
The Concurrent Matching Switch Architecture
Bill Lin∗ Isaac Keslassy∗∗

∗University of California, San Diego, La Jolla, CA 92093–0407. Email: billlin@ece.ucsd.edu
∗∗Technion – Israel Institute of Technology, Haifa 32000, Israel. Email: isaac@ee.technion.ac.il

Abstract— Network operators need high capacity router archi-
tectures that can offer scalability, provide throughput guarantees,
and maintain packet ordering. However, current centralized
crossbar-based architectures cannot scale to fast line rates and
high port counts. On the other hand, while load-balanced
switch architectures that rely on two identical stages of fixed
configuration meshes appear to be an effective way to scale
Internet routers to very high capacities, they incur a large
worst-case packet reordering that is at best quadratic to the
switch size. In this paper, we introduce the concurrent matching
switch (CMS) architecture, which also uses two identical stages
of fixed configuration meshes with the same scalability properties
as current load-balanced routers. However, by adopting a novel
contention-resolution architecture that is scalable and distributed,
the CMS architecture enforces packet ordering throughout the
switch. Using the CMS architecture, we show that scalability,
100% throughput, packet ordering, and O(1) amortized time
complexity with sequential hardware per linecard can all be
achieved.

I. INTRODUCTION

A. Background

Network operators need high capacity router architectures
that can offer scalability, provide throughput guarantees, and
maintain packet ordering. However, current crossbar-based
router architectures with centralized scheduling and arbitrary
per-packet dynamic switch configurations cannot scale to fast
line rates and high port counts. Recently, there has been
considerable interest in a class of switch architectures called
load-balanced routers [1]–[5]. This class of architectures rely
on two identical stages of fixed configuration meshes for
routing packets. Figure 1 shows a diagram of a generic
two-stage load-balanced switch architecture. The first mesh
connects the first stage of input linecards to the center stage of
intermediate input linecards, and the second mesh connects the
center stage of intermediate input linecards to the final stage
of output linecards. As shown in [3], this class of architectures
appears to be a practical way to scale Internet routers to
very high capacities and line rates. The scalability of this
class of architectures can be attributed to two key aspects.
First, they do not require a centralized scheduler: all queueing
and decision-making functions can be performed locally at
each linecard in O(1) time. Second, these architectures are
built using two identical stages of fixed configuration meshes
whose deterministic interconnection patterns are independent
of packet arrival. Thus, there is no need for arbitrary per-packet
dynamic switch configurations, which can be extremely diffi-
cult to achieve at high-speeds. The use of fixed configuration
meshes are particularly amenable to scalable implementations

with optics, as exemplified by the 100 Tb/s reference design
described in [3]. This reference design is based on a fixed
hierarchical mesh of optical channels that interconnects N =
640 linecards, each operating at a rate of R = 160 Gb/s.

Although the load-balanced router architecture originally
proposed in [1] is capable of achieving throughput guarantees,
it has the critical problem that packet departures can be
badly mis-sequenced. This is detrimental to Internet traffic
since the widely used TCP transport protocol falsely regards
out-of-order packets as indications of congestion and packet
loss. Subsequently, several approaches have been proposed to
address the packet ordering problem [2]–[4]. These approaches
are based on bounding the amount of packet reordering
through the switch and then using a finite reordering buffer at
the output to correct mis-sequenced packets. However, these
methods require reordering buffers of size O(N2), and the
corresponding quadratic increase in packet delays, where N
is the switch size. Therefore, these approaches appear to be
problematic, especially for the large switch sizes that load-
balanced switch architectures target. In [5], another switch ar-
chitecture based on the load-balanced switch architecture was
proposed to address the packet ordering problem. However,
this approach does not provide 100% throughput guarantees.
Finally, recently, another switch architecture called the inter-
leaved matching switch architecture was proposed in [6] that
guarantees packet ordering. This architecture is also based on
two fixed configuration meshes, exactly like the other load-
balanced switch architectures. However, in contrast to the
architecture presented in this paper, the interleaved matching
switch architecture is based on a centralized scheduler model.
In the case where the traffic profile is known a priori and
remains stationary, it was shown in [6] that the centralized
scheduling problem can be performed offline using matrix
decomposition [7], and the online scheduling problem can be
implemented in a distributed manner to provide service guar-
antees. Unfortunately, when the traffic is unpredictable and
dynamically changing, the centralized scheduler requirement
is not practical for large switch sizes.

In this paper, we introduce the concurrent matching switch
(CMS) architecture. It is also based on two identical stages
of fixed configuration meshes, so it inherits the same scala-
bility properties of existing load-balanced routers for switch
fabric implementation and is equally amenable to scalable
implementation in optics. However, instead of bounding the
amount of packet reordering through the switch, the CMS
architecture enforces packet ordering throughout the switch by
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Fig. 1. Generic load-balanced switch architecture.

using a novel scalable distributed load-balanced scheduling
approach. Instead of load-balancing packets, a CMS load-
balances request tokens to each intermediate input linecard
where each intermediate input linecard concurrently solves a
matching problem based only on its local token count. By each
intermediate input linecard solving a local matching problem
in parallel, each intermediate input linecard independently
selects a virtual output queue from each input linecard to
service such that the packets selected can traverse the two fixed
configuration meshes in parallel without conflicts. Packets
from selected virtual output queues in turn depart in order from
the input linecards, through the intermediate input linecards,
and finally through the output linecards. Each intermediate
input linecard has N time slots to perform each matching,
so the complexity of existing matching algorithms can be
amortized by a factor of N . The exchange of tokens and
packets occur over the two fixed uniform meshes without
the need for arbitrary dynamic switch configurations, and all
queueing and decision-making functions are performed locally
at each linecard using only local state information.

B. Contributions of the Paper

This paper makes the following major contributions. First,
we prove that the CMS architecture can achieve 100%
throughput under admissible arrival traffic by using any stable
matching algorithm at each intermediate input linecard [8]–
[14], including provably stable matching algorithms that do
not require speedups [12]–[14].

