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Abstract—Designers of TCAMs (Ternary CAMs) for packet
classification deal with unpredictable sets of rules, resulting in
highly variable rule expansions, and rely on heuristic encoding
algorithms with no reasonable expansion guarantees. In this
paper, given several types of rules, we provide new upper bounds
on the TCAM worst-case rule expansions. In particular, we prove
that a W -bit range can be encoded using W TCAM entries,
improving upon the previously-known bound of 2W−5. We also
propose a modified TCAM architecture that uses additional logic
to significantly reduce the rule expansions, both in the worst case
and in experiments with real-life classification databases.

I. INTRODUCTION

A. Background

Packet classification is the core function behind many net-
work applications, such as routing, filtering, intrusion detection,
accounting, monitoring, load-balancing, policy enforcement,
differentiated services, virtual routers, and virtual private net-
works [1]–[4]. For each incoming packet, a packet classifier
compares the packet header fields against a list of rules, e.g.
taken from access control lists (ACLs). Then, it returns the first
rule that matches the header fields, and applies a corresponding
action on the packet.

Today, hardware-based TCAMs (Ternary Content-
Addressable Memories) are the standard devices for high-speed
packet classification [5], [6]. TCAMs are associative-memory
devices that match packet headers using fixed-width ternary
arrays composed of 0s, 1s, and ∗s (don’t-care). For each
packet, TCAM devices can check all rules in parallel, and
therefore can typically reach higher line rates than software-
based classification algorithms [1]–[3]. For instance, the 55 nm
CMOS-based NLA9000XT TCAM device can run nearly
500 million searches per second [5].

However, power consumption constitutes a bottleneck for
TCAM scaling [7]. Given the same access rate, a TCAM chip
consumes up to 30 times more power than an equivalent SRAM
chip with a software-based solution [8]. As a consequence,
in the Cisco CRS-1 core router, classification and forwarding
cause a third of all power consumption, and constitute the
highest source of power together with power management
devices such as fans [9].

TCAM devices run each search in parallel on all their entries,
therefore their power consumption is about proportional to
their number of searched entries. Unfortunately, this number of
entries is often larger than the number of classification rules.
This is because there are two types of rules: simple rules (exact-

and prefix-matches) that need a single entry per rule; and range
rules, which might need many entries per rule, thus causing
range expansion.

TCAM power consumption is increasingly due to this range
expansion. Typically, while range rules constitute a minority
of the rules, they also cause the majority of the entries, and
therefore the majority of the TCAM power consumption [10].
In addition, there is evidence that the percentage of range
rules is increasing. For instance, a comparison of two typical
classification databases from 1998 and 2004 shows that the total
percentage of range rules has increased from 1.3% to 13.3%,
including an emergence of rules with two range fields from 0%
to 1.5%, and an increase in the number of different ranges [11].
Unfortunately, as the number of range rules increases in an
unpredictable way, it is unclear whether it is possible to provide
any reasonable guarantee on the worst-case number of TCAM
entries needed to encode them.

The goal of this paper is to gain a more fundamental un-
derstanding of the worst-case number of TCAM entries needed
to encode a rule. Our objective is to provide upper bounds
on the worst-case rule expansion, which would characterize
the theoretical capacity of TCAM devices depending on the
complexity of the rules: e.g., single-field or multiple-field range
rules, using simple or complex ranges, either alone or in
interaction with other rules. In a sense, we want to help define
the TCAM capacity region.

B. Related Work

It is well-known that each range defined over a W -bit field
can be encoded in 2W−2 entries for W ≥ 2 with an internal
expansion, i.e. an expansion that only uses entries from within
the range [12]. More generally, the Cartesian product of d
ranges defined on d different fields of length W each can be
internally encoded in up to (2W−2)d entries, which amounts
to 900 TCAM entries for d = 2 IPv4 port fields of 16 bits
each [1].

