
The Bloom Paradox:

When not to Use a Bloom Filter?

Ori Rottenstreich
Technion

or@tx.technion.ac.il

Isaac Keslassy
Technion

isaac@ee.technion.ac.il

Abstract—In this paper, we uncover the Bloom paradox in
Bloom filters: sometimes, it is better to disregard the query results
of Bloom filters, and in fact not to even query them, thus making
them useless.

We first analyze conditions under which the Bloom paradox
occurs in a Bloom filter, and demonstrate that it depends on
the a priori probability that a given element belongs to the
represented set. We show that the Bloom paradox also applies to
Counting Bloom Filters (CBFs), and depends on the product of
the hashed counters of each element. In addition, both for Bloom
filters and CBFs, we suggest improved architectures that deal
with the Bloom paradox. We also provide fundamental memory
lower bounds required to support element queries with limited
false-positive and false-negative rates. Last, using simulations,
we verify our theoretical results, and show that our improved
schemes can lead to a significant improvement in the performance
of Bloom filters and CBFs.

I. INTRODUCTION

A. The Bloom Paradox

Bloom filters are widely used in many networking device al-

gorithms, in fields as diverse as accounting, monitoring, load-

balancing, policy enforcement, routing, filtering, security, and

differentiated services [1]–[5]. Bloom filters are probabilistic

data structures that can answer set membership queries without

false negatives (if they indicate that an element does not belong

to the represented set, they are always correct), but also with

low-probability false positives (they might sometimes indicate

that an arbitrary element is a member of the represented

set although it is not). In addition, Bloom filters have many

variants. In particular, Counting Bloom Filters (CBFs) add

counters to the Bloom filter structure, thus also allowing for

deletions within counter limits.

Networking devices typically use Bloom filters as cache di-

rectories. Bloom filters are particularly popular among design-

ers because a Bloom filter-based cache directory has no false

negatives, few false positives, and O(1) update complexity.

In this paper, we show that the traditional approach to

this Bloom-based directory forgets to take into account the a

priori set-membership probability of the elements, i.e. the set-

membership probability without such a directory. Surprisingly,

forgetting this a priori probability can actually make the

directory more harmful than beneficial.

Figure 1(a) illustrates the intuition behind the importance

of the a priori set-membership probability. Consider a generic

system composed of a user, a main memory containing all the

(a) Illustration of the importance of the a priori set-membership probability.
When the user needs element x (illustrated as an arrival of a query for x),
there are two options. First, to access the main memory with a fixed cost of
10. Second, to look for it in the cache. With some probability, it is indeed
there and the cost is only 1. With the complementary probability, it is not
there and the user has to also access the main memory with a total cost of
1 + 10 = 11.

(b) Illustration of the elements in the cache C, those with a positive
membership indication in the Bloom Filter B, and those in the memory M.
With a false positive probability of 10−3, a positive indication of the Bloom

filter is incorrect w.p.
|B\C|
|B|

≈ 10
7−10

4

107
= 1− 10−3 ≈ 1.

Fig. 1. Illustration of the Bloom paradox.

data, and a cache with a subset of the data. When the user

needs to read a piece of data, it can simply access the main

memory directly, with a cost of 10. Alternatively, it can also

access the cache first, with a cost of 1. If the cache owns this

piece of data, there is no additional cost. Else, it also needs to

access the main memory with an additional cost of 10. This is

a generic problem, where the costs may correspond to dollar

amounts (e.g. for an ISP customer that either accesses a cached

Youtube video at the ISP cache, or the more distant Youtube

server), to power (e.g. in a two-level memory system or a

two-level IP forwarding system within a networking device),

or to bandwidth (e.g. in a data center, with a local cache in the

same rack as a server versus a more distant main memory).

Assume that the user holds a Bloom filter to indicate which

elements are in the cache, and this Bloom filter has a false

positive probability of 10−3. Further assume that this Bloom

filter indicates that some arbitrary element x is in the cache.

It would seem intuitive to always access the cache in such a

case. If the user does access the cache, it would seem that

he pays just above 1 on average, since he will most often

pay 1 (with probability 1 − 10−3), and rarely 1 + 10 = 11
(with probability 10−3). If instead he directly accesses the

main memory, he always pays 10.

However, this approach completely disregards the a pri-

ori probability, and it is particularly wrong if the a priori

probability is too small. For instance, assume that the main

memory contains 1010 elements, while the cache only contains

104 elements. For simplicity, further assume that x is drawn

uniformly at random from the memory, i.e., the a priori

probability that it belongs to the cache is 104/1010 = 10−6.

This is the probability before we query the Bloom filter. Then

the probability that x is in the cache after the Bloom filter

says it is in the cache is only about ≈ 10−6/10−3 = 10−3

(the exact computation is in the paper).

This is the Bloom paradox: with high probability (1−10−3),

x is actually not in the cache, even though the Bloom filter

indicates that x is in the cache. More generally, if the a priori

probability is low enough before accessing the Bloom filter,

it is better to disregard the Bloom filter results and always go

automatically to the main memory — in fact, it is better to

not even query the Bloom filter. Taken to the extreme, when

the Bloom paradox applies to all elements, it means in fact

that the entire cache is useless.

Figure 1(b) provides a more formal view to this Bloom

paradox. Let B be the set of elements with a positive

membership indication from the Bloom filter. Then, |B| =
104 + 10−3 · (1010 − 104) ≈ 107. While the false positive

rate of the Bloom filter is
|B\C|
|M\C| = 10−3, the probability that

a positive indication is incorrect is significantly larger and

equals
|B\C|
|B| ≈ 107−104

107 = 1− 10−3.

Of course, in the general case, different assumptions may

weaken or even cancel the Bloom paradox, especially when

caches have significantly non-uniform a priori probabilities.

