
Estimators Also Need Shared Values
to Grow Together

Erez Tsidon
Technion, Qualcomm

erezts@tx.techion.ac.il

Iddo Hanniel
Technion

ihanniel@techion.ac.il

Isaac Keslassy
Technion

isaac@ee.techion.ac.il

Abstract—Network management applications require large
numbers of counters in order to collect traffic characteristics
for each network flow. However, these counters often barely fit
into on-chip SRAM memories. Past papers have proposed using
counter estimators instead, thus trading off counter precision
for a lower number of bits. But these estimators do not achieve
optimal estimation error, and cannot always scale to arbitrary
counter values.

In this paper, we introduce the CEDAR algorithm for de-
coupling the counter estimators from their estimation values,
which are quantized into estimation levels and shared among
many estimators. These decoupled and shared estimation values
enable us to easily adjust them without needing to go through all
the counters. We demonstrate how our CEDAR scheme achieves
the min-max relative error, i.e., can guarantee the best possible
relative error over the entire counter scale. We also explain how
to use dynamic adaptive estimation values in order to support
counter up-scaling and adjust the estimation error depending on
the current maximal counter.

Finally we implement CEDAR on FPGA and explain how it
can run at line rate. We further analyze its performance and size
requirements.

I. INTRODUCTION

A. Background

In many high-end networking devices, the amount of on-chip
memory needed by counters keeps growing and starts reaching
its limits. This is because the needed number of counters in
networking devices keeps increasing with the number of flows.
It also keeps growing with the number of measurement-based
applications, since each application can require different types
of counters per flow. In addition, not only the number of
counters, but also the counter sizes keep increasing with the
line rates, since line rates directly determine the maximum
counter value.

This memory limit on the number of counters can directly
affect many algorithms for networking devices, since these
often rely on the assumption that packet counts and flow
rates are easily available. For instance, the ability to easily
measure and compare flows lies at the basis of many fairness,
scheduling, flow control, admission control, load-balancing,
shaping and policing algorithms.

As a simplified example, consider a current high-speed
multi-stage router [1]–[3], e.g. with 256 input and output
ports and 4 priority classes. Then a middle-stage element sees
2562 · 4 ≈ 262, 000 unicast router flows. Keeping only three
counters per flow (e.g., the number of packets of the flow

in the switch element, and its current arrival and departure
rates) with 16 bits per counter would yield a needed memory
size of 48 bits per flow, i.e. a total of 12 Mb = 1.5 MB.
After implementing all the other functions in the middle-stage
element, such as packet switching and scheduling control,
this can fit into available commodity on-chip SRAM memory
(barely). However, in next-generation routers with 1, 024 sub-
ports, the needed memory would scale to 24 MB—well beyond
commodity SRAM sizes [4].

Per-flow counters are needed by many types of network
management applications. For instance, flow control mecha-
nisms such as AF-QCN [5], network traffic anomaly detec-
tion algorithms [6] and congestion control applications such
as FRED [7] require per-flow counters for measuring flow
capacities and flow rates.

In this paper, we consider networking device applications for
which counter estimates are sufficient, even if the estimates
have small errors, as long as all those estimates can fit on
commodity on-chip SRAM memory and can be accessed in
real time. For instance, a flow control mechanism similar to
AF-QCN [5] could use rate estimates for each flow to obtain
quick convergence to fairness. Taken to the extreme, these
algorithms may in fact only depend on the order of magni-
tude of the estimated flow rate. For example, a differentiated
service algorithm may provide a different service to flows with
estimated rates of about 10Kbps, 100Kbps or 1Mbps.

This paper is about enabling many per-flow counters in a
scalable way, both for packet counts and packet rates. We do
so by replacing exact counters with shared counter estimates.
These estimates will enable us to trade off a decreased needed
amount of memory with an increased error probability in the
counter estimation. In addition, using the estimator sharing,
we provide ways to smoothly change the counter scale, and
therefore adapt the estimation error to the traffic size in a
dynamic way. This is particularly useful for estimates of
window-based average rates, since they rely on counters that
keep increasing and therefore need to adapt over several orders
of magnitude.

B. Alternative Solutions and Related Work

The following alternative solutions attempt to use less bits
per counter.

A first approach is to keep less counters. A straightforward
solution adopted by high-end device designers against the



memory size problem is to avoid keeping an on-chip counter
for each flow, and instead keep a counter per pre-determined
logical flow aggregate. For instance, keep a counter for all
packets with a certain priority, or for all packets coming from a
given input port. However, this might prevent the use of several
algorithms. For instance, upon congestion, this prevents the
use of fairness algorithms based on the flow rates, such as the
flow control and differentiated-service algorithms previously
mentioned. Another way to keep less counters is to only keep
counters for heavy hitters [8], [9]. However, while this can help
in many applications, our goal is to provide a counter estimate
for all flows.

A second approach is to only keep counter estimates for
active flows using a structure based on a CBF (Counting
Bloom Filter) [10], [11]. For instance, [12], [13] introduce the
CBF-based Counter Braids structure to achieve near-entropy
compression. However, the Counter Braids algorithms are not
designed for online counter estimation, which is assumed in
this paper. More generally, CBF-based structures perform most
efficiently when most counter values are zero, which is not
necessarily the case. In practice, when most counter values are
zero, CBF can be combined with our estimators to provide even
better error rates for the same amount of memory: instead of
estimating flow counters, our estimators would simply estimate
the CBF counters.

Likewise, a related algorithm, BRICK [14], restricts the
counter sum in order to compress counters. This requirement
assumes a flow distribution that keeps most of the counter
values at zero. In this paper we attempt to avoid such an
assumption.

