we
plan to check how using additional hardware such as CAM and
TCAM can help in further compressing the forwarding tables.

IX. ACKNOWLEDGMENT

We would like to thank Yishay Mansour and Haim Kaplan
for their helpful participation and suggestions.

This work was partly supported by the European Research
Council Starting Grant No. 210389, by a European Commission
Marie Curie CIG grant, by the Israel Science Foundation grant
No. 1241/12, by the German-Israeli Foundation for Scientific
Research and Development, by the Intel ICRI-CI Center, by the
Hasso Plattner Center for Scalable Computing and by the Israel
Ministry of Science and Technology. Ori Rottenstreich is the
Google Europe Fellow in Computer Networking, an Andrew
and Erna Finci Viterbi Fellow and a Jacobs-Qualcomm Fellow.

REFERENCES

[1] I. Gashinsky, “Datacenter scalability panel,” in NANOG 52, 2011.
[2] R. N. Mysore et al., “Portland: a scalable fault-tolerant layer 2 data center

network fabric,” in ACM SIGCOMM, 2009.
[3] T. Narten, M. Karir, and I. Foo, “Problem statement for ARMD,” IETF,

draft-ietf-armd-problem-statement, work in progress, 2012.
[4] G. Hankins, “Pushing the limits, a perspective on router architecture

challenges,” in NANOG 53, 2011.
[5] D. Meyer, L. Zhang, and K. Fall, “Report from the IAB workshop on

routing and addressing,” IETF, RFC 4984, 2007.
[6] T. M. Cover and J. A. Thomas, Elements of information theory. Wiley,

2006.
[7] T. Narten, “On the scalability of internet routing,” IETF, draft-narten-

radir-problem-statement, work in progress, 2010.
[8] X. Zhao, Y. Liu, L. Wang, and B. Zhang, “On the aggregatability of

router forwarding tables,” in IEEE Infocom, 2010.
[9] R. Draves, C. King, V. Srinivasan, and B. Zill, “Constructing optimal IP

routing tables,” in IEEE Infocom, 1999.
[10] Q. Li, D. Wang, M. Xu, and J. Yang, “On the scalability of router

forwarding tables: Nexthop-selectable FIB aggregation,” in IEEE Infocom
Mini-Conference, 2011.

[11] P. Francis et al., “FIB suppression with virtual aggregation,” IETF, draft-
ietf-grow-va, work in progress, 2011.

[12] M. Pöss and D. Potapov, “Data compression in Oracle,” in VLDB, 2003.
[13] R. Johnson, V. Raman, R. Sidle, and G. Swart, “Row-wise parallel

predicate evaluation,” PVLDB, 2008.
[14] K. Stolze, V. Raman, R. Sidle, and O. Draese, “Bringing BLINK closer

to the full power of SQL,” in BTW, 2009.
[15] Y. Kanizo, D. Hay, and I. Keslassy, “Optimal fast hashing,” in IEEE

Infocom, 2009.
[16] A. Kirsch and M. Mitzenmacher, “The power of one move: Hashing

schemes for hardware,” IEEE/ACM Trans. Netw., 2010.
[17] Y. Kanizo, D. Hay, and I. Keslassy, “Hash tables with finite buckets are

less resistant to deletions,” Computer Networks, 2012.
[18] O. Rottenstreich et al., “Compressing forwarding tables,” Technion,

Tech. Rep. TR12-03, 2012. [Online]. Available: http://webee.technion.
ac.il/∼isaac/papers.html

[19] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms in
convex programming. Society for Industrial Mathematics, 1987, vol. 13.