B. Contributions

The main contribution of this paper is pointing out the

Bloom paradox, and providing a first analysis of its conse-

quences on Bloom filters and Counting Bloom Filters (CBFs).

First, in Section IV, we provide simple criteria for the

existence of a Bloom paradox in Bloom filters. In particular,

we develop an upper bound on the a priori probability

under which the Bloom paradox appears and the Bloom filter

answer is irrelevant. Based on this observation, we suggest

improvements to the implementation of both the insertion and

the query operations in a Bloom filter.

Then, in Section V, we focus on CBFs. We observe that we

can calculate a more accurate membership probability based

on the exact values of the counters provided in a query, and

provide a closed-form solution for this probability. We further

show how to use this probability to obtain a decision that

optimizes the use of a CBF in a generic system.

Next, in Section VI, we adopt a more fundamental view,

beyond the specific example of Bloom-based structures, and

provide lower bounds on the memory of a general data

structure used to represent a set with limited false positive

and false negative rates.

Last, in Section VII, we evaluate our optimization schemes,

and show how they can lead to a significant performance

improvement. Our evaluations are based on synthetic data as

well as on real-life traces.

II. RELATED WORK

In [1]–[5], design schemes and applications of Bloom filters

and CBFs are presented. In all these works, false negatives are

prohibited and only false positives are allowed.

In [6], Donnet el al. presented the Retouched Bloom Filter

(RBF), a Bloom Filter extension that reduces its false positive

rate at the expense of random false negatives by resetting

selected bits. The authors also suggested several heuristics

for selectively clearing several bits in order to improve this

tradeoff. For instance, choosing the bits to reset such that

the number of generated false negatives is minimized, or

alternatively, the number of cleared false positives is maxi-

mized. They also show that randomly resetting bits yields a

lower bound on the performance of their suggested schemes.

Unfortunately, calculating the optimal selection of bits can

be prohibitive (for instance, it requires going over all the

elements in the universe several times), and in practice only

approximated schemes are used. For example, the selection of

cleared bits is based only on approximations.

Laufer et al. presented in [7] a similar idea called the

Generalized Bloom Filter (GBF) in which at each insertion,

several bits are set and others are reset, according to two sets of

hash functions. To examine the membership of an element, a

match is required in all corresponding hash locations of both

types. False negatives can occur in case of bit overwriting

during the insertions of later elements. On the one hand,

increasing the number of hash functions reduces the false

positive rate, since more bits are compared. On the other, it

increases the false negative rate due to a higher probability of

bit overwriting.

The issue of wrongly considering the a priori probabilities

is a known problem in diverse fields. For instance, the Prose-

cutor’s Fallacy [8] is a known mistake made in law when the

prior odds of a defendant to be guilty before an evidence was

found are neglected. The same problem is also known as the

False Positive Paradox in other fields such as computational

geology [9], and is also related to Probabilistic Primality

Testing [10]. Our results might apply to such problems when

the costs of false negatives and false positives are taken into

account. We leave these to future work.

III. MODEL AND NOTATIONS

We consider a Bloom filter (or alternatively a Counting

Bloom Filter (CBF)) representing a set S of n elements taken

from a universe U of N elements. The Bloom filter uses m
bits, and relies on a set of k hash functions H = {h1, . . . , hk}.

TABLE I
MEMBERSHIP QUERY DECISION COSTS FOR AN ELEMENT x ∈ U

Positive Membership Negative Membership
Decision Decision

x ∈ S WP = 0 WFN = α ·WFP

x /∈ S WFP WN = 0

For each element x ∈ U , we denote by Pr(x ∈ S) the a pri-

ori probability that x ∈ S, i.e. the probability before we query

the Bloom filter. We further denote by Pr (x ∈ S|BF = 1) the

probability that x ∈ S given that the Bloom filter indicates

so, where BF is the indicator function of the answer of the

Bloom filter to the query of whether x is a member of S.

We assume that the cost function of an answer to a member-

ship query can have four possible values. They are summarized

in Table I, which illustrates these costs for a query of an

element x ∈ U . If x ∈ S, the cost of a positive (correct)

decision is WP while the cost of negative (incorrect) decision

is WFN . Similarly, if x /∈ S, the costs are WFP and WN

for a positive and negative decision, respectively. In the most

general case, the costs of the two correct decisions, WP and

WN might be positive. However, we can simply reduce the

problem to the case where WP = WN = 0 by considering

only the marginal additional costs of a negative incorrect

decision and a positive incorrect decision (WFN −WP) and

(WFP − WN). Finally, for WFP > 0 let α denote the ratio

WFN/WFP . The variable α represents how expensive a false

negative error is in comparison with a false positive error.

Finally, for simplicity, we assume that the optimal number

k of hash functions is used in the Bloom filter, and that we

can model the Bloom filter such that for x 6∈ S, Pr(BF =
1) = (1/2)k = (1/2)ln(2)·(m/n), as often done in the literature.

This relies on the simplifying assumptions that the k hashes

are distributed uniformly at random over k sub-tables, that half

the bits are set, and that the number of hash functions k equals

ln(2) · (m/n).
Our goal is to minimize the expected cost in each query

decision, therefore we return a negative answer iff its expected

cost is smaller than the cost of a positive answer.

IV. THE BLOOM PARADOX IN BLOOM FILTERS

In this section we develop conditions for the existence

of the Bloom paradox in Bloom filters. We also provide

improvements to the implementation of both the insertion and

the query operations in a Bloom filter.

A. Conditions for the Bloom Paradox

The next theorem expresses the maximal a priori set-

membership probability of an element such that the Bloom

filter is irrelevant in its queries. This bound depends on the

error cost ratio α and on the bits-per-element ratio of the

Bloom filter, which impacts its false positive rate.