Second, we demonstrate by means of empirical results that
the CMS architecture can achieve low average packet delays
using practically implementable matching algorithms with-
out speedup. Our simulations show noticeably lower average
packet delays compared with existing load-balanced switch
architectures that maintain packet ordering.

Third, we show that the CMS architecture is indeed scalable
by showing that a class of provably stable matching algo-
rithms [13], [14] with good delay properties can be amortized
to O(1) complexity at each linecard using only sequential
hardware and local state information at each linecard. The
use of practical matching algorithms that only require O(1)
amortized complexity and sequential hardware means that both
algorithmic and computational hardware complexities for each

linecard are independent of N , which makes the architecture
highly scalable when coupled with the scaling properties of
uniform meshes in optics. As an example, we show that the
use of a self-randomizing algorithm called SERENA [14]
in a CMS can achieve provably 100% throughput, good
average delays, and O(1) amortized algorithmic complexity
with sequential hardware, all without speedup.

Finally, we show that the idea of load-balanced scheduling
used in the CMS architecture can also be used to improve the
scalability of scheduling algorithms even in the case of single
crossbar switch implementations.

C. Organization of the Paper

The rest of the paper is organized as follows. In Section II,
we introduce the CMS architecture. In Sections III and IV,
we prove that the CMS architecture indeed achieves 100%
throughput when used with a stable matching algorithm. In
Section V, we briefly outline how the architecture can be
optimized to improve delay bounds. In Section VI, we com-
pare the average delay performance of the CMS architecture
with existing load-balanced router architectures on both non-
bursty and bursty traffic. In Section VII, we briefly outline
how load-balanced scheduling can be used to improve the
scalability of crossbar switches. Finally, we conclude the paper
in Section VIII.

II. THE SWITCH ARCHITECTURE

In this section, we provide a high-level overview of the
CMS architecture. We defer to Sections III and IV for more
detailed discussions on the operation of the CMS architecture.
Note that throughout this paper, we assume that packets have
a fixed length and time is slotted.

A. Overview

The CMS architecture consists of three linecard stages that
are interconnected by two fixed uniform meshes, exactly like
the load-balanced switch architecture described in [1]–[4].
The CMS architecture is depicted in Figure 2. A high-level
overview of the switch operation is as follows:

1) In the basic load-balanced switch architecture proposed
in [1], incoming packets are uniformly load-balanced
across the N intermediate input linecards at the center
stage where packets are buffered. Instead, in the CMS
architecture, incoming packets are mainly buffered in
virtual output queues at each input linecard. Specifically,
each input linecard i maintains N virtual output queues,
Zi,1, . . . , Zi,N , one per output destination, as shown in
Figure 2(a). Incoming packets to input i destined for
output k are buffered at their virtual output queue Zi,k

immediately upon arrival.
2) Instead of spreading packets across the center stage, a

key idea in the CMS architecture is to first spread request
tokens to the intermediate input linecards at the center
stage instead of actual packets. Each request token acts
as a placeholder. The actual packets are transferred later,
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Fig. 2. The Concurrent Matching Switch architecture. (a) Input linecard. (b)
Intermediate input linecard.

based on matching decisions that are made by the inter-
mediate input linecards. Specifically, each input linecard
is periodically connected to a given intermediate input
linecard every N time-slots. For each incoming packet
to input i destined for output k, a request token r(i, k)
is immediately generated and sent to the intermediate
input linecard that is currently connected to the input.
In other words, the input linecard load-balances request
tokens among intermediate linecards in a cyclical way
that is influenced by the arrival time of each packet.

3) When a request token r(i, k) is received at an intermedi-
ate input linecard j, the corresponding token counter at
intermediate input j gets incremented. Specifically, each
intermediate input linecard j maintains N2 virtual token
counters, Cj

i,1, . . . , C
j
i,N , one counter per each flow from

input i to output k, as shown in Figure 2(b). The virtual
token counters are exactly analogous to the role of vir-
tual output queues in conventional input-queueing (IQ)
or combined input-output queueing (CIOQ) switches.
However, instead of queueing actual packets, a virtual
token counter Cj

i,k keeps count of the number of request
tokens that have been received at intermediate input j
for flow (i, k).

4) Each intermediate input linecard then concurrently, and
independently, solves a matching problem based on its
own virtual token counts that it maintains locally. It does
not need any global state information or any virtual
token count information from any other intermediate
input linecard. Any bipartite matching algorithm may be
used with the CMS architecture to perform this matching

step, leveraging the well-developed body of work in this
area. As we shall see, each intermediate input linecard
has N time slots to perform each matching step, and thus
the algorithmic complexity of the matching algorithm
used may be amortized by a factor of N .

5) Based on the result of the matching step, each inter-
mediate input j sends in parallel over the first mesh a
grant token g(i, j, k) to each input i. The grant token
indicates that the request token counter Cj

i,k is positive
and that the corresponding virtual output queue Zi,k has
been matched. In other words, the grant token indicates
that there was a demand and that the demand has been
answered. In addition, token counters Cj

i,k for which a
grant token is generated are decremented.

6) In response to the grant token g(i, j, k) received, each
input i then sends the packet at the head of the cor-
responding virtual output queue Zi,k to intermediate
input j over the first mesh. The (up to) N packets
sent by the inputs are then temporarily stored in a
set of coordination slots at each intermediate input on
their path to the outputs. Specifically, each intermediate
input linecard j maintains a set of N coordination
slots, Bj,1, . . . , Bj,N . As soon as the packets are fully
received, the intermediate input linecard j forwards them
in parallel over the second mesh to the output linecards.

7) Finally, packets are received at output linecard k where
they depart immediately from the router.

As we shall see in Section III, using the above operation, the
CMS architecture is strongly stable as long as a strongly stable
matching algorithm is used for Step (4) above. In particular, for
any admissible Bernoulli i.i.d. arrival traffic, CMS guarantees
that the number of packets queued in the switch is not expected
to grow to infinity. The proof relies on the interesting fact that
the token traffic received by any intermediate input during
N time-slots has the same distribution as the packet traffic
received by the router during a single time-slot.