A third approach is to use DRAM, either by combining
small on-chip SRAM counters with large off-chip DRAM
counters [15]–[18], or by only using off-chip DRAM counters
with potentially a small queue in SRAM [19]–[21]. This
DRAM-based approach provides exact counters instead of
counter estimates. It can also obtain cheaper solutions by
relying on DRAM rather than SRAM. Unfortunately, because
it relies on off-chip DRAMs with longer access latencies, this
approach cannot satisfy arbitrary real-time counter reads at line
rate. For instance, it may need to restrict the pattern of the
counter queries and/or add a lookahead queue of unpredictable
length. In addition, this approach forces the designer to deal
with the buffer management policy for the off-line DRAM in
addition to the SRAM that is used in other applications, which
may be a barrier to its use.

A fourth approach is to use counter approximations instead
of real values, as in the Approximate-Counting [22], SAC [23]
and DISCO [24] algorithms. In these methods each counter
is replaced with an estimator that requires significantly less
bits (e.g. 12 bits vs. 32). However, each method restricts its
estimation value distribution to predefined values. For example,
SAC restricts its estimation values to be of the form a2b.
We will show that these estimation values are not necessarily
optimal, and provide the optimal values. In addition, some
of these methods (e.g. DISCO) do not support up-scaling
procedures, thus the maximal possible estimated value must

be known ahead of time, resulting in a large estimation error
over the entire counter scale. We propose a method to adjust
the estimation error to the current maximal counter value.

C. Our Contributions

In this paper we introduce a counter architecture, called
CEDAR (Counter Estimation Decoupling for Approximate
Rates), which decouples counter values from flow symbols.
The goal of CEDAR is to provide real-time scalable counter
estimates. CEDAR gathers estimation values into one array
with a relatively small number of entries. Flow symbols are
used as pointers into this estimation array. Since the number
of estimation array entries is low compared to the number
of flow entries (e.g. hundreds vs. millions), we show that the
additional required memory is negligible.

Using this estimator array, we have the freedom to choose
any estimation values. We exploit this advantage by determin-
ing the exact estimators that minimize the maximal relative
error over the entire counter scale. That is, for any counter
value, CEDAR can guarantee that the relative error does not
exceed a predetermined guaranteed value, which is proved to
be minimal. This estimation is particularly useful for applica-
tions that require fast reading and writing of flow counters with
a predetermined relative estimation error that is independent of
the counter value.

Then, to obtain counter estimators without a predetermined
maximum, we introduce an online up-scaling scheme. This
scheme is useful when there is no advance knowledge about
the flow distribution, and therefore the maximal counter value
cannot be predicted. Our up-scaling algorithm adjusts the
relative error of the entire counter scale to the current maximal
counter value. In this way the estimation error at any time is
uniquely derived from the stream behavior.

In order to evaluate our algorithms, we use Internet traces
and compare the estimation error of CEDAR versus SAC
[23] and DISCO [24]. We show how our algorithm can more
efficiently estimate counter values given the same amount of
memory. We also show how our up-scaling mechanism keeps
the max-relative-error adjusted to the counter scale.

Finally, we demonstrate the CEDAR implementation on
FPGA and analyze its performance and size requirements.

II. THE CEDAR ARCHITECTURE

A. Architecture

As shown in Figure 1, the CEDAR architecture is based
on two arrays. First, a flow array F of size N that contains
pointers into the estimator array A for each of the flows Fj ,
0 ≤ j ≤ N − 1. Second, an estimation array A of size L that
contains estimator values Ai, 0 ≤ i ≤ L− 1.

For instance, in Figure 1, the first flow F0 points to A1 (the
pointer to index 1 is denoted p(1)), and the value of estimator
A1 is 1.2. Therefore the estimator value for flow F0 is 1.2.

Assuming that L is a power of 2, the number of bits needed
for each of the pointers in F is simply log2 L. We also assume
that each estimator value in A uses q bits.



Fig. 1. CEDAR structure. The flow pointers on the left point to shared
estimators on the right. For example, the estimator for flow F0 is A1 = 1.2.

B. Conversion to the CEDAR Structure

We show now that any counter estimation method that
represents each estimate independently using a fixed number
of bits can be converted easily into a CEDAR structure with
asymptotically negligible effect on the estimation error. This
applies for instance to the SAC [23] and DISCO [24] counter
estimation methods.

Theorem 1: Any counter estimation method using a fixed
number of bits per counter estimate can be converted into
the CEDAR structure with the same estimation error, and an
asymptotically negligible overhead as N →∞.

Proof: Consider an estimation method that uses q bits per
counter for counter estimation. Thus, it can have a maximum
of 2q distinct symbols. If we build from these symbols an
estimation array of size L = 2q , then we can use the counter
symbols as pointers into this estimator array and run the
original algorithm without any change. Therefore we get a
CEDAR structure that keeps the same estimation error. In
addition the structure overhead is the additional contribution
of the estimator array, i.e. q·2

q

N ·q = 2q

N

N→∞−−−−→ 0.

C. Performance Measures

Throughout this paper we only consider unit increments
that represent packet arrivals. Note that the estimation error
with variable increments larger than one (e.g. when measuring
bytes) is actually lower given the same scale, because it enables
more precise scale jumps, and therefore using unit increments
results in a worst-case analysis.

We would like to evaluate our counter estimates using
their relative error rather than their absolute error. That is,
a difference of 10 between the real counter and our estimate
may account as a huge error if the real value is 20, and as a
negligible error if the real value is 100000. Thus, we would
like to normalize the error by the counter value.