Intuitively, in cases where the Bloom filter indicates that the

element is in the cache, a smaller α = WFN/WFP means that

the cost of a false negative is relatively smaller, and therefore

we would prefer a negative answer in more cases, i.e., even

for elements with a higher a priori probability. Therefore, a

smaller α allows for the Bloom paradox to occur more often,

and in particular also given a higher a priori probability.

Theorem 1: The Bloom filter paradox occurs if and only if

Pr(x ∈ S) <
1

1 + α · 2ln(2)·(m/n)

Proof: The Bloom paradox occurs when a negative an-

swer should be returned even though the Bloom filter indicates

a membership. In order to choose the right answer, we

first calculate the conditioned membership probability when

BF = 1. First,

Pr(x ∈ S|BF = 1) =
Pr(x ∈ S,BF = 1)

Pr(BF = 1)
=

Pr(x ∈ S)

Pr(BF = 1)
,

because by definition a Bloom filter always returns 1 for an

element in the set S, i.e. Pr(BF = 1|x ∈ S) = 1. Likewise,

Pr(x /∈ S|BF = 1) = 1− Pr(x ∈ S|BF = 1)

=
Pr(BF = 1)− Pr(x ∈ S)

Pr(BF = 1)
.

For BF = 1, let E1(x) denote the expected cost of a positive

decision for an element x, and E0(x) for a negative decision.

Then,

E1(x) = Pr (x /∈ S|BF = 1) ·WFP

=
Pr(BF = 1)− Pr(x ∈ S)

Pr(BF = 1)
·WFP ,

and

E0(x) = Pr (x ∈ S|BF = 1) ·WFN =
Pr(x ∈ S)

Pr(BF = 1)
·WFN .

The Bloom paradox occurs when E1(x) > E0(x), i.e

Pr(BF = 1)− Pr(x ∈ S)

Pr(BF = 1)
·WFP >

Pr(x ∈ S)

Pr(BF = 1)
·WFN ,

which can be rewritten as

Pr(BF = 1) > (α+ 1) · Pr(x ∈ S).

We use our model assumption that Pr(BF = 1) =
(1/2)ln(2)·(m/n) if x /∈ S. Also, Pr(BF = 1) = 1 if x ∈ S.

Then, the left side of the last condition can be rewritten as
(

(1/2)ln(2)·(m/n) ·Pr(x /∈ S)+1 ·Pr(x ∈ S)
)

, and we finally

have

(1/2)ln(2)·(m/n) · (1− Pr(x ∈ S)) > α · Pr(x ∈ S),

which provides the requested result.

B. Analysis of the Bloom Paradox

We now provide an illustration of the impact of various

parameters on the Bloom paradox.

Figure 2(a) illustrates the probability that a Bloom filter is

indeed correct when it indicates that an element x is a member

of the set. This probability, Pr (x ∈ S|BF = 1), depends on the

a priori set-membership probability of the element Pr(x ∈ S)
as well as on the false positive rate of the Bloom filter. For

10
−6

10
−4

10
−2

10
−5

10
−3

10
−1

10
−7

10
−8

10
−4

10
−2

10
0

10
−6B

F
 c

o
rr

e
c
tn

e
s
s
 p

ro
b

a
b

il
it
y

a priori set−membership probability

fpr = 10
−2

fpr = 10
−3

fpr = 10
−4

fpr = 10
−5

(a) The Bloom filter correctness probability as a function of the a priori
set-membership probability.

10
−6

10
−4

10
−2

10
−5

10
−3

10
−1

10
−7

10
−8

0

10

20

30

40

50

m
in

im
a
l
m

 /
 n

 r
a
ti
o

a priori set−membership probability

α = 0.1

α = 1

α = 10

α = 100

(b) Boundaries of the Bloom paradox: minimal number of bits-per-element
for a Bloom filter to avoid the Bloom paradox, as a function of the a priori
set-membership probability.

Fig. 2. Analysis of the Bloom paradox. (a) shows that a lower a priori

probability makes the Bloom filter increasingly irrelevant, because the a

posteriori membership probability after the Bloom filter is positive is also
lower. This favors the Bloom paradox. (b) provides the exact borders of the
region in which the Bloom paradox occurs as a function of the a priori

probability, the Bloom filter load, and the relative weights of false-positive
and false-negative errors.

instance, if Pr(x ∈ S) = 10−6 and the false positive rate is

10−3, the Bloom filter is correct w.p. Pr (x ∈ S|BF = 1) =
Pr(x∈S)
Pr(BF=1) = 10−6

10−3·(1−10−6)+1·10−6 ≈ 10−6/10−3 = 10−3.

Figure 2(b) plots the boundaries of the Bloom paradox.

It presents the minimal bits-per-element ratio m/n needed

to avoid the Bloom paradox, as a function of the a priori

probability, given α = 0.1, 1, 10, 100. For instance, if α = 1,

i.e. the costs of the two possible errors are equal, and the a

priori probability is Pr(x ∈ S) = 10−6, at least m/n = 28.7
memory bits per element are required to consider the Bloom

filter and avoid the Bloom paradox. If this ratio is smaller, the

Bloom paradox occurs, so we should return a negative answer

for all the queries of x, independently of the answer of the

Bloom filter.

C. Bloom Filter Improvements Against the Bloom Paradox

Based on the observation in Theorem 1, we suggest the

two following improvements to Bloom filters, as illustrated in

Figure 3:

Selective Bloom Filter Insertion—If the a priori proba-

bility of an element x satisfies the Bloom paradox, we will

not take the answer of the Bloom filter into account after the

query. Therefore, it is better not to even insert it in the Bloom

filter, so as to reduce the load of the Bloom filter. Therefore,

the final number n∗ of inserted elements may satisfy n∗ < n.