For instance, assume that W = 3 and that we want to in-
ternally encode the single-field range R = [1, 6] ⊆ [

0, 2W−1
]

so that only packets in R are accepted, while all other packets
are denied (default action). Then an internal expansion yields
the following 2W−2 = 4 TCAM entries, not counting the last
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Fig. 1. External encoding of R = [1, 6].

default entry (∗ ∗ ∗ → deny):



001 → accept
01∗ → accept
10∗ → accept
110 → accept




A first improvement of the 2W−2 result has relied on non-
prefix internal TCAM encoding and a connection to Boolean
Disjunctive Normal Form (DNF) to show a 2W−4 upper-
bound [13]. A second improvement has kept prefix encoding
but relied on Gray codes instead of binary codes to reduce the
worst-case internal range expansion from 2W−2 to 2W−4
for sufficiently large W . This result has since been improved
to 2W−5 using a more complex coding [14]. In any internal
coding, the worst-case range expansion is also shown to be at
least W [10].

These results, however, do not consider the full potential of
TCAM encoding, and in particular the order of the entries.
For instance, Fig. 1 shows how the example above could be
encoded in only 3 TCAM entries using an external encoding
that exploits a different entry order.




000 → deny
111 → deny
∗ ∗ ∗ → accept




We can see that the range exterior (complementary) is
encoded first, and then the range itself is encoded indirectly.
Likewise, in this paper, we consider all possible TCAM entry
orders when providing worst-case bounds.

Finally, there is a large literature on providing efficient
heuristics to minimize the TCAM rule expansion, relying
for example on redundancy removal, truth table equivalency,
additional bits, additional TCAM hardware, dynamic program-
ming, and topological transformation [1]–[3], [8], [15]–[18].
However, our main objective is to analyze worst-case rule
expansion guarantees, instead of focusing only on typical
average-case performance, even though we also later consider
real-life classification databases.

C. Contributions

This paper investigates worst-case rule expansions in
TCAMs.

We first consider single-field ranges of W -bit elements, and
encode them using efficient algorithms with guaranteed upper
bounds. We start by considering W -bit extremal ranges of the

form [0, x], and prove that they can be encoded in g(W ) ≤⌈
W+1

2

⌉
TCAM entries, nearly half the best-known bound of

W entries [10].
Later, we consider general ranges of the form [x1, x2], and

prove that they can always be encoded in f(W ) ≤ W TCAM
entries. Therefore, for large W , this is nearly half the size of
the best-known binary bound for prefix TCAM encoding of
2W−2 and best-known overall bound of 2W−5 [12], [14].

Then, we prove that any union of k ranges of W -bit elements
can be encoded in at most kW TCAM entries.

Last, we propose a modified TCAM architecture that uses
additional logic to significantly reduce the rule expansions, with
a bound that is linear instead of exponential in the number of
fields. We explain that hot classifier updates can be applied
easily in this architecture. We conclude by illustrating its
results both in the worst case and using real-life classification
databases.

Note that the result f(W ) ≤ W has also been independently
found in [19], which is presented in the same venue.

Due to space limits, all the proofs are fully presented in [20].

II. MODEL AND NOTATIONS

A. Terminology

We first formally define the terminology used in this paper.
For simplicity we do not distinguish between a W -bit binary
string (in {0, 1}W ) and its value (in [0, 2W−1]).

Definition 1 (Header): A packet header x = (x1, . . . , xd) ∈
{0, 1}W is a W -bit string defined on the d fields (F1, . . . , Fd).
Each sub-string xi of length Wi corresponds to field Fi, with∑d

i=1 Wi = W .
Example 1: An IPv4 header consists of the following d =

5 fields: (F1, . . . , F5) = (source IP address, destination
IP address, source port number, destination port number,
and protocol type) of respective lengths (W1, . . . , W5) =
(32, 32, 16, 16, 8) bits.

Definition 2 (Range Rule): The range rule Ri in field Fi is
defined as an integer range [r1, r2], where r1 and r2 are Wi-bit
integers and r1 ≤ r2. A packet header sub-string xi ∈ {0, 1}Wi

is said to match Ri whenever xi ∈ [r1, r2].
In particular, Ri is a prefix rule if it consists of all the strings

sharing a given prefix. It is an exact match if it corresponds to
a single string, i.e. r1 = r2.

Definition 3 (TCAM entry): A TCAM entry S → a is com-
posed of a TCAM rule S = (s1, . . . , sW ) ∈ {0, 1, ∗}W ,
where {0, 1} are bit values and ∗ stands for don’t-care, and
an action a ∈ A, where A is a set of actions. A W -bit string
b = (b1, . . . , bW ) matches S, denoted as b ∈ S, if for all
i ∈ [1,W ], si ∈ {bi, ∗}.