Formally, we denote by T (l) the random variable that
represents the required amount of traffic for a certain flow
to point to estimator Al, i.e. its hitting time. As in [23],
[24], assuming our algorithms yield unbiased estimators and

Fig. 2. Update mechanism of the CEDAR algorithm upon consecutive packet
arrivals for a given flow. The flow counter estimate is initialized at A0 = 0.
After the first arrival, the difference between A0 and A1 is 1, therefore the
update step is deterministic with probability p = 1/1 = 1 and the new
estimate is A1 = 1. After the second arrival, A2 − A1 = 3, therefore the
flow pointer is incremented with probability 1/3 to A2 = 4. At the third
arrival, A3 − A2 = 5, therefore the increment probability is 1/5. Here it is
not incremented.

assuming E[T (l)] = Al, we will define the relative error (or
coefficient of variation) as

∆[T (l)] =

√
Var[T (l)]

(E[T (l)])
2 =

σ[T (l)]

E[T (l)]

D. Static CEDAR Algorithm

We start by introducing the static version of CEDAR, which
uses a static and pre-determined estimator array A. Later, in
Section IV, we will introduce the dynamic version of CEDAR
that enables scaling the estimator array.

In the static CEDAR algorithm, we make two simplifying
assumptions on the fixed CEDAR structure. First, we assume
that the estimator values Ai are defined in ascending order,
with A0 = 0. We denote the differences between two succes-
sive estimators as Di = Ai+1−Ai, where 0 ≤ i ≤ L− 2, and
further assume that Di ≥ 1 for any i. For instance, in Figure 1,
D0 = 1.2− 0 = 1.2 and D1 = 3.7− 1.2 = 2.5.

The static CEDAR algorithm works as follows. At the start,
all flow counters point to A0 = 0. Then, at each arrival of a
packet from flow j, which corresponds to a unit increment of
its real counter value, the flow’s pointer Fj is incremented by
one with probability 1

DFj
= 1

AFj+1−AFj
. In other words, if the

flow pointer first points to estimated value Ai (where i = Fj),
then it either starts pointing to Ai+1 with probability 1/DFj

, or
continues pointing to Ai with probability 1−1/DFj . Note that
since Di ≥ 1 for any i, these probabilities are well defined.

Figure 2 further illustrates an example of such update
sequence in the static CEDAR algorithm.

E. Unbiasedness and Traffic Expectation

Given our definition of the static CEDAR algorithm, we first
show that the expectation of random variable T (l) equals the
estimated value Al. This means that the expected hitting time
of Al is exactly Al, i.e. the expected number of arrivals needed
to reach some estimated value is exactly this estimated value.

Theorem 2: The hitting time T (l) of estimator Al satisfies
the following property: E[T (l)] = Al



Proof: We can divide T (l) into l i.i.d geometric random
variables G(pi) with parameter pi = 1

Di
, i = [0, ..., l − 1],

therefore

E[T (l)] = E

[
l−1∑
i=0

G(
1

Di
)

]
=

l−1∑
i=0

E
[
G(

1

Di
)

]
=

l−1∑
i=0

Di = Al

In addition, regardless of the exact values used within
estimation array A, the CEDAR estimation is unbiased, as long
as we assume that the estimation scale is unbounded (or that
its maximum is never reached). The unbiasedness proof of
CEDAR is similar to the proof of Theorem 1 in DISCO [24],
therefore we do not repeat it.

Property 1: CEDAR estimators are unbiased.

III. RELATIVE ERROR MINIMIZATION

A. Min-Max Relative Error

A network device designer will want to obtain a guarantee
that the counter estimates have good performance no matter
how large the counters are. For instance, such a guarantee may
be that the relative error is below 5% over the whole scale of
counters.

Unlike former approaches that restrict the counter estimators
to specific values, the flexibility of the CEDAR structure
enables us to analytically determine and implement the op-
timal estimation array that achieves such a guarantee. In the
remainder of this section, we first determine the values of this
optimal estimation array in Theorem 3, then prove that it is
indeed optimal in Theorem 4.

More specifically, given an estimation array size L and a
fixed maximal estimator value AL−1, we want to determine
the set of estimator values {A0, ..., AL−1} that minimizes
the maximum relative error over all estimators, i.e. achieves
minA maxl ∆[T (l)]. In other words, this set should minimize
the guaranteed error δ such that for all l, ∆[T (l)] ≤ δ.

As we saw in Theorem 2, T (l) is a sum of l i.i.d geometric
random variables, therefore

∆[T (l)] =

√
Var[T (l)]

(E[T (l)])2
=

√√√√√
∑l−1
i=0

1−1/Di

1/D2
i(∑l−1

i=0Di

)2
and we can rewrite the condition ∆[T (l)] ≤ δ for all l as

∀l : Hl(D0, ..., Dl)
4
=

l∑
i=0

(
D2
i −Di

)
− δ2

(
l∑
i=0

Di

)2

≤ 0

(1)
We later show in Theorem 4 that in order to achieve such

min-max relative error, all estimators must reach an equal
relative error δ, that is,

∀l : ∆[T (l)] = δ,

which we can rewrite as ∀l : Hl(D0, ..., Dl) = 0 (also denoted
as Hl = 0 for simplicity).

We now first prove in the following theorem that we achieve
such an equal-relative-error estimation array iff the estimation
values are given by the following recursive equation,

Dl =
1 + 2δ2

∑l−1
i=0Di

1− δ2
, (2)

with D0 = 1
1−δ2 , before proving in Theorem 4 that we indeed

need to achieve this equal-relative-error to provide an optimal
guarantee.