Selective Bloom Filter Query—If the a priori probability

of an element x satisfies the Bloom paradox, we do not want to

take the answer of the Bloom filter into account, and therefore

it is better to not even query it. Formally, if Pr(x ∈ S) <
P0 = (1 + α · 2ln(2)·(m/n∗))−1, where n∗ is the final number

of inserted elements, then a negative answer should be returned

for the queries of x, regardless of the Bloom filter.

Each of these two improvements can be implemented inde-

pendently. Implementing the Selective Bloom Filter Insertion

alone yields fewer insertions and therefore a lower Bloom

filter load, leading to a lower false positive probability. In turn,

implementing the Selective Bloom Filter Query alone makes a

regular Bloom filter more efficient by discarding useless query

results for elements with low a priori probability. Finally,

implementing both the Selective Bloom Filter Insertion and

Query results in the strongest improvement that combines the

benefits of both approaches. All these approaches are further

compared using simulations in Section VII.

Note that each of the two improvements requires knowing

the a priori probabilities at different times (either during the

insertion or during the query). Also, as expected, this approach

may cause false negatives, since this may reduce the overall

error cost.

D. Estimating the a Priori Probability

Access patterns to caches tend to have the locality of

reference property, i.e. it is more likely that recently-used

data will be accessed again in the near future. Therefore, the

a priori probability distribution might be significantly non-

uniform over U .

In such cases, we suggest to estimate the a priori probability

by sampling arbitrary element queries and checking whether

they belong to the cache. In practice, for 1% of element

queries, we will check whether they belong to the cache, and

use an exponentially-weighted moving average to approximate

the a priori probability.

In addition, there might be several subsets of elements with

clearly different a priori probabilities. For instance, packets

originating from Class-A IP addresses might have distinct a

priori probabilities from those with classes B and C. Then

we will simply model the a priori probability as uniform over

each class, and sample each class independently.

V. THE BLOOM PARADOX IN THE COUNTING BLOOM

FILTER

A. The CBF-Based Membership Probability

In this section, we want to show the existence and the

consequences of the Bloom paradox in Counting Bloom

Filters (CBFs). To do so, we show how we can calculate

the membership probability of an element in S based on

the exact values of the counters of the CBF. We show again

the existence of a Bloom paradox: in some cases, a negative

answer should be returned even though the CBF indicates that

(a) Selective Bloom Filter Insertion. Elements with
low a priori set-membership probability are not in-
serted into the Bloom filter.

(b) Selective Bloom Filter Query. Elements with low a priori set-membership probability
are not even queried, as shown in the first rectangle, and a negative answer is always
returned for them no matter what the Bloom filter would have actually stated.

Fig. 3. Logical view of the Selective Bloom Filter implementation. Components that also appear in a regular Bloom filter are presented in gray. (a) shows a
first possible improvement during insertion, where elements that satisfy the Bloom paradox are not even inserted into the Bloom filter. (b) displays a second
possible improvement during query, where elements that satisfy the Bloom paradox are not even queried.

the element is inside that set. Finally, we prove a simple result

that surprised us: to determine whether an element that hashes

into k counters falls under the Bloom paradox, we only need

to compare the product of these counters with a threshold, and

do not have to analyze a full combinatorial set of possibilities.

For an element x ∈ U , we denote by Pr (x ∈ S|CBF) its

membership probability in S, based on its CBF counter values.

That is, on the values of the k counters with indices hj(x)
for j ∈ {1, . . . , k} pointed by the set of k hash functions

{h1, . . . , hk}. Let C = (C1, . . . , Ck) denote the k counter

indices of x, i.e. Cj = hj(x) for j ∈ {1, . . . , k}, and let

c = (c1, . . . , ck) denote the values of these counters.

Theorem 2: The CBF-based membership probability is

Pr (x ∈ S|CBF) =

mk · (
∏k

j=1 cj) · Pr(x ∈ S)

mk · (
∏k

j=1 cj) · Pr(x ∈ S) + (n · k)k · (1 − Pr(x ∈ S))
.

Proof Outline: (The full proof can be found in [11].) Let

X be an indicator variable for the event x ∈ S such that

X = 1 iff x ∈ S. If cj = 0 for any j ∈ {1, . . . , k}, then

Pr (x ∈ S|CBF) = 0. Otherwise, we use the independency

among the different sub-arrays of the CBF. If X = 1 then

x ∈ S is one of n inserted elements. Thus, cj−1 is the number

of times that the counter Cj was accessed by the other n− 1
elements in S. We now have that

Pr (C = c|X = 1) =

k
∏

j=1

(

n− 1

cj − 1

)

(k

m

)cj−1(

1−
k

m

)n−cj
.

Likewise,

Pr (C = c|X = 0) =

k
∏

j=1

(

n

cj

)

(k

m

)cj(

1−
k

m

)n−cj
.

Putting all together using Bayes’ rule yields the result.

Directly from the last theorem we can deduce the following

corollary.

Fig. 4. Logical view of the Selective Counting Bloom Filter implementation.
Components that also appear in a regular CBF are presented in gray. Mem-
bership probability is calculated based on the counters product. A negative
answer is returned for elements with low calculated membership probability.

Corollary 3: For an element x ∈ U , the CBF-based mem-

bership probability Pr (x ∈ S|CBF) is an increasing func-

tion of the product of the k counters pointed by hi(x) for

i ∈ {1, . . . , k}.

B. Optimal Decision Policy for a Minimal Cost

We now suggest an optimal decision policy for the query

of an element x ∈ U in a CBF. This policy relies on its

CBF-based membership probability, which was expressed in

Theorem 2 as a function of the product of its counter values.

Theorem 4: An optimal decision policy for the CBF is to

be positive iff

Pr (x ∈ S|CBF) ≥
1

α+ 1
.