Definition 4 (TCAM Encoding Scheme): Consider a func-
tion α : {0, 1}W → A that associates an action to each packet
header. Then a TCAM encoding scheme φ maps α to an ordered
set of nφ(α) TCAM entries

(
S1 → a1, . . . , Sn → anφ(α)

)
and

a default action ad ∈ A if and only if for any header
x ∈ {0, 1}W , α(x) = aj , where aj is the action associated
with the first TCAM entry that matches x, and aj = ad if no
TCAM entry matches x. The number nφ(α) of TCAM entries
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with non-default action is the expansion of encoding scheme
φ for classifier function α. Let Φ denote the set of TCAM
encoding schemes.

As an example, in Fig. 1, A = {accept, deny}, α(1) =
... = α(6) = accept, α(0) = α(7) = deny. In the remainder
of the paper, unless mentioned otherwise, we will assume for
simplicity that we only have two actions, with A = {0, 1} and
default action ad = 0. Each single-field range R is uniquely
characterized by its range indicator function αR, which takes a
value of 1 on R and 0 outside R. We will use range to indicate
either R or its indicator function αR.

B. Optimal Range Expansion Problem

We want to find a TCAM encoding scheme φ ∈ Φ that
minimizes the worst-case TCAM expansion nφ(αR) over all
possible ranges R.

Definition 5 (Range Expansion): For any positive integer
W and any TCAM encoding scheme φ ∈ Φ, the range
expansion fφ(W ) of φ is the worst-case TCAM expansion
nφ(αR) over all possible ranges R, i.e.

fφ(W ) = max
R⊆[0,2W−1]

nφ(αR). (1)

Our goal is to optimize the range expansion over all possible
encoding schemes φ ∈ Φ. Then the range expansion f(W )
is defined as the best-achievable range expansion for W -bit
ranges given all encoding schemes φ ∈ Φ, i.e.

f(W ) = min
φ∈Φ

(fφ(W )) (2)

To find the range expansion f(W ), we will first characterize
the extremal range expansion g(W ), which is defined in the
same way over the following set of extremal ranges.

Definition 6 (Extremal Ranges): A range R over [0, 2W−1]
is called extremal if R = [0, y] or R = [y, 2W−1] for some
arbitrary value of y.

III. RANGE EXPANSION GUARANTEES

A. Upper-Bound on the Extremal Range Expansion

We are now ready to characterize the extremal range expan-
sion g(W ). We will improve the best-known upper bound on
g(W ) from W [10] to

⌈
W+1

2

⌉
. To do so, we rely on external

encoding, i.e. we will sometimes first encode negatively the
complementary range, as illustrated in the following example.

Example 2: For W = 3, the extremal range R = [0, 6] can
be encoded with only

⌈
W+1

2

⌉
=

⌈
3+1
2

⌉
= 2 TCAM entries

(111 → 0, ∗ ∗ ∗ → 1). This is better than the best internal
encoding (0 ∗ ∗ → 1, 10∗ → 1, 110 → 1), which uses W = 3
TCAM entries.

Theorem 1: For all W ≥ 1, the extremal range expansion
satisfies the following upper-bound:

g(W ) ≤
⌈

W + 1
2

⌉
(3)

B. Upper-Bound on the Range Expansion

We now want to find an upper-bound on the range expansion
f(W ) by constructing an efficient encoding scheme. As for
g(W ), external encoding improves the best-known upper bound
on f(W ) by a factor of about 2, from 2W − 5 [14] to W .

Theorem 2: For all W ≥ 1, the worst-case range expansion
satisfies the following upper-bound:

f(W ) ≤ W. (4)

In fact, as proved in [20], this upper bound still holds even
when constraining the encoding to be a prefix encoding.

C. Union of ranges

In spite of the last result, it is not straightforward that encod-
ing k ranges would also be possible in kW TCAM entries. For
instance, if we encode some range R1 using external encoding,
i.e. by first encoding negatively its complementary Rc

1, we
might encompass another range R2 ⊆ Rc

1, and therefore yield a
wrong encoding. By considering all the range combinations and
distinguishing extremal from non-extremal ranges, we prove
that the result is actually correct.