However, it is well-known that a cyclical adversary arrival
traffic can significantly reduce the throughput of the switch.
Therefore, we will provide below a deterministic mechanism
to fight the negative effects of cyclical adversary traffic pat-
terns.

B. Adding Flow-Splitting

To ensure that the CMS architecture is stable for any admis-
sible traffic, we need to ensure that each input i sends exactly
1/N th of the request tokens generated for flow (i, k) to each
intermediate input j, thereby guaranteeing that exactly 1/N th

of the packets for flow (i, k) will pass through intermediate
input j.

To provide the guarantee that we evenly spread request to-
kens according to their flows, we extend the CMS architecture
by adding a flow splitter and a set of load-balancing request
token queues to each input linecard, as shown in Figure 3.
Specifically, each input linecard i maintains N request token
queues, Ri,1, . . . , Ri,N , one per intermediate input j, as shown
in Figure 3(a). For each flow from input i to output k, a pointer
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Fig. 3. The Concurrent Matching Switch architecture with flow-splitting. (a)
Input linecard. (b) Intermediate input linecard.

keeps track of the last request token queue in which a request
token was placed, and the next request token is always placed
in the next request token queue in round-robin order.

Using a flow-splitter, request tokens are distributed based
on the order of the corresponding packet in its respective flow
rather than based on the packet’s arrival time. As we shall see
in Section IV, the size of each request token queue Ri,j is
guaranteed to be less than N with flow-splitting. The rest of
the switch operation is as described above in Section II-A. As
detailed in Section IV, when flow-splitting is used, the CMS
architecture is stable (hence providing 100% throughput) for
any admissible traffic satisfying a strong law of large numbers
as long as a stable matching algorithm is used.

C. Mesh Implementation

As noted in [3], the two uniform meshes used in the load-
balanced switch architecture can be replaced by a single mesh
running twice as fast. For the CMS architecture, the two
uniform meshes used can also be replaced by a single mesh
running twice as fast, with each linecard now containing three
logical parts (input, intermediate input, and output). This is
depicted in Figure 4. Figure 4 depicts the input linecard
with flow-spitters and request token queues added, but the
same approach of replacing two uniform meshes with a single
combined mesh is equally applicable to the CMS architecture
without flow-splitting. In the remainder of the paper, unless
otherwise noted, we will still refer to the 3 logical parts as
input, intermediate input, and output, respectively, and we will
refer to the physical linecard that combines all three logical
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Fig. 4. The Concurrent Matching Switch architecture using a single combined
mesh, shown with N = 4.

parts as the combined linecard.
Specifically, each pair of combined linecards in the CMS

architecture are interconnected by four fixed rate channels:
two control channels, and two data channels. The first control
channel is used to transmit request tokens from input i to
intermediate input j. This request control channel only needs
to operate at a rate of εR/N , where ε is the ratio of the
token size to the fixed packet size. Since it is clear that a
request token r(i, k) received at intermediate input j is from
input i, the request token only needs to represent the output
destination ID k. For a switch size of N , the request token
can be represented in �log N� bits. Suppose the packet size is
L. Then,

ε =
�log N�

L
. (1)

For example, with N = 1024, L = 512 bits (64 bytes), then
ε = 10/512 ≈ 2%, so the size of the token is negligible
relative to the packet size.

The second control channel is used to transmit grant tokens
from intermediate input j to input i. This grant control channel
also only needs to operate at a rate of εR/N . This is because it
is again clear that a grant token g(i, j, k) received at input i is
from intermediate input j. Therefore, a grant token only needs
to represent the output destination k so that input i knows to
service its kth virtual output queue. Thus, the grant token can
also be represented in �log N� bits.

Besides the two control channels, the two data channels
are used to transfer packets. The first-stage data channel is
used to transfer a packet from input i to intermediate input j
over the first logical mesh, and the second-stage data channel
is used to transfer a packet from intermediate input j to
output k over the second logical mesh. Each data channel
operates at a fixed rate of R/N . Combining all four channels
together, each pair of combined linecards are interconnected
with a combined bandwidth of 2(1 + ε)R/N . For example,



with N = 1024 and L = 512 bits, the required combined
bandwidth for connecting each pair of combined linecards
is 2(1 + ε)R/N ≈ 2(1 + 0.02)R/N ≈ 2R/N , which is
approximately the same as required for the load-balanced
router described in [3].

As described in [3], [4], the uniform mesh model can be
readily implemented at very high capacities and line rates
using different types of switches, such as optical meshes
with space and/or wavelength multiplexing, as well as time-
multiplexed cyclic permutation switches (also called round-
robin switches).

D. Speedup

It is possible to generalize the CMS architecture by using
some speedup S. In the CMS architecture using speedup,
time-slots are replaced by phases, with S phases per time-
slot. Data channels of rate R/N (respectively control channels
of rate εR/N ) are replaced by data channels of rate SR/N
(respectively control channels of rate εSR/N ), and S packets
(respectively tokens) are sent at each time-slot whenever a
single packet (respectively token) was sent without speedup.
As we shall see in Section III-E, the CMS architecture with
speedup S is stable when using any matching algorithm that
is stable with speedup S.

E. Linecard Complexity

Each linecard only requires information available locally
to perform all of its decision and queueing functions. The
most complex part of the linecard implementation is the
implementation of the matching step, which is logically per-
formed at each intermediate input linecard. As mentioned,
any bipartite matching algorithm may be used with the CMS
architecture, and each intermediate input linecard has N time
slots to perform each matching step. Therefore, the algorithmic
complexity of the matching algorithm used is amortized by
a factor of N . For example, a self-randomizing matching
algorithm called SERENA [14] with O(N) algorithmic com-
plexity has been shown to provide both stability and good
delay properties. Amortized over N time slots, the algorithmic
complexity reduces to O(1). Since SERENA only requires
sequential hardware without speedup, the hardware complexity
at each linecard can be made independent of N . All other
control functions in the linecards also only require constant
time operation, which makes the architecture both scalable
and practical to implement.