Proof Outline: (The full proof can be found in [11].) We

again compare the expected costs E1(x) and E0(x) of a

positive and negative decision and show that E1(x) ≤ E0(x)
when Pr (x ∈ S|CBF) ≥ 1

α+1 .

Figure 4 illustrates the improved logical process of a query

of an element x in the Selective Counting Bloom Filter. It is

similar to the query process of the Selective Bloom Filter that

was presented in Figure 3(b). Here, the product of counters is

used to calculate the membership probability.

As shown in Section VII, the optimal number of hash

functions that minimizes the expected cost in Selective CBF

is not necessarily k = ln(2) · (m/n) as in a regular CBF.

VI. A MEMORY LOWER BOUND ON A DATA STRUCTURE

WITH FALSE POSITIVES AND FALSE NEGATIVES

A. Related Work

As we have noticed so far, the suggested schemes may yield

false positives as well as false negatives. In order to examine

the efficiency of the solution, we would like to present lower

bounds on the memory required to represent a set of a given

size with limited false-positive and false-negative rates. Let

S ⊆ U be the represented set of n elements from a universe

of size |U | = N . Likewise, let ǫ, δ denote the upper bounds

of the false-positive and false-negative rates, respectively.

Carter et al. suggested in [12] a lower bound on the number

of bits m required to represent such a set S without false

negatives. Any string that represents S can accept at most n+
ǫ(N −n) elements. Thus, any string s can represent correctly

at most
(

n+ǫ(N−n)
n

)

sets. In order to represent all the possible

sets by strings of length m, we have:

2m
(

n+ ǫ(N − n)

n

)

≥

(

N

n

)

,

or alternatively (for N ≫ n) the entropy lower bound is

m ≥ log2

(

(

N
n

)

(

n+ǫ(N−n)
n

)

)

≈ n log2(1/ǫ).

This entropy lower bound was generalized in [13] for the

case that both false positives and false negatives are allowed

in the concept of limited-error dictionaries. To do so, they

calculate again the number of sets that can be represented

correctly by the same string of m bits.

B. Improved Memory Lower Bound

Although the last mentioned bound can also apply to Bloom

filters, we would like to present a more accurate analysis of this

case without some of their assumptions and approximations.

To do so, we first present Lemma 1, which helps us then

prove Theorem 5. For space reasons, the proof of this lemma

can be found in [11].

Lemma 1: The number of sets of size n that can be repre-

sented with limited false positive and false negative rates of ǫ
and δ, by a string that accepts exactly a elements is

Xa =

min(n,a)
∑

i=max(a−ǫ(N−n),(1−δ)n)

(

a

i

)(

N − a

n− i

)

.

Based on the lemma we can deduce the following theorem.

Theorem 5: The number m of bits in a string representing

a set S with the requested error rates from above satisfies

m ≥ log2

(

(

N

n

)

/

(

max
a∈R

Xa

)

)

.

Proof: As in the calculation of the previous bound, all

the possible
(

N
n

)

sets must be represented correctly by one of

the 2m strings of m bits. Since each string represents at most

maxa∈R(Xa) sets, the result follows.

VII. SIMULATIONS

A. Bloom Filter Simulations

Table II compares the false positive rate (fpr), false negative

rate (fnr) and the total cost for the Bloom Filter (BF) [1],

Generalized Bloom Filter (GBF) [7], Retouched Bloom Filter

(RBF) [6] and the suggested Selective Bloom Filter with its

three variants.

We assume a set S composed of 256 elements from each

of 13 types of elements, such that n = |S| = 28 · 13 =
256 · 13 = 3328. Each subset of 256 elements are selected

homogenously among sets of sizes 211, 212, ..., 223. Thus, for

i ∈ [1, 13] an element of the i-th type is member of S with a

priori set-membership probability of 2−(i+2) and N = |U | =
∑13

i=1 2
i+10 = 16775168. The numbers of bits per element

(bpe) are 4, 6, 8 and 10 such that m = n· bpe.

As usual, the false positive rate (fpr) is calculated among

the N − n elements of U \ S and the false negative rate (fnr)

is calculated among the n members of S. In the calculation of

the total cost, we assume that WFP = 1 and WFN = α such

that the cost equals (N − n)· fpr + n· fnr ·α. The results are

presented for the values α = 100 and α = 5, which illustrate

two possible scenarios for the ratio of the two error costs.

In the Bloom Filter and in the three variants of the Selective

Bloom Filter we use k ≈ ln(2) · (m/n) hash functions. In the

Generalized Bloom Filter we use k1 = k hash functions to

select bits to be set. Likewise, the number of functions used

to select bits to reset, k0 ∈ [1, k1 − 1], was chosen such that

the total cost is minimized. For the Retouched Bloom Filter

we used the Ratio Selection as the clearing mechanism. In this

heuristic, shown to be the best scheme in [6], the bits to be

reset are selected, such that the ratio of the additional false

negatives and the cleared false positives is minimized.

We first note that when the a priori set-membership proba-

bilities are available in the insertion process as well as in the

query process, the Selective Bloom Filter always improves the

total cost achieved in BF, GBF and RBF, even when α = 100
and therefore the cost of a false negative is very high. For

instance, when the probabilities are used in the insertion as

well as in the query, with a memory of 4 bits per element

(and α = 100) the total cost is 1.78e5 in comparison with

2.46e6, 6.37e5 and 3.32e5 in BF, GBF and RBF respectively,

i.e. a relative reduction of 92.76%, 72.04%, 46.46%.

If α = 5, the cost of a false negative is relatively small.

As a result, optimizing the tradeoff of fpr vs. fnr results in an

(fpr,fnr) pair of (1.87e-4, 5.38e-1) instead of (3.08e-3, 3.80e-

1) for α = 100. That is, as expected, the fpr is smaller and the

fnr is larger when the relative cost of fnr is smaller. If α = 5,

the cost is 1.21e4 instead of 2.46e6 in BF. This is a significant

improvement by more than two orders of magnitude.