Theorem 3: Given a target relative error δ, and the L −
1 constraints: ∀l ∈ [0, L − 2], Hl(D0, ..., Dl) = 0, then the
estimation value increments Dl are necessarily given by the
recursive function in Equation (2).

Proof: First, we highlight the recursive nature of the Hl

functions. Extracting Dl from Hl yields:

Hl =

l−1∑
i=0

D2
i +D2

l −
l−1∑
i=0

Di −Dl

−

(
(

l−1∑
i=0

Di)
2 + 2Dl

l−1∑
i=0

Di +D2
l

)
δ2

=(1− δ2)D2
l − (2δ2

l−1∑
i=0

Di + 1)Dl

+

l−1∑
i=0

D2
i −

l−1∑
i=0

Di − (

l−1∑
i=0

D2
i )

2δ2︸ ︷︷ ︸
Hl−1

= 0 (3)

Assigning Hl−1 = 0 immediately gives Equation (2).
The following theorem proves that minimizing the maximal

relative error δ for a given AL−1 is equivalent to maximizing
AL−1 for a given maximal relative error δ. More significantly,
it demonstrates that both are equivalent to equalizing all rela-
tive errors, therefore yielding the recursive equation obtained
above in (Theorem 3).

Theorem 4: Given the L − 1 constraints: ∀l ∈ [0, L −
2], Hl ≤ 0, the following claims are equivalent:

(i) Maximizing AL−1: AL−1 =
∑L−2
i=0 Di is maximal.

(ii) Equalizing all relative errors: ∀l ∈ [0, L− 2], Hl = 0.
(iii) Minimizing δ: δ is the minimal guaranteed relative error.

Proof: We start by proving that (i)⇒(ii). Assuming∑L−2
i=0 Di is maximal, the (L − 1)th equality, HL−2 = 0, is

given by the following lemma:
Lemma 1: Assume that ∀l ∈ [0, L− 2], Hl ≤ 0. If AL−1 =∑L−2
i=0 Di is maximal then HL−2 = 0
Proof Outline: We assume by contradiction that there is a set
{D0, ..., DL−2} that satisfies all L−1 constraints and achieves
maximal

∑L−2
i=0 Di but HL−2 < 0. In [25], we show that under

these conditions we can increase DL−2 by some small ε while
still satisfying the constraints, and therefore the assumed sum
is not maximal.

We now prove that HL−2 = 0 ⇒ HL−3 = 0, and more
generally, by induction, Hl = 0⇒ Hl−1 = 0, i.e. Hl = 0 for
all l. We assume by contradiction that HL−3 < 0. We begin



(a) Ellipse case, option 1: intersects with
Hl ≤ 0 constraint to the left of the
tangency point P2. The maximum for
xl + kyl is attained at the intersection
point P1.

(b) Ellipse case, option 2: intersects with
Hl ≤ 0 constraint to the right of the
tangency point P2. The maximum for
xl + kyl is therefore attained at P2.

(c) Parabola / Hyperbola case: always
intersect with Hl ≤ 0 constraint at the
upper branch of the curve. The maximum
for xl+kyl is attained at the intersection
point P3.

Fig. 3. Geometric view of Theorem 4 based on quadratic curves: the quadratic curves represent the HL−2 = 0 constraint (according to the δ value) while
the vertical line xl = x0l represents the Hl ≤ 0 constraint.

by assigning l = L − 3 and follow the following steps in the
proof:

1) We show that if Hl < 0 then the only way to achieve
maximal

∑L−2
i=0 Di is when Hl−1 < 0 and Dl = Dl+1.

2) For l > 0, we set l← l − 1 and return to 1)
3) When l = 0 we get ∀i, j : Di = Dj . We will refute

this result by comparing it to the values we got in
Equation (2), which achieve a larger

∑L−2
i=0 Di.

We wish to provide an intuition for the first recursion cycle
where l = L− 3, before outlining the proof for the remaining
recursion cycles. Assuming

∑L−2
i=0 Di is maximal, Lemma 1

gives us the (L−1)th equality: HL−2 = 0. In a similar manner
to the way we extracted Dl−1 in Equation (3), we extract both
DL−2 and DL−3 from HL−2, resulting in:

HL−2 =(1− δ2)D2
L−3 − 2δ2DL−2DL−3

+ (1− δ2)D2
L−2 −

(
2δ2

L−4∑
i=0

Di + 1

)
DL−3

−

(
2δ2

L−4∑
i=0

Di + 1

)
DL−2 +HL−4 = 0 (4)

Interestingly, we can use a geometric approach to this
optimization. Let us set l = L − 3 and denote the following
symbols: xl = Dl; yl = Dl+1;A = 1 − δ2;B = −2δ2;C1 =
−(1 + 2δ2

∑l−1
i=0Di). We can rewrite Equation (4) as:

Ax2l + Bxlyl + Ay2l + C1xl + C1yl + Hl−1 = 0 (5)

where A > 0, B < 0, C1 < 0, and Hl−1 ≤ 0. This equation
defines a rotated quadratic curve in the (xl, yl) plane: an
ellipse when δ <

√
0.5, a parabola when δ =

√
0.5, and a

hyperbola when δ >
√

0.5 (see Figure 3)1. We now consider
the constraint Hl ≤ 0 (i.e., HL−3 ≤ 0) in the (xl, yl) plane
using our new notations. Note that from Equation (3), we can
see that HL−3 can be computed from HL−2 by assigning

1On how to classify a quadratic curve, see for example [26] or any basic
textbook on curves and surfaces such as [27].