Theorem 3: For all W ≥ 1 and k ∈ N, any k ranges of
W -bit elements can be encoded in at most kW TCAM entries.

IV. MULTIDIMENSIONAL RANGES

A. Exponential Number of TCAM Entries

We now want to encode a multidimensional rectangle, i.e.
a hyper-rectangle defined as a Cartesian product of the one-
dimensional intervals that we encoded above. We will show
that a more efficient encoding of the intervals leads to a more
efficient encoding of the hyper-rectangle.

Example 3: Consider a general range of two W -bit fields
R = (R1, R2), presented in Fig. 2(a). For i = 1, 2 let ri be
the expansion of Ri using internal encoding, and let r′i be the
expansion of Ri using our improved encoding scheme. It is
well-known that R can be encoded with r1 · r2 ≤ (2W−2)2

TCAM entries. Likewise, it can be encoded with r′1 · r′2 ≤
f(W )2 ≤ W 2 TCAM entries.

More generally, given a hyper-rectangle with d dimensions,
we get:

Theorem 4: For any classification rule R =
((R1, . . . , Rd) → a) of d fields, there is an encoding
scheme φ s.t. nφ(αR) ≤ W d.

B. Linear Number of TCAM Entries

The main drawback of encoding a hyper-rectangle with
d dimensions is the curse of dimensionality, i.e. the typical
exponential dependency in the number of fields d. We show
here how to encode a hyper rectangle with a linear dependency
in d.

Example 4: Consider again the range R from Example 3. As
illustrated in Fig. 2(b), we can first negatively encode the four
striped regions, using an encoding of the corresponding four
one-dimensional extremal intervals (using 4W entries [12]),
and then add a default positive entry (using one entry), thus
yielding a linear expansion upper-bound of 4W + 1.
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Fig. 2. Two-dimensional range R = (R1, R2)

More generally, we get the following tighter upper-bound:
Theorem 5: Any classification rule R of d fields can be

encoded in at most d · (2W − 2) + 1 TCAM entries without
any additional logic.

C. Linear Number of TCAM Entries with Additional Logic

The above two multidimensional results assume that the
classifier has only one classification rule. In Section V we
suggest hardware changes that enable us to efficiently encode
k > 1 classification rules, as stated in the following theorem.

Theorem 6: Let C = (R1, ..., Rk) be a classifier with k
classification rules defined over d fields. Using additional logic,
C can be encoded in at most k · d ·W TCAM entries.

V. TCAM ARCHITECTURES

A. Suggested Architectures

In this section we suggest several TCAM architectures that
enable us to implement range encoding more efficiently using
logical gates, and illustrate them with a simple example. These
TCAM architectures trade off better range expansions, and
therefore less TCAM entries, against more complex logic
within the TCAM. Note that the use of logic gates to process
TCAM results is not generally new [16], [17], but these logic-
based architectures apparently are.

Fig. 3 illustrates the different TCAM architectures. We
assume d = 2 fields of W = 4 bits each. We want to
encode k = 2 multi-dimensional ranges R1 and R2, where
R1 = [1, 14] × [5, 14], R2 = [7, 10] × [2, 3], and each range
leads to a different action. We assume that the default action
is predefined in the priority encoder (PE), and therefore there
is no need to add TCAM entries for it. We also use an input
packet-header example x = (8, 7) = (1000, 0111). Note that x
is in R1, but not in R2. We denote in parentheses the values
that are transmitted on each line.

First, Fig. 3(a) presents the standard INTERNAL-PRODUCT
architecture. As usual, using internal binary-prefix encoding, it
encodes each range by using the product of its TCAM entries
along each dimension. In this case, it uses 6 × 5 entries to
encode R1, and 3× 1 entries to encode R2, yielding a total of
33 entries.

Next, Fig. 3(b) introduces the proposed COMBINED-
PRODUCT architecture. Instead of encoding each range only
internally, the COMBINED-PRODUCT architecture encodes it
using its complementary as well, in at most f(W ) = W entries
instead of 2W−2. It also uses more logic to process the results.

TABLE I
UPPER BOUND ON RULE EXPANSIONS OF TCAM ARCHITECTURES

Architecture Expansion upper Values for k = 1,
bound W = 16, d = 2

INTERNAL-PRODUCT k · (2W−2)d (30)2 = 900
COMBINED-PRODUCT k ·W d (16)2 = 256
COMBINED-SUM k · d ·W 2 · 16 = 32

In this example, it uses 12 entries for R1 and 3 for R2, i.e. a
total of 15.