In addition to control functions, memory is required for
temporary storage. The bulk of the memory required is for
implementing the virtual output queues at the input linecards
to provide temporary buffering at times of congestion. Besides
these congestion buffers, the memory required for the remain-
ing storage functions is relatively modest. In particular, the
number of coordinate slots and virtual token counters required
at each intermediate input linecard is fixed with respect to N ,
independent of congestion. In the case where a flow-splitter is
used, as depicted in Figure 3, memory is required to implement
the request token queues. Since the tokens in these request

token queues only need to encode output destinations, the size
of these tokens is negligible relative to the size of the packets,
as noted in Equation 1.

F. Properties of the CMS Architecture

The CMS architecture has the following properties.

• Packet ordering is maintained throughout the switch. The
CMS architecture enforces packet ordering throughout
the switch by making sure that once a packet is matched
for departure from the input stage, it arrives to its corre-
sponding output linecard after a fixed propagation delay,
where it then subsequently departs. The matching step
performed by the intermediate input linecards guarantees
that a packet can traverse the two stages of meshes with-
out any contention once matched. Packets from selected
virtual output queues in turn depart in order from the
input linecards, through the intermediate linecards, and
finally through the output linecards.

• CMS is stable. As detailed in Sections III and IV, CMS
provides 100% throughput under diverse admissible traf-
fic arrival patterns, both with and without flow-splitting.

• CMS is practical to implement. As discussed in Sec-
tions II-C and II-E, fixed configuration meshes can be
scaled to very high speeds and port counts, and the
amortized algorithmic complexity of all linecard opera-
tions can be made constant. The combination of these
two factors makes the CMS architecture practical to
implement and highly scalable.

• Priorities are practical to implement. It is straightforward
to extend the CMS architecture to support P priority
levels with P × N virtual output queues at each input
instead of N . The P priority levels can for example
be used to distinguish different service levels. Like a
conventional IQ or CIOQ switch, when a flow from input
i to output k is selected in a match, the virtual output
queue from input i to output k with the highest priority
level is serviced.

III. STABILITY OF THE CMS ARCHITECTURE

In this section we prove that the CMS architecture is stable
when using any stable matching algorithm and apply this result
to specific stable matching algorithms.

A. CMS Architecture Model

Consider a CMS architecture with N linecards. We will
use standard notations and assumptions developed in the
literature [4], [6], [8].

We will first consider the switch model without speedup.
Time is slotted and packets arrive to the switch at the begin-
ning of a time-slot. Each packet arrives at some time-slot n
to some input i and is destined to some output k. Upon the
arrival of the packet, a new request token is created for the
intermediate input j that is connected with input i at time
n. The request token is immediately sent to this intermediate
input j. We will say that the token belongs to token flow
(i, j, k).



For the sake of simplicity, we will decompose the schedul-
ing process into five consecutive phases taking N time-slots
each, and corresponding to the two control channels, the two
data channels and the matching phase: (a) transmission of
request tokens, (b) matching, (c) transmission of grant tokens,
(d) transmission of packets through the first mesh and (e)
transmission of packets through the second mesh. We refer
to [6] for a discussion on the practicality of this model.

(a) At the start of time-slot n, after packet arrivals, each
input linecard i sends at most one request token to intermediate
input linecard j, where

j = ((n − 1) mod N) + 1. (2)

These request tokens of size ε are sent in parallel over their re-
spective request control channels at rate εR/N . Consequently,
they take N time-slots to propagate, and intermediate input
linecard j receives up to N request tokens in parallel by the
end of time slot

n + N − 1. (3)

(b) At the start of time-slot

n + N, (4)

after reception of the request tokens, each intermediate input
linecard j applies its matching algorithm m to determine a
one-to-one match between the set of inputs i and the set of
outputs k. As explained later, we assume that this matching
algorithm takes N time-slots to run, and therefore is done by
the end of time-slot

(n + N) + (N − 1) = n + 2N − 1. (5)

(c) At the start of time-slot

n + 2N, (6)

after the matching algorithm is completed, each intermediate
input linecard j sends up to N grant tokens of size ε in
parallel to the N input linecards over their respective grant
control channels at rate εR/N . These grant tokens take N
time-slots to propagate, and each grant token g(i, j, k) reaches
input linecard i by the end of time slot

(n + 2N) + (N − 1) = n + 3N − 1. (7)

Note that grant tokens are only generated if there exists some
corresponding request token, i.e. if the virtual token counter
is positive. Consequently, each grant token generates a later
departure of a packet.

(d) At the start of time-slot

n + 3N, (8)

after reception of grant token g(i, j, k) from intermediate input
linecard j, input linecard i sends the head-of-line packet of
virtual output queue Zi,k to intermediate input linecard j. The
intermediate input linecard is selected following the equation
used by the control channel (Equation (2)). Note that

j = (((n + 3N) − 1) mod N) + 1
= ((n − 1) mod N) + 1, (9)

which corresponds indeed to the intermediate linecard j that
granted the token, as indicated in Equation (2). These packets
are sent in parallel over the first mesh at rate R/N . Conse-
quently, they take N time-slots to propagate, and intermediate
input linecard j receives up to N packets in parallel by the
end of time slot

n + 4N − 1. (10)

(e) Finally, at the start of time-slot

n + 4N, (11)

intermediate input linecard j sends up to N packets in parallel
over the second mesh to the N output linecards, including
at most one packet to each output linecard k from the
corresponding slot Bj,k. Each output linecard k then receives
the packet sent by intermediate input linecard j by the end of
time slot

(n + 4N) + (N − 1) = n + 5N − 1, (12)

and the packet departs immediately from the router.
Incidentally, note that the delay between the time-slot at

which input i sends its packet and the time-slot at which the
packet finishes to arrive at output k is

(n + 5N − 1) − (n + 3N) = 2N − 1, (13)

which is completely independent of time-slot n and interme-
diate input j. As noted before, this ensures that there is no
reordering, since a packet sent first also arrives first.

B. Notations

Let Aijk(n) denote the cumulative number of request tokens
created for token flow (i, j, k) by time-slot n. In other words,
Aijk(n) denotes the number of packets arrived by time-slot n
to input linecard i, destined to output linecard k, and for which
the token request is destined to intermediate input linecard j.
We adopt the convention that Aijk(0) = 0 for all i, j, k.