DL−2 = 0. In our new notation this means setting yl = 0.
We get Ax2l + C1xl +Hl−1 ≤ 0, implying that

xl ≤ x0l =
−C1 +

√
C2

1 − 4AHl−1

2A
(6)

That is, as shown in Figure 3, the solution range is on
the quadratic curve from the left side of the vertical line
xl = x0l . In the hyperbola/parabola case the vertical line always
intersects with the upper branch of the quadratic curve at
P3 since the curve is unbounded in the xl axis. Therefore,
xl + kyl = t gets its maximal value at the intersection point
P3 (in the specific case we are analyzing, of the first recursion
cycle, k = 1).

In the ellipse case there are two options. Let xl = xMl be
the vertical that passes through P2, the point of the ellipse that
is tangent to the line xl + kyl = t (see Figure 3). In option
1, x0l < xMl and the maximal value is attained at P1, whereas
in option 2, xMl < x0l and the maximal value is attained at
the tangency point P2. In [25] we prove that P2 is also the
intersection point between the ellipse and yl = xl.

The outline of the proof remainder goes as follows. We
treat (D0, ..., DL−4) as constants in the geometric plane.
Thus, according to our assumption that

∑L−2
i=0 Di is maximal,

DL−3 + DL−2 = xl + yl should be maximal too in each
one of the three geometric options. We will show that due
to our contradiction assumption that HL−3 < 0 the only
valid choice is option 2 of the ellipse case since in the other
options the maximum for DL−3 + DL−2 is attained where
HL−3 = 0. In this option the maximum for DL−3 + DL−2
hits the tangency point P2 at which DL−3 = DL−2. We will
plug this result back into Equation (4), extract DL−4 from
the summation and build again the same quadratic curves.
This time we treat (D0, ..., DL−5) as constants and maximize
DL−4 + DL−3 + DL−2 = DL−4 + 2 · DL−3, i.e. maximize
xl + 2yl where l = L − 4. In the kth step of the recursion,
we treat (D0, ..., DL−k−3) as constants and the maximization
will be on xl + kyl where l = L − k − 2. Note that this
general maximization is the step that we develop in Figure 3.



Fig. 4. The maximal estimator value AL−1, as a function of the minimal
max-relative-error δ, for several bit widths log2(L).

Proceeding with the recursion steps till l = 0 will finally yield
∀i, j : Di = Dj , which will be used to refute the contradiction
assumption. Due to space limitations, we present the full proof
details in [25].

We prove now that (ii)⇒(i). Assuming for all l
Hl(D0, ..., Dl) = 0, we get the recursive formula from
Equation (2). This formula defines L− 1 linear equations that
can be represented as a triangular matrix, i.e. they are linearly
independent. This means there exists a solution and it is unique.

Now we show that (iii) ⇐⇒ (i). Denote by M = AL−1
the maximal value of

∑L−2
i=0 Di for a given δ. Equation (2)

defines a function M(δ) =
∑L−2
i=0 Di(δ). It is easy to see

from Equation (2) that M(δ) is a strictly increasing function
of δ (since the Dls increase as δ increases). Therefore, there
exists an inverse function δ(M), which for any given value
AL−1, returns δ such that M(δ) = AL−1. This is the minimal
δ since a smaller δ will not satisfy the relative error constraints,
whereas a larger δ will not be minimal.

B. Capacity Region of Static CEDAR

Figure 4 illustrates the maximal possible guaranteed region
for CEDAR, as provided by the min-max optimization. It plots
the maximal estimator value as a function of the min-max
relative-error, given several possible bit widths, as indicated in
Equation (2). For instance, given log2 L = 10 bits, i.e. L =
210 = 1024 estimators, we can achieve a min-max relative
error of δ = 5% using a maximal estimator value of AL−1 =
32 · 103, and an error of δ = 10% using AL−1 = 35 · 109.

Alternatively, each plot also defines the lowest possible
relative error guarantee given a counter scale, as proved in
Theorem 4. For instance, given AL−1 = 32 · 103, it is not
possible to provide a better guarantee than δ = 5%.

Figure 4 also shows how an increase in the number of bits,
i.e. in the available memory resources, leads to an increase in
the maximal counter value and/or a decrease in the guaranteed
relative error.

IV. DYNAMIC UP-SCALE

A. Motivation

We now introduce the full CEDAR algorithm that can
dynamically adjust to the counter scale. This algorithm is used
to support an unlimited counter value, yet also provide a good

Fig. 5. CEDAR scaling. A′ is a CEDAR estimation array that matches a
relative error δ0. A′′ is a CEDAR array that matches a relative error δ0+δstep,
therefore it has a higher maximal value. Each flow pointer that points to an
estimator in A′ is converted to one of the two closest estimators in A′′,
according to probability p.

relative error at any given time. The strength of our algorithm is
the fact that we control the up-scaling by adjusting the relative
error rather than changing the maximal estimation value. In
this way the error of the entire counter scale is always under
control and can be fine-tuned by the user.

In practice, we start with the best estimation array that
matches an initial maximal relative error δ0. This estimation
array is unique, as we proved in Theorem 4. As more and
more packets are streaming in and the maximal flow counter
is going to exceed our maximal estimation value, we set a new
relative error of δnew = δ0 + δstep and build a new matching
estimation array. We further proceed in the same way for the
next iterations.