We can also see that, in this simulation, the contribution

of the a priori probabilities is more significant in the query

process than in the insertion process. For instance, with 4 bits

per element and α = 100, the cost is 9.49e5 if the probabilities

are used only in the insertion, while it is only 1.90e5 when

they are used only during the query. It can be explained by the

(a) α = 100

Bloom Filter Generalized Bloom Filter Retouched Bloom Filter

bpe m fpr fnr cost fpr fnr cost fpr fnr cost

4 13312 1.47e-1 0.00 2.46e6 2.52e-2 6.46e-1 6.37e5 0.00 1.00 3.32e5
6 19968 5.63e-2 0.00 9.44e5 5.06e-3 7.35e-1 3.29e5 0.00 1.00 3.32e5
8 26624 2.17e-2 0.00 3.64e5 3.09e-4 8.65e-1 2.93e5 3e-6 1.00 3.32e5
10 33280 8.24e-3 0.00 1.38e5 1.35e-4 8.44e-1 2.83e5 8.87e-3 0.00 1.49e5

Selective Bloom Filter Selective Bloom Filter Selective Bloom Filter
(Only Insertion) (Only Query) (Insertion & Query)

bpe m fpr fnr cost fpr fnr cost fpr fnr cost

4 13312 4.94e-2 3.64e-1 9.49e5 2.20e-3 4.62e-1 1.90e5 3.08e-3 3.80e-1 1.78e5
6 19968 2.40e-2 2.24e-1 4.78e5 1.60e-3 3.85e-1 1.55e5 3.00e-3 2.31e-1 1.27e5
8 26624 9.28e-3 1.51e-1 2.06e5 2.29e-3 2.31e-1 1.15e5 2.31e-3 1.54e-1 9.00e4
10 33280 5.39e-3 7.64e-2 1.16e5 1.99e-3 1.54e-1 8.45e4 2.69e-3 7.69e-2 7.08e4

(b) α = 5

Bloom Filter Generalized Bloom Filter Retouched Bloom Filter

bpe m fpr fnr cost fpr fnr cost fpr fnr cost

4 13312 1.47e-1 0.00 2.46e6 2.53e-2 6.43e-1 4.34e5 0.00 1.00 1.66e4
6 19968 5.66e-2 0.00 9.50e5 5.06e-3 7.34e-1 9.70e4 0.00 1.00 1.66e4
8 26624 2.17e-2 0.00 3.64e5 3.04e-4 8.65e-1 1.95e4 0.00 1.00 1.66e4
10 33280 8.23e-3 0.00 1.38e5 1.33e-4 8.43e-1 1.63e4 0.00 1.00 1.66e4

Selective Bloom Filter Selective Bloom Filter Selective Bloom Filter
(Only Insertion) (Only Query) (Insertion & Query)

bpe m fpr fnr cost fpr fnr cost fpr fnr cost

4 13312 2.47e-2 5.24e-1 4.23e5 1.16e-4 7.69e-1 1.47e4 1.87e-4 5.38e-1 1.21e4
6 19968 7.90e-3 4.56e-1 1.40e5 9.1e-5 6.92e-1 1.31e4 2.44e-4 4.61e-1 1.18e4
8 26624 2.22e-3 3.83e-1 4.37e4 6.8e-5 6.15e-1 1.14e4 1.39e-4 3.84e-1 8.73e3
10 33280 1.21e-3 3.07e-1 2.53e4 1.22e-4 4.62e-1 9.72e3 1.52e-4 3.08e-1 7.67e3

TABLE II
COMPARISON OF FALSE POSITIVE RATE (FPR), FALSE NEGATIVE RATE (FNR) AND THE TOTAL COST FOR BLOOM FILTER, GENERALIZED BLOOM FILTER,

RETOUCHED BLOOM FILTER AND THE SUGGESTED SELECTIVE BLOOM FILTER WITH THREE VARIANTS. IN THE FIRST, THE a priori SET-MEMBERSHIP

PROBABILITY IS USED ONLY DURING THE INSERTION OF THE ELEMENTS, WHILE IN THE SECOND VARIANT IT IS USED ONLY IN THE QUERY PROCESS AND

IN THE THIRD ONE IT IS USED IN BOTH OF THEM. THE TOTAL NUMBER OF INSERTED ELEMENTS IS n = 256 · 13 = 3328 WITH a priori SET-MEMBERSHIP

PROBABILITIES OF 2−3, 2−4, ...,2−15 AND |U | = 16775168.

fact that in our experiment, the set U \ S is much larger than

the set S itself. Thus, the effect of avoiding the false positives

of elements with smaller a priori set-membership probability

during the query is larger than the effect achieved by avoiding

the insertion of elements with such probabilities.

B. Counting Bloom Filter Simulations

In this section we conduct experiments on CBFs. We first

examine the CBF-based membership probability in compari-

son with Theorem 2.

Then, we try to use these probabilities to further reduce the

expected cost of a query.

The set S is defined exactly as in the previous simulation. It

again includes n = 13 ·256 = 3328 elements of 13 types with

a priori probabilities of 2−3, 2−4, ..., 2−15. Here, since CBFs

with four bits per entry are used, we consider bpe values of

16, 24, 32 and 40.

Figure 5 displays the membership probability based on the

values of the k = 6 counters. According to Theorem 2, the

probability can be described as a function of the product of

these k counters. The figure presents the results for up to a

product of 100, since larger products were encountered in

the simulations with a negligible probability. The simulated

probabilities for the most common values are compared with

the theory. The dependency in the a priori set-membership

probability is demonstrated again. For instance, if the product

is 8, the observed probabilities are 0.90594, 0.68504 and

0.34679 for the a priori probabilities 2−3, 2−5, 2−7. Likewise,

to obtain a membership probability of at least 0.8, the minimal

required products are 5, 23 and 91, respectively.