Similarly, let Rijk(n) denote the cumulative number of
request tokens for flow (i, j, k) arrived to intermediate input j
by time-slot n, Gijk(n) denote the cumulative number of grant
tokens generated for flow (i, j, k) by time-slot n, and Dijk(n)
denote the cumulative number of packets corresponding to
flow (i, j, k) and having departed the router by the end
of time-slot n. As noted in the above model, in the CMS
architecture, each request token generated at time n arrives at
the intermediate input at the end of time-slot n + N − 1, and
therefore

Rijk(n + N − 1) = Aijk(n). (14)

Similarly, each grant token generated at time n + 2N corre-
sponds to a packet departure at the end of time-slot n+5N−1,
and therefore

Dijk(n + 5N − 1) = Gijk(n + 2N). (15)

We also want to define the number of request tokens and
packets queued in the switch. Let

Qijk(n) = Rijk(n) − Gijk(n) (16)



denote the cumulative number of request tokens for flow
(i, j, k) that are still queued (have not yet been granted) by
time-slot n, and let

Xijk(n) = Aijk(n) − Dijk(n) (17)

denote the cumulative number of packets for flow (i, j, k) that
are still queued by time-slot n.

Finally, let Aik(n) denote the cumulative number of arrivals
to input i by time-slot n of packets destined to output k. Then

Aik(n) =
N∑

j=1

Aijk(n). (18)

Similarly, the cumulative number of packet departures from
the router will be denoted as

Dik(n) =
N∑

j=1

Dijk(n). (19)

C. Definition of Strong Stability

We will now prove the strong stability of the CMS archi-
tecture by relying on the Lyapunov method. For the sake of
conciseness, we will not develop again the whole framework of
this method – the interested reader can refer to the large litera-
ture about Lyapunov techniques and notations in switches [9],
[12], [13], [15].

We assume that the packet arrival process to each input is
Bernoulli i.i.d., and that each packet has a given probability
of being destined to any given output k provided by a traffic
matrix Λ = [λik]. Further, we assume that the arrival matrix
is doubly sub-stochastic (admissible), i.e., for all i, k,

N∑
i=1

λik ≤ 1,

N∑
k=1

λik ≤ 1. (20)

We can now introduce the definition of strong stability.
Definition 1 (Strong Stability): A switch is said to be

strongly stable if under the Bernoulli i.i.d. admissible packet
arrival process defined above, the number of packets queued
in the switch is not expected to grow to infinity, i.e.,

lim sup
n→∞

E


∑

i,j,k

Xijk(n)


 < ∞. (21)

D. Strong Stability Theorem

The following theorem establishes that when each interme-
diate input linecard uses a strongly stable matching algorithm,
then the CMS architecture is strongly stable as well. Please
refer to Appendix I for the proof.

Theorem 1 (CMS Strong Stability): CMS is strongly stable
when using any strongly stable matching algorithm.

In particular, this theorem applies to the MWM (Maximum
Weight Matching) scheduling algorithm, which is known to
be strongly stable [12].

Corollary 1 (CMS-MWM): CMS is strongly stable when
using MWM.

Similarly, this theorem applies to the SERENA scheduling
algorithm, which is known to be strongly stable as well [14].

Corollary 2 (CMS-SERENA): CMS is strongly stable when
using SERENA.

E. Stability with Speedup

As discussed in Section II-D, the CMS architecture can be
generalized to operate under some speedup of S. For more
information on how to implement speedup, refer to [6]. As the
following theorem shows, strong stability of a matching algo-
rithm extends to the CMS architecture when using speedup as
well. The proof is in Appendix II.

Theorem 2 (Speedup): The CMS architecture with speedup
S is strongly stable when using any matching algorithm that
is strongly stable with speedup S.

In particular, this theorem applies to maximal matching
algorithms such as iSLIP [10], since they are known to be
stable with speedup two [9].

Corollary 3 (CMS-Maximal): CMS is strongly stable when
using any maximal matching algorithm and speedup two.

IV. STABILITY OF CMS WITH FLOW-SPLITTING

We proved in the previous section that the CMS architecture
is strongly stable when using a strongly stable matching
algorithm. In this section, we prove that the CMS architecture
with flow-splitting is stable as well when using stable matching
algorithms. In particular, we will prove the stability of CMS
with flow-splitting using fluid models (we call it stability to
distinguish from the strong stability defined previously and
based on Lyapunov models). We will then apply this result to
specific strongly stable matching algorithms.

A. Definition of Stability

The CMS architecture model and notations with flow-
splitting are the same as the CMS model and notations defined
previously.

As in [8], we assume that the arrival processes satisfy
a strong law of large numbers (SLLN): for all i, k, with
probability one,

lim
n→∞

Aik(n)
n

= λik, (22)

where Λ = [λik] forms the arrival rate matrix. This occurs, for
instance, if they are jointly stationary and ergodic with arrival
rates λik. Further, we assume that the arrival matrix is doubly
sub-stochastic (admissible), i.e., for all i, k,

N∑
i=1

λik ≤ 1,

N∑
k=1

λik ≤ 1. (23)

Definition 2 (Stability): A switch is said to be stable if
under any arrival process satisfying Equations (22) and (23),
then for all i, k, with probability one,

lim
n→∞

Dik(n)
n

= λik. (24)



B. Stability Theorem

The following theorem establishes that when each interme-
diate input linecard uses a stable matching algorithm, then the
CMS architecture with flow-splitting is stable as well. It is
proved in Appendix III.

Theorem 3 (CMS Stability with Flow-Splitting ): CMS
with flow-splitting is stable when using any stable matching
algorithm.

In particular, this theorem applies to the MWM (Maximum
Weight Matching) scheduling algorithm [12]. MWM is known
to be stable [8].

Corollary 4 (CMS-MWM): CMS with flow-splitting is sta-
ble when using MWM.