B. Algorithm
In order to support up-scaling we use two estimation arrays

A′ and A′′ in a simple ping-pong way. We initialize A′

with equal-error estimators that match an initial error of δ0
according to Equation (2), and likewise initialize A′′ with
estimators that match δ0 + δstep. Therefore A′′ also has an
higher maximal estimator value than A′.

We start by using the static CEDAR algorithm with the A′

array. Once the maximal flow pointer is getting close to the
end of A′ array such that maxj(Fj) ≥ ithr, where ithr is an
arbitrary threshold value, we perform the following up-scale
procedure: For j=0 to N − 1 do

1) Set l = Fj ,
2) Find m such that A′′m ≤ A′l < A′′m+1 (e.g. using binary

search within A′′),
3) Set p =

A′l−A
′′
m

A′′m+1−A′′m
,

4) Set Fj = m + 1 with probability p and Fj = m with
probability 1− p.

Figure 5 depicts a single step of the up-scale procedure.
We run the up-scaling procedure in parallel with the real-

time counter updates, i.e. without stopping the CEDAR update
algorithm. We use the current-flow index f as follows: assum-
ing a new packet arrival for flow Fi, if i < f we use the new
estimation array A′′, and otherwise use A′ (since the current
flow f has not been up-scaled yet).

When the up-scaling procedure ends, we prepare A′ for the
next up-scaling event by filling it with new estimation values



that match a new error of additional δstep, i.e. after a new up-
scaling event the relative error is δ0+2 ·δstep and after n events
it is δ0 + n · δstep.

C. CEDAR Up-Scale Unbiasedness

In the following theorem we show the unbiasedness of
CEDAR up-scale algorithm. Since we know from the unbi-
asedness of static CEDAR that estimation updates are unbiased
as long as the scale is maintained, the proof essentially shows
that up-scaling does not introduce bias. As for static CEDAR,
the result assumes that either the estimator scale is unbounded,
or up-scaling is done such that the maximum estimator value
is never reached.

Theorem 5: The CEDAR up-scaled estimators are unbiased.
Proof: In the up-scaling phase, let C denote the real

number of packets for the flow, Ĉ ′ its estimation under the
old scale, and Ĉ ′′ its estimation under the new scale. Then
we need to show that E

(
Ĉ ′′
)

= E
(
Ĉ ′
)

= C. Using the law

of iterated expectation E
[
Ĉ ′′
]

= E
(
Ĉ ′′|Ĉ ′

)
, it is therefore

sufficient to show that E
(
Ĉ ′′|Ĉ ′

)
= Ĉ ′.

Consider now a random path of the counter estimator. As
illustrated in Figure 5, denote by A′l the random variable that
represents the estimation value before the up-scaling. Also
define A′′m on the new scale such that A′l ∈ [A′′m, A

′′
m+1). Then

we just need to show that for any such A′l, E
(
Ĉ ′′|Ĉ ′ = A′l

)
=

A′l. Denote a Bernoulli random variable with parameter p as
B(p). Then we obtain:

E
(
Ĉ ′′|Ĉ ′ = A′l

)
= E

(
A′′m + (A′′m+1 −A′′m)

·B
(

A′l −A′′m
A′′m+1 −A′′m

))
= A′′m + (A′′m+1 −A′′m) · A′l −A′′m

A′′m+1 −A′′m
= A′l

V. CEDAR EVALUATION

We evaluate the performance of CEDAR on two real Internet
packet traces [28], [29]. First, we verify the unbiasedness of
the CEDAR estimator, and also check that its relative error is
constant over the entire counter scale, as proved in Theorem 4.

In Figure 6 we show the CEDAR estimation results with a
4KB estimation array (12-bit estimators). The initial scale is
set to a relative error of δ0 = 1% with steps of δstep = 0.5%.
The maximal value we reached is 106 which is equivalent to
an error of 3%. As it shown in the figure, CEDAR keeps its
unbiasedness over the entire scale as well as its relative error.

In Figure 7 we compare the CEDAR’s relative error to SAC
and DISCO with two different Internet traces. In Figures 7(a)
and 7(b) we are using 12-bit estimators. CEDAR parameters
are just the same as the previous experiment. For SAC we used
a 8:4 bit allocation as recommended in [23], that is, 8 bits to
the magnitude (which is denoted in [23] by A[i]) and 4 bits

to the exponent (denoted by mode[i]). As DISCO introduces
no up-scaling scheme we need to make some assumption
on the maximal estimated value in order to compare it to
SAC and CEDAR, we assume it can scale up to 32-bit
counter. Therefore, we set the DISCO exponent parameter to
b = 1.0041 which can reach the maximum real counter limit
with no need to do up-scaling.

As shown in the figure SAC achieves the best error in small
counter values, since for small values it can represent the exact
counter value. However, from counter value of 103 and on we
see that it performs the worst, reaching a relative error of above
5%. Regarding DISCO, it performs better than SAC, however it
is bounded between 4% and 5%. As we can see, CEDAR keeps
a near-constant relative error throughout the whole counter
scale in spite of the fact that it performed 4 scaling steps.
CEDAR relative error is lower by a third compared to those
of DISCO and SAC. In Figure 7(c) we use trace [29] again
but with 8-bit estimators. For CEDAR we use again δ0 = 1%
and δstep = 0.5%, for SAC we use a 5:3 bit allocation and
for DISCO we use an exponent parameter of b = 1.079. As
we can see again, CEDAR max relative error is better by third
from both SAC and DISCO. Interestingly, we can see how SAC
estimator restriction to the form a2b causes high oscillations
in its relative error.