Last, we compared the achieved false positive rate, false

negative rate and total cost in a CBF (with the regular query

policy) and while using our suggested query policy of the

Selective Counting Bloom Filter, as presented in Section V.

There is no change in the insertion policy of the CBF, allowing

the insertion of all elements, even with low a priori probability.

The results are presented in Table III. With the increase (by

a factor of 4) in memory, the performance of the CBF is the

Counting Bloom Filter Selective Counting Bloom
Filter (Only Query)

bpe m fpr fnr cost fpr fnr cost

16 13312 1.47e-1 0.00 2.46e6 8.95e-5 7.65e-1 1.42e4

24 19968 5.61e-2 0.00 9.40e5 9.59e-5 6.57e-1 1.25e4

32 26624 2.16e-2 0.00 3.61e5 9.42e-5 5.35e-1 1.05e4

40 33280 8.20e-3 0.00 1.37e5 1.01e-4 4.16e-1 8.61e3

TABLE III
SIMULATION RESULTS FOR COUNTING BLOOM FILTERS WITH α = 5.

SIMULATION PARAMETERS ARE THE SAME AS IN TABLE II.

same as that of the Bloom filter. This is because its regular

query policy cannot contribute to reduce the false positive rate.

Our suggested policy for the decision helps to reduce the

total cost by at most 99.42%. By comparing the query policy of

the Selective CBF to the results of the suggested query policy

in the Selective Bloom Filter (presented in Table III), we can

see an additional improvement of up to 11.43%. This reduction

in the total cost is due to the more accurate calculation of the

membership probability based on the information on the exact

values of the counters. Such information is not available in

the Selective Bloom Filter.

C. Trace-Driven Simulations

We now want to explore the tradeoff of the false positive

rate and the false negative rate in the Selective CBF. To do

so, we conduct experiments using real-life traces recorded on

a single direction of an OC192 backbone link [14]. We used a

64-bit mix hash function [15] to implement the requested hash

functions. The hash functions are calculated based on the 5-

tuple (Source IP, Destination IP, Source Port, Destination Port,

Protocol).

The Selective CBF represents here, using 30 bits per el-

ement and 4 bits per counter, a set of n = 210 different

tuples that we encounter in a short period of 3614 µs. Our

queries are based on N = 220 tuples (that includes the

first n) that were encountered later on during a longer time

interval. This yields an a priori set-membership probability of

n/N = 210/220 = 2−10.

Figure 6(a) illustrates this tradeoff. First, the solid line

presents the tradeoff obtained by Theorem 5. We remind that

this theorem is general and talks about the length in bits of a

general representing binary string. However, in order to have

a fair comparison with the Selective CBF and to compare

apples to apples (i.e. counters to counters), in the calculation

of this curve, we assume that each string entry has a width of 4

bits, the typical number of counter size in CBFs. Using binary

search, we found for each value of the false negative rate δ, a

maximal value of the false positive rate ǫ, that still holds the

memory constraint according to the theorem. For instance, if

δ = 0.001 (i.e. at most ⌊δ · n⌋ = 1 out of n are not accepted by

the representing string), we found a maximal false positive rate

of ǫ = 0.004981 (and at most ⌊ǫ(N − n)⌋ = 5217 elements

outside the set are accepted by the string). If δ = 0.0316, then

ǫ drops to 0.00360.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

m
e
m

b
e
rs

h
ip

 p
ro

b
a
b
il
it
y

counters product

P = 2
−3

 (theory)

P = 2
−3

 (simulation)

P = 2
−5

 (theory)

P = 2
−5

 (simulation)

P = 2
−7

 (theory)

P = 2
−7

 (simulation)

Fig. 5. CBF-based membership probability for elements with a priori set-
membership probability P = Pr(x ∈ S). The probability is based on k=6

counter values and compared with Theorem 2.

The three dashed lines draw the tradeoff achieved using the

Selective CBF with the k = 4, 5 and 6 hash functions. Three

points are located on the y-axis. They present, of course, the

typical false positive rate of the CBF where no false negatives

are allowed. The rates are 0.03086, 0.02850, 0.02908, respec-

tively and the minimum is achieved for k = 5 ≈ 30/4 · log(2).
Thus, if WFN is large enough and α → ∞, the optimal

number of hash functions is k = 5.

We earlier showed that the membership probability is an

increasing function of the product of the k counters. In each

of these three lines, each point illustrates a different threshold

of the counters product such that a negative answer is returned

only if the product is smaller than the threshold. As explained

in Section V, in order to minimize the expected cost, each

value of α can be translated to a probability threshold of 1
α+1

by Theorem 4 and later on also to a product threshold. For

instance, for α = 2.4, the probability threshold is 1
α+1 = 10

34 .

For k = 5, the product threshold is 6 and the obtained false

positive and false negative rates are 0.00746 and 0.39258, re-

spectively. However, lower error rates of 0.00739 and 0.34766

can be obtained for k = 6 with the product threshold 10. Thus,

for such α, for instance, the optimal number of hash functions

is not the typical number of hash functions in a CBF.

Figure 6(b) compares the total cost of queries of the CBF

and the Selective CBF in this simulation as a function of α. We

again assume 30 bits per element and k = 5 hash functions.