C. Speedup

We saw how to generalize the CMS architecture by using
some speedup S. We can do the same for CMS with flow-
splitting. As the following theorem shows, stability of a
matching algorithm extends to the CMS architecture with
flow-splitting when using speedup as well. The proof is in
Appendix IV.

Theorem 4 (Speedup): The CMS architecture with flow-
splitting and speedup S is stable when using any matching
algorithm that is stable with speedup S.

In particular, this theorem applies to maximal matching
algorithms such as iSLIP [10], since they are known to be
stable with speedup two [8].

Corollary 5 (CMS-Maximal): CMS with flow-splitting is
stable when using any maximal matching algorithm and
speedup two.

V. DELAY OPTIMIZATIONS

In this section, we informally outline how propagation
delays can be improved. In Section II-C, the two control
channels and the two data channels are described as four
separate fixed rate channels, two control channels at fixed rate
εR/N , and two data channels at fixed rate R/N , respectively.
Specifically, to ease the explanation of the CMS architecture
model in Section III-A, the scheduling process was described
in terms of 5 consecutive phases, with the transmission of
request tokens (phase (a)) and the transmission of grant tokens
(phase (c)) separated into their own distinct phases from the
transmission of packets through the first and second mesh
stages (phases (d) and (e)), respectively. The transmission
of request tokens of size �log N� was assumed to take N
consecutive time-slots to complete over a fixed channel of
rate εR/N . Similarly, the transmission of grant tokens of size
�log N� was also assumed to take N consecutive time-slots
to complete. Therefore, as stated in Equation 12, it takes in
the best case 5N − 1 time-slots after packet arrival before a
packet can depart from its output destination.

However, we can improve upon this delay by time-
multiplexing each control channel of rate εR/N with a cor-
responding data channel of rate R/N on to a single channel
of rate (1 + ε)R/N . Specifically, we can time-multiplex the
request control channel and the first-stage data channel on

to the same shared channel at rate (1 + ε)R/N , and we can
time-multiplex the grant control channel and the second-stage
data channel on to another shared channel at rate (1+ε)R/N .
This way, we can combine phases (a) and (d) into a single
phase, and we can combine phases (c) and (e) into another
single phase. In particular, transmitting over a fixed channel
at rate (1 + ε)R/N , the request tokens from the input stage
will arrive at the corresponding intermediate inputs at the
center stage εN/(1 + ε) time-slots after departure from the
input stage. Then, the transmission of packets through the
first logical mesh can take the remaining N/(1+ ε) time-slots
to complete the transmission. Similarly, transmitting over a
fixed channel at rate (1 + ε)R/N , the grant tokens from the
center stage to the input stage will arrive to the input stage
εN/(1 + ε) time-slots after departure from the center stage,
and the remaining N/(1+ε) time-slots can be used to transmit
packets through the second logic mesh from the center stage to
the output stage. Therefore, the overall best-case propagation
delay (including matching time) is reduced from 5N to 3N .
Of course, with a speedup of S or further time-multiplexing
of these two combined channels together, a further reduction
in delay will occur as well.

VI. SIMULATION RESULTS

In this section, we present the results of various simulations
that we have performed to verify our theoretical results and
observations in the previous sections.

In our first set of experiments, we consider a uniform traffic
model where packets arriving to each input have a uniform
distribution of output destinations. That is, the probability
that a packet arriving at input i has output destination k is
uniformly 1/N . In this first set of experiments, we consider a
Bernoulli i.i.d. arrival process. Using the CMS architecture, we
compare results using three matching algorithms. The first is
a self-randomizing matching algorithm called SERENA [14].
We will use this matching algorithm as the reference algo-
rithm for the CMS architecture because it guarantees 100%
throughput for all admissible Bernoulli i.i.d. traffic with no
speedup, it has good delay properties, and it can be amortized
to O(1) complexity with sequential hardware for scalability1.
The second is the widely used iSLIP [10] algorithm. We have
included iSLIP for comparisons because it is often used as
a reference matching algorithm for performance. Although
widely used and effective, it should be noted that it requires
parallel hardware, which means that the amount of processing
hardware per linecard in the CMS architecture would be
directly dependent on N , which limits scalability. The third is
the maximum weighted matching (MWM) algorithm, which
is known to achieve 100% throughput without speedup and
very good average delays. Though impractical to implement
at high speeds, we have also included it for comparisons.

1Note that SERENA is not a maximal matching algorithm and does not
guarantee maximal matchings. In [14], a version of SERENA called MAX-
SERENA was proposed to greedily derive a maximal matching by attempting
to match unmatched inputs. However, to retain an O(1) amortized complexity
implementation, we did not implement this extension.
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Fig. 5. Average delay under the uniform Bernoulli traffic model. Switch size
is N = 32.

In addition to results using different matching algorithms
with the CMS architecture, we have also included in this first
set of experiments simulation results on average delay under
the uniform Bernoulli traffic model for the originally-proposed
load-balanced switch with no packet ordering guarantees [1],
the frame-aggregation based method called uniform frame
spreading (UFS) [4], and the frame-aggregation based method
called full-ordered frame first (FOFF) [4].

Simulation results for this first set of experiments are shown
in Figure 5. Several observations can be made in this first set
of experiments.

• First, the average delay of a CMS with SERENA is
about the same as a CMS with MWM under the uni-
form Bernoulli traffic model, even though SERENA is
much less complex to implement than MWM. This
demonstrates that the CMS architecture can achieve good
results using an O(1) amortized time matching algorithm.
SERENA also performs better than iSLIP when used in
the CMS architecture, especially under heavy load.

• Second, the average delay of a CMS with SERENA under
uniform Bernoulli traffic is about the same as the basic
load-balanced switch. For instance, as explained before,
at light loads CMS requires a propagation delay of some
3N , while the basic load-balanced switch requires some
2N . However, unlike the basic load-balanced switch that
can badly mis-sequence packets, the CMS architecture
guarantees packet ordering and does not require an addi-
tional delay to reorder packets.

• Third, as expected, UFS incurs a high average packet
delay under light load because of the need to accumulate
full frames.