In order to check the error adaptation of the CEDAR
up-scaling algorithm, we ran again trace [28] using 12-bit
estimators but this time we stop the stream at three different
points: after 1% of the trace, 10% and 100%. At every point
we sample the counter estimations through the entire counter
scale and measure the relative error. We compare the results
to a static CEDAR, i.e. a CEDAR array that uses no up-
scaling and relies on the maximal counter value from the
beginning. Figure 8 shows the relative error results. We can
see in Figure 8(a) that without the scaling algorithm the error
is always 3% no matter what the real maximal counter value
is. When using scaling, like in Figures 8(b) and 8(c), we can
see that the error is adjusted to the current maximal counter
(after 1% and 10% of the trace).

VI. FPGA IMPLEMENTATION

A. Implementation Description

In this section we examine a CEDAR implementation using
Xilinx Virtex-5 FPGA. We use 192KB RAM for the flow
pointer array and 16KB for the estimation array. Each estimator
is 32-bit width. The estimation values (given by Equation (2))
are multiplied by 1000 in order to avoid float operations, yet
keep a reasonable accuracy. The maximal design clock rate is
170MHz, therefore, assuming packets are accessed through a
32-bit bus with the same clock, our design may support streams
of up to 5.4Gbps. Without any optimization our design uses
2500 1x6 LUT and 2500 flip-flops (roughly equivalent to 12K
gates on ASIC design). In order to enable fast reading and
writing operations we use DPR (Dual Port RAM) for all arrays,
in this way both the CEDAR module and the client application
can access any array at any time. The CEDAR module has



(a) CEDAR unbiased estimation vs. real
counter values (Property 1).

(b) CEDAR constant relative error (The-
orems 3 and 4).

Fig. 6. CEDAR results on a real IP packet trace [28] using 12-bit estimators.

(a) Trace [28] counter estimation using
12-bit estimators.

(b) Trace [29] counter estimation using
12-bit estimators.

(c) Trace [29] counter estimation using 8-
bit estimators (note the new plot scale).

Fig. 7. Relative error comparison on real IP packet traces [28] and [29] using 12-bit and 8-bit estimators.

(a) Static CEDAR with 12-bit estimators.
The maximal value is aimed at 106.
The matching relative error is kept at 3%
throughout the trace.

(b) CEDAR with up-scaling, using 12-bit
estimators. The relative error is adjusted
according to the current maximal counter
value.

(c) CEDAR with up-scaling, using 8-bit
estimators (note the new plot scale). The
relative error is adjusted according to the
current maximal counter value.

Fig. 8. Relative error comparison between static CEDAR and CEDAR with up-scaling, using trace [28].

an I/O register interface in order to program it with initial
configurations, e.g. array sizes, and commands, e.g. start/stop.

Figure 9 depicts our implementation block scheme. The
CEDAR module itself is built of a simple state machine.
For any incoming packet we first fetch the flow pointer, then
we fetch the two successive estimators and finally we decide
whether to update or not the flow pointer. Both the flow pointer
array and the estimation array are stored in a dual-port RAM
in order to enable the client application fast reading of the flow
counter estimation at any given time.

A second estimation RAM is drawn with a dashed line
in order to support the up-scaling algorithm. The up-scaling
algorithm is done by a dedicated SW application. In order to
trigger this application, CEDAR generates an interrupt when
the maximal flow index exceeds a programmable threshold. In
addition, CEDAR has a current-up-scaled-flow-index register.
This register is updated by the up-scaling application during
its iteration through the flow pointer array. CEDAR uses this

register in two manners: to decide which estimation array
should be used for a specific flow (by comparing the flow
pointer to that register) and to lock the updating of the current
up-scaled flow.

B. Performance Analysis

We would like now to analyze the proposed model perfor-
mance. As shown in the figure, we have 3 RAM accesses
and sometimes even 4: one reading of the flow pointer, two
readings of successive estimators and an optional writing of a
new flow pointer. In our implementation we handle each packet
separately. That is, we do not accept the next packet till we
finish a full cycle of the CEDAR state machine. This imposes
a delay between 2 successive incoming packets of at least 4
cycles. Typically, this is not a real problem since the packet
minimal size is bounded by its header size which is usually
longer than 4 words. So assuming we have a word access per
cycle, our 4-cycle delay will not cause any stream halt.



Fig. 9. CEDAR FPGA implementation block scheme. CEDAR is imple-
mented as a three-state state machine. We use DPR (Dual-Port RAM) for the
estimator array and for the flow pointers. Thus, both the CEDAR module and
the CEDAR application can access arrays for fast updating and fast reading.

To conclude, we get a simple implementation that can work
with high stream bit-rates and enable fast reading by the client
application. Assuming an ASIC solution is much faster than
FPGA, our implementation can probably support up to tens
of Gbps. In terms of size, our implementation requires in the
worst case 12K gates, which is negligible when compared to
the flow pointer RAM requirement.

VII. CONCLUSION

In this paper we proposed a simple counter estimation
method called CEDAR. We proved that it can guarantee
optimal estimation in the manner of min-max-relative-error.
We proved that the minimal boundary is attained when all es-
timators have equal-relative-error. In addition, we introduced
a simple up-scaling algorithm which enables us to adjust the
relative error of the entire counter scale according to the current
maximal counter without having any pre-knowledge about the
flow distribution. We also proved the unbiasedness of the
CEDAR up-scaling algorithm.

Then we demonstrated the CEDAR estimation using two
different Internet traces. We showed its unbiasedness as well
as relative error equality through the entire counter scale.
We also showed that it achieves the min-max boundary, up-
scales smoothly, and adjusts the relative error estimation to the
maximal flow counter.