Specifically, each field of each range behaves like a single
TCAM block. The results of each TCAM entry are entered
into a chained logic part that outputs a (1) on each line if it is
the first entry that matches the header, and (0) otherwise (i.e.
either there was no match on this line or there was a match
on a previous line). Note that the chained logic can also be
replaced with a more efficient hierarchical logic.

In the second logic part, a logic gate with a control input
either behaves like a pass-through gate or like a zeroing gate
(drawn as a box), depending on whether the encoded entry
corresponds to the range or to its complement. Thus, the output
is a (1) if and only if it is the first matching entry and it belongs
to the range. Last, an OR gate checks whether the first matching
entry belongs to the range, i.e. whether the range is matched.
The PE then outputs the first matching range.

Next, Fig. 3(c) shows the proposed COMBINED-SUM archi-
tecture. Each field of each range is encoded separately, by using
chaining as in the COMBINED-PRODUCT architecture. Then, in
a second stage, an AND gate checks whether all fields have a
match. In this example, R1 is encoded using 3+4 = 7 entries,
and R2 using 3 + 1 = 4, with a total of 11 entries.

Table I summarizes the bounds on the worst-case rule
expansion for each architecture, and provides the corresponding
values for IPv4 packet headers with 2 range fields of 16 bits
each.

B. Implementation Considerations

Hot Updates: Since the TCAM is clearly divided between
ranges, and the implementation of each range is independent
of the other ranges, hot classifier updates are surprisingly
easy to apply in this architecture compared to typical TCAM
architectures.

Turning Off Entries: In the figures, we only represent
the active entries. A simple way to implement the TCAM is
to divide it by blocks, each block representing the maximum
number of entries per range (Table I). Then, when some entries
are not used, it is possible to turn them off. To do so, add a
transistor to switch voltage on and off, together with an SRAM
array of 1 bit per entry that remembers the correct action.

PE Size: The number of inputs and outputs of the PE is
reduced. It is now the number of range rules, instead of the
number of TCAM entries. In a sense, the PE is implemented
in a hierarchical fashion, with the first logic block being the
one shown in the figure.

Multiple Actions: To implement more actions than accept
and deny, the architecture does not need to be changed. The
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Fig. 3. TCAM Architectures

TABLE II
AVERAGE EXPANSION RATIOS WITH REAL-LIFE CLASSIFIERS.

Parameters All rules 1 range-field 2 range-fields
Fraction of all rules (%) 100% 26% 1.5%
INTERNAL-PRODUCT 2.68 7.32 47.18
COMBINED-PRODUCT 1.63 3.38 20.09
COMBINED-SUM 2.45 3.69 8.80

action associated with each range simply needs to be indicated
in the corresponding SRAM entry.

More implementation details can be found in [20].

VI. EXPERIMENTAL RESULTS

We evaluated the suggested architectures on a real-life
database of 120 separate rule files and about 215, 000 rules
originating from various applications (such as firewalls, ACL-
routers and intrusion prevention systems). The database was
previously used in [1], [10], [11], [21].

As shown in Table II, the COMBINED-PRODUCT architecture
outperformed the other architectures. With respect to the base-
line INTERNAL-PRODUCT architecture, it improved by 39% the
total number of TCAM entries, and in particular by 54% and
57% the number of TCAM entries needed for one and two
range-fields, respectively. The COMBINED-SUM architecture
also performed slightly better than the baseline architecture.

For additional simulations, please refer to [20].

VII. CONCLUSION

This paper is unique in that it deals with the fundamental
capacity region of TCAMs. In the paper, we presented new
upper-bounds on the TCAM worst-case rule expansions. In
particular, we proved that a W -bit range can be encoded in
W TCAM entries using prefix encoding, improving upon the
previously-known bound of 2W−5.

In addition, we suggested several modified TCAM architec-
tures that can trade off better range expansions, and therefore
less TCAM active entries, against more complex logic within
the TCAM. Last, we showed that it is possible to encode ranges
using a number of TCAM entries that increases only linearly
instead of exponentially with the number of fields.
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