• Finally, although the average delay of the CMS architec-
ture converges to the average delays of UFS and FOFF
as the load ρ approaches to 1.0, the average delay of
the CMS architecture is much lower for load ρ ≤ 0.9.
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Fig. 6. Average delay under the uniform Pareto traffic model. Switch size
is N = 32.

Therefore, low average packet delays can be achieved
with only moderate speedup.

The same trends can be seen for different switch sizes.
In the next set of experiments, we consider average delays

in response to bursty traffic. Instead of a Bernoulli i.i.d. arrival
process, packets arrive in bursts. In particular, we ran simula-
tions using random burst lengths that are chosen independently
using the following (truncated) Pareto distribution:

β(i) =
c

i2.5
, for i = 1, . . . , 10, 000,

where β(i) is the probability that a burst length of length i is
chosen, and

c =

(
10,000∑

i=1

1
i2.5

)−1

is the normalization constant. Using this Pareto distribution,
the burst lengths can vary from 1 to 10, 000 packets. We again
consider a uniform traffic model where packets arriving to
each input have a uniform distribution of output destinations.
The simulation results for this set of experiments are shown in
Figure 6. In this set of experiments, we can make the following
observations.

• First, we again see that the performance of the CMS
architecture with SERENA and MWM are about the
same, and the performance of a CMS with SERENA is
better than the performance with iSLIP.

• Second, the performance of a CMS architecture is com-
parable to a basic load-balanced switch without packet
ordering guarantees.

• Third, UFS incurs a high average packet delay under light
load.

• Finally, although the average delay of the CMS architec-
ture converges to the average delays of UFS and FOFF
as the load ρ approaches to 1.0, the average delay of the



CMS architecture steadily declines under bursty traffic
as load decreases. Therefore, the performance of a CMS
architecture can be improved with speedup.

We observe the same trends for different switch sizes2.

VII. LOAD-BALANCED SCHEDULING FOR CROSSBARS

We briefly explore in this section how some of the ideas
from the CMS architecture can be applied to traditional single
crossbar switch architectures. In particular, the CMS architec-
ture has been designed to address two sources of bottlenecks in
traditional centralized crossbar-based architectures. First, the
use of fixed configuration meshes that are amenable to optics
addresses the scalability limitations of traditional electronic
crossbars that require frequent reconfigurations. It has been
shown in [3] that the use of fixed configuration meshes in
optics can be scaled to very high line rates and port counts.
Second, although the CMS architecture also uses matching
algorithms for conflict resolution, it reduces the complexity of
the matching algorithm used by load-balancing the scheduling
problem across N slower schedulers. This second idea is
also applicable to improving the practicality of traditional
crossbar-based architectures. In particular, for moderate size
high-performance switches with relatively small port counts,
electronic crossbar fabrics can be made fast enough. However,
the performance of these crossbar switches is often limited by
the performance of the centralized scheduler. For example,
MWM is known to be very effective, but its algorithmic
complexity is prohibitive. We can apply the load-balanced
scheduling idea developed for the CMS architecture to help
alleviate the time complexity of centralized schedulers by
load-balancing the work across K slower schedulers, and the
time complexity of the scheduling algorithm used would be
amortized by a factor of K. K does not need to be equal to N
– it can be chosen to provide the necessary reduction in time
complexity. All the theoretical results developed in Sections III
and IV and proved in the appendices directly apply.

VIII. CONCLUSIONS

In this paper, we proposed the concurrent matching switch
as a scalable two-stage switch architecture that guarantees
packet ordering. From a scalability perspective, the concurrent
matching switch architecture uses the same two stages of
fixed uniform meshes as in current load-balanced switch
architectures. These fixed uniform meshes do not require
arbitrary per-packet switch configurations and are amenable
to scalable implementation in optics. To enforce packet or-
dering throughout the switch, the proposed architecture uses
a novel scalable distributed contention resolution approach
where each linecard in the architecture independently solves
a local bipartite matching problem that requires only local
state information. The proposed architecture can then leverage
the large, well-developed, and still progressing, body of work
on scheduling algorithms to solve the matching problem. In

2Though not shown due to space limitations, results have been obtained for
CMS-SERENA with N = 128, and the same trends can be observed with
respect to the basic load-balanced switch, UFS, and FOFF.

particular, we showed that the concurrent matching switch
can achieve 100% throughput guarantees using any stable
matching algorithms, including practical algorithms that do
not require speedup. We showed that each linecard has N time
slots to perform each matching step, and therefore the com-
plexity of current matching algorithms can be amortized by a
factor of N . Specifically, we showed that a class of provably
stable matching algorithms with good delay properties can be
amortized to O(1) complexity using only sequential hardware.
Therefore, the amortized complexity of the matching step can
be made independent of the switch size. Finally, we showed
that good average delays compared to existing load-balanced
switch architectures can be achieved.

In a way, the concurrent matching switch architecture tries
to combine the advantages of load-balanced routers with the
well-developed body of work on matching algorithms for
contention resolution to achieve a new scalable solution that
exploits the advantages of both classes of architectures. From
this perspective, we believe that this work enables router com-
panies that have invested significant resources in developing a
matching algorithm with good throughput guarantees to scale
their routers by combining several routers together without
losing their throughput guarantee, the packet order, or more
simply their algorithm along the way. Moreover, this novel
architecture opens the possibility for a great deal more research
in this direction.
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APPENDIX I
PROOF OF THEOREM 1

Theorem 1 states that if the matching algorithm applied on
the request tokens at each intermediate input is strongly stable,
then the CMS architecture is strongly stable as well.

We want to study the arrival process of token requests at
each of the N intermediate input linecards. In order to do so,
we will first define a new time reference that is internal to
each intermediate input. At each intermediate input j, tokens
can only be received and granted (respectively packets can
only arrive and depart) every N time-slots (Equation (2)).
Therefore, at each intermediate input, we will cut time into
frames of N time-slots. We will denote the new frame-based
time by the symbol t (where t is the frame number, while
n is the time-slot number). Also, for each function f , when
there is no confusion possible, we will use f(t) for f(n) with
n = Nt, so as to avoid introducing new notations.