Last, we showed a simple CEDAR implementation on FPGA
that enables the client application to perform a fast reading
of counter estimation at any given time. Our implementation
consumes a relatively small space for the CEDAR logic part
and can support high bit rates. We synthesized our FPGA to
support a bit stream of 5.4Gbps, and expect an equivalent ASIC
implementation to support tens of Gbps.

ACKNOWLEDGEMENT

The authors would like to thank William Backshi for the
CEDAR implementation on FPGA, as well as Ran Manevich
and Ori Rottenstreich for their helpful comments. The work
was partly supported by the European Research Council Start-
ing Grant n◦210389, as well as the Loewengart Research Fund,

an Intel research grant on Heterogeneous Computing, and the
Hasso Plattner Center for Scalable Computing.

REFERENCES

[1] Cisco, CRS-1 multishelf system. http://www.cisco.com/en/US/
products/ps5842/

[2] Juniper, TX matrix plus. http://www.juniper.net/us/en/
products-services/routing/t-tx-series/txmatrix-plus/

[3] Broadcom-Dune, FE600 fabric element. http://www.dunenetworks.
com/webSite/Modules/News/NewsItem.aspx?pid=355n&id=89g

[4] F. Abel et al., “Design issues in next-generation merchant switch fabrics,”
IEEE/ACM Trans. on Networking, vol. 15, no. 6, pp. 1603-1615, 2007.

[5] A. Kabbani et al., “AF-QCN: Approximate fairness with quantized
congestion notification for multi-tenanted data centers,” IEEE Hot In-
terconnects, Mountain View, CA, Aug. 2010.

[6] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of network
traffic anomalies,” Internet Measurement Workshop, Nov. 2002.

[7] D. Lin and R. Morris, Dynamics of Random Early Detection,” SIG-
COMM Symp. on Comm. Architectures and Protocols, 1996.

[8] G. S. Manku and R. Motwani, “Approximate frequency counts over data
streams,” 28th International Conference on Very Large Data Bases, 2002.

[9] X. Dimitropoulos, P. Hurley and A. Kind, “Probabilistic Lossy Counting:
An efficient algorithm for finding heavy hitters,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 1, January 2008.

[10] O. Rottenstreich and I. Keslassy, “The variable-increment counting
Bloom filter,” IEEE Infocom, Orlando, FL, March 2012.

[11] C. Estan, G. Varghese, “New directions in traffic measurement and
accounting,” ACM Trans. on Computer Systems, vol. 21, no. 3, 2003.

[12] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, A. Kabbani,
“Counter braids: a novel counter architecture for per-flow measurement”.
ACM SIGMETRICS, pp. 121–132, 2008.

[13] Y. Lu and B. Prabhakar, “Robust counting via counter braids: an error-
resilient network measurement architecture,” IEEE Infocom, 2009.

[14] N. Hua, B. Lin, J. J. Xu, and H. C. Zhao, “Brick: A novel exact active
statistics counter architecture,” ACM/IEEE ANCS, 2008.

[15] D. Shah, S. Iyer, B. Prabhakar, and N. McKeown, “Maintaining statistics
counters in router line cards,” IEEE Micro, vol. 22, no. 1, pp. 76–81,
2002.

[16] S. Iyer, R. R. Kompella, and N. McKeown, “Designing packet buffers
for router linecards,” IEEE/ACM Trans. on Networking, vol. 16, no. 3,
pp. 705–717, 2008.

[17] M. Roeder and B. Lin. “Maintaining exact statistics counters with a
multilevel counter memory,” IEEE Globecom, Dallas, TX, 2004.

[18] Q. Zhao, J. Xu, and Z. Liu. “Design of a novel statistics counter
architecture with optimal space and time efficiency,” ACM SIGMETRICS,
2006.

[19] B. Lin and J. Xu, “DRAM is plenty fast for wirespeed statistics
counting,” ACM Perf. Eval. Review, vol. 36, no. 2, pp. 45–50, Sep. 2008.

[20] B. Lin, J. Xu, N. Hua, H. Wang, H. Zhao, “A randomized interleaved
dram architecture for the maintenance of exact statistics counters,” ACM
SIGMETRICS, Seattle, WA, June 2009.

[21] H. Zhao, H. Wang, B. Lin, and J. Xu, “Design and performance analysis
of a dram-based statistics counter array architecture,” ANCS, Princeton,
NJ, Oct. 2009.

[22] P. Flajolet, “Approximate counting: a detailed analysis,” BIT, vol. 25, pp.
113-134, 1985.

[23] R. Stanojevic, “Small active counters”, IEEE Infocom, 2007.
[24] C. Hu, B Liu, and K Chen, “Discount counting,” IEEE ICNP, 2009.
[25] E. Tsidon, I. Hanniel and I. Keslassy, “CEDAR: Counter-Estimation

Decoupling for Approximate Rates,” Tech. Report TR11-04, Comnet,
Technion, Israel. http://webee.technion.ac.il/˜isaac/papers.
html

[26] E. W. Weisstein, “Quadratic curve,” MathWorld. http://mathworld.
wolfram.com/QuadraticCurve.html

[27] E. Cohen, R. F. Riesenfeld and G. Elber, “Geometric modeling with
splines: an introduction”, 2001.

[28] CAIDA Anonymized 2008 Internet Trace, equinix-chicago 2008-03-
19 19:00-20:00 UTC, Direction A. http://www.caida.org/data/
monitors/passive-equinix-chicago.xml

[29] CAIDA Anonymized 2008 Internet Trace, equinix-chicago 2008-03-19
19:00-20:00 UTC, Direction B.