Since the CBF does not allow any false negatives, its total cost

is constant and equals the number of obtained false positives

ǫ(N−n) = 29856. For small values of α, such that α = 1 and

α = 5, the total costs of the Selective CBF are only 1024 and

4977, respectively. This is a relative reduction of 96.57% and

83.32%. The improvement may still not be negligible, even

for larger values of α. For instance, for α = 50 the total cost

is reduced by 12.09% to 26247. In practice, the α may reflect

the latency difference between an SRAM memory access and a

DRAM or an eDRAM (extended DRAM) memory access. If a

DRAM access is 12.5 times slower than an SRAM access [16],

then α = 12.5−1 = 11.5, and therefore the cost is reduced by

a factor of 3. Likewise, if an eDRAM access is 3 times slower

than an SRAM access [17], then α = 3− 1 = 2, and the total

(a) Tradeoff of false positive rate vs. false negative
rate for 30 bits per element.

(b) Total cost of N queries in the CBF and the
Selective CBF. The cost of a false positive is 1,
and the cost of a false negative is α. Since the
CBF does not allow any false negatives, its cost
is constant and does not depend on α. For smaller
values of α, the improvement of the Selective
CBF is more significant.

(c) Total cost of N queries in the CBF and the
Selective CBF as a function of the number of bits
per element (bpe). The cost of a false positive is
1, and the cost of a false negative is α = 5. For
smaller values of bpe, the false positive rate of
the CBF is larger. The probability that its positive
indication is correct is lower, and the improvement
of the Selective CBF is more significant.

Fig. 6. Trace-Driven Simulations

cost is approximately reduced by an order of magnitude.

Figure 6(c) compares the total cost of queries of the CBF

and the Selective CBF in the simulation above, as a function

of the number of bits per element (bpe). For each value of

bpe, the optimal number of hash functions of the CBF is used

(in both schemes) and the results are presented for α = 5. If

less bits per element are used, the false positive rate of the

CBF is larger. The probability that its positive indication is

correct is lower, and the improvement of the Selective CBF is

more significant. Likewise, the tradeoff in the Selective CBF

is improved using more bits per element, and thus also its total

cost. In all cases, the Selective CBF achieves a lower total cost

than the CBF. For instance, if bpe=20, the cost of the CBF is

reduced from 98561 by 94.80% to 5122. If bpe = 50, the costs

are 2690 and 1876, respectively. In this case, since the false

positive rate of the CBF is smaller, the relative improvement

drops to 30.26%.

VIII. CONCLUSION

In this paper, we introduced the Bloom paradox and showed

that in some cases, it is better to return a negative answer

to a query of an element, even if the Bloom filter or the

CBF indicate its membership. We developed lower bounds on

the a priori set-membership probability of an element that is

required for the relevancy of the Bloom filter in its queries. We

also showed that the exact values of the CBF counters can be

easily used to calculate the set-membership probability. Last,

we showed that our schemes significantly improve the average

query cost.

IX. ACKNOWLEDGMENT

This work was partly supported by the European Research

Council Starting Grant No. 210389, by the Jacobs-Qualcomm

fellowship, by an Intel graduate fellowship, by a Gutwirth

Memorial fellowship, by an Intel research grant on Hetero-

geneous Computing, and by the Hasso Plattner Center for

Scalable Computing.

REFERENCES

[1] B. Bloom, “Space/time tradeoffs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, 1970.

[2] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM Trans. on
Networking, vol. 8, no. 3, 2000.

[3] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“An improved construction for counting Bloom filters,” in ESA, 2006.

[4] H. Song, F. Hao, M. S. Kodialam, and T. V. Lakshman, “IPv6 lookups
using distributed and load balanced Bloom filters for 100gbps core router
line cards,” in IEEE Infocom, 2009.

[5] O. Rottenstreich, Y. Kanizo, and I. Keslassy, “The variable-increment
counting Bloom filter,” in IEEE Infocom, 2012.

[6] B. Donnet, B. Baynat, and T. Friedman, “Retouched Bloom filters:
allowing networked applications to trade off selected false positives
against false negatives,” in ACM CoNEXT, 2006.

[7] R. P. Laufer, P. B. Velloso, and O. C. M. B. Duarte, “A generalized
Bloom filter to secure distributed network applications,” Computer

Networks, vol. 55, no. 8, 2011.
[8] W. Thompson and E. Shumann, “Interpretation of statistical evidence

in criminal trials: The prosecutor’s fallacy and the defense attorney’s
fallacy,” Law and Human Behavior, vol. 1, no. 3, 1987.

[9] H. L. Vacher, “Quantitative literacy - drug testing, cancer screening, and
the identification of igneous rocks,” Journal of Geoscience Education,
2003.

[10] P. Beauchemin, G. Brassard, C. Crepeau, and C. Goutier, “Two obser-
vations on probabilistic primality testing,” in Crypto’, 1986.

[11] O. Rottenstreich and I. Keslassy, “The Bloom paradox: When not to use
a Bloom filter?” Comnet, Technion, Israel, Tech. Rep. TR11-06, 2011.
[Online]. Available: http://webee.technion.ac.il/∼ isaac/papers.html

[12] L. Carter, R. W. Floyd, J. Gill, G. Markowsky, and M. N. Wegman,
“Exact and approximate membership testers,” in ACM STOC, 1978.

[13] R. Pagh and F. F. Rodler, “Lossy dictionaries,” in ESA, 2001.
[14] C. Shannon, E. Aben, K. Claffy, and D. E. Andersen, “CAIDA

anonymized 2008 Internet trace equinix-chicago 2008-03-19 19:00-
20:00 UTC (DITL) (collection),” http://imdc.datcat.org/collection/.

[15] T. Wang, “Integer hash function,” http://www.concentric.net/∼Ttwang/
tech/inthash.htm.

[16] S. Iyer, R. R. Kompella, and N. McKeown, “Designing packet buffers
for router linecards,” IEEE/ACM Trans. on Networking, vol. 16, no. 3,
pp. 705–717, 2008.

[17] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Design
exploration of hybrid caches with disparate memory technologies,”
TACO, vol. 7, no. 3, p. 15, 2010.