Proof: (of Theorem 1) Consider some intermediate input
j. We’ll show that the traffic it receives at each frame period
has the same distribution as the traffic it would receive during
a time-slot if the arrival traffic had a rate matrix Λ.

First, at each frame period, each input i is connected
with intermediate input j exactly once, during a single time-
slot (Equation (2)). During this time-slot, it receives at most
one packet according to the Bernoulli i.i.d. process defined
above using arrival matrix Λ, and converts this packet into
a request token. Therefore, the request token arrival traffic
to intermediate input j during any frame-slot follows exactly
the same distribution as the packet arrival traffic to the router
during any time-slot.

Consequently, since the matching algorithm is strongly
stable (Definition 1), at each intermediate input j

lim sup
n→∞

E


∑

i,k

Qijk(n)


 < ∞. (25)

But as defined in the architecture model, the number of packets

queued in the switch is

Xijk(n) = (Aijk(n)) − (Dijk(n))
= (Rijk(n + N − 1)) − (Gijk(n − (3N − 1)))
= [Rijk(n + N − 1) − Rijk(n − (3N − 1))]

+[Rijk(n − (3N − 1)) − Gijk(n − (3N − 1))]
≤ [N − 1 + 3N − 1] ∗ N + Qijk(n − (3N − 1))
= N(4N − 2) + Qijk(n − (3N − 1)), (26)

where we use the fact that at most N packets (i.e., request to-
kens) can arrive to the switch at each time-slot. Consequently,
we also have

lim sup
n→∞

E


∑

i,j,k

Xijk(n)


 < ∞, (27)

which proves the strong stability of the CMS architecture.

APPENDIX II
PROOF OF THEOREM 2

Proof: (of Theorem 2) The proof using speedup is exactly
the same as the one without speedup. In fact, when using
speedup, consider internally replacing time-slots by phases.
All the properties of the internal components of the switch are
exactly the same, and likewise the same conclusion follows.
We do not repeat all the equations for the sake of clarity.

APPENDIX III
PROOF OF THEOREM 3

Theorem 3 states that if the matching algorithm applied on
the request tokens at each intermediate input is stable, then
the CMS architecture with flow-splitting is stable as well.
To prove this, we will first need to demonstrate that request
tokens are effectively distributed among intermediate inputs
as packets arrive and are not getting stuck at the request
token queues of the input linecards (Lemma 1). Then, we will
show that the arrival process of token requests at each of the
N intermediate inputs follows some admissible average rate
matrix (Lemma 2). This will enable us to use the stability
properties of the matching algorithms and conclude with the
proof of Theorem 3.

Lemma 1 (Request Token Queue Size): The size of a re-
quest token queue cannot exceed N .

Proof: Since request tokens are load-balanced in a
round-robin way among intermediate inputs, starting with
intermediate input 1, References [2], [4] show that

Aijk(n) =
⌈

Aik(n) + 1 − j

N

⌉
. (28)

Moreover, at most one packet arrives to any input linecard at
any time-slot, and at most one request token is consequently
created. Using these two assumptions, Theorem 6 of [16]
shows that the arrivals to token queue Ri,j are bounded by
a leaky bucket source of average rate ρ = R/N and burst size
σ = N while it is periodically serviced at a rate µ = R/N ,



and therefore a FIFO queue of size N is sufficient. (Lemma
3 of [2] has a similar proof.)

We will now show that using the internal time definition
based on frames, the arrival process of token requests at each
of the N intermediate inputs follows some admissible average
rate matrix.

Lemma 2 (Request Token Arrivals): Assume that the
packet arrival process to the router follows some admissible
average rate matrix Λ (Equations (22) and (23)). Then at
each intermediate input, using the internal time definition, the
request token arrival process also follows the same admissible
average rate matrix Λ.

Proof: As defined above, Rijk(n) denotes the cumulative
number of request tokens for flow (i, j, k) arrived to inter-
mediate input j by the end of time-slot n. Using Lemma 1
and Equation (2), we find that a request token queued at
time n leaves its input linecard by time-slot n + N2 and
arrives to its intermediate input linecard by the end of time-
slot n + N2 + (N − 1). Moreover, a request token cannot
obviously arrive to the intermediate input before it is created
at the input. Therefore, we get the double inequality

Aijk(n − (N2 + N − 1)) ≤ Rijk(n) ≤ Aijk(n). (29)

Further, after dividing by n, we also have

Aijk(n − (N2 + N − 1))
n

≤ Rijk(n)
n

≤ Aijk(n)
n

. (30)

Moreover, using Equation (28),

Aik(n)
N

− 1 ≤ Aijk(n) ≤ Aik(n)
N

+ 1, (31)

and from Equation (22), w.p. 1

lim
n→∞

Aik(n)
N

n
=

λik

N
. (32)

Therefore, combining these results, w.p. 1

lim
n→∞

Rijk(n)
n

= lim
n→∞

Aijk(n)
n

=
λik

N
. (33)

We can now use the internal frame-slot defined above. N time-
slots correspond to one frame, therefore w.p. 1

lim
t→∞

Rijk(t)
t

= lim
t→∞N · Rijk(Nt)

Nt

= N · lim
n→∞
n=Nt

Rijk(n)
n

= N · λik

N
= λik. (34)

By definition, [λik] is doubly sub-stochastic as well, and
therefore the proof of Equations (22) and (23) is completed.

We can now prove Theorem 3 about the stability of the
CMS architecture with flow-splitting.

Proof: (of Theorem 3) The above Lemma 2 shows that
at each intermediate input, the request token arrival process

follows the admissible average rate matrix Λ when using
the internal time definition. Therefore, by Definition 2 of
algorithm stability, the grant token arrival process at any
intermediate input linecard follows the admissible average rate
matrix Λ as well when using the internal time definition. In
other words, w.p. 1

lim
t→∞

Gijk(t)
t

= λik. (35)

We now translate this result in frame-slots into a result in
time-slots. Using the transformation n = Nt as in the above
Equation (34), we get w.p. 1

lim
n→∞
n=Nt

Gijk(n)
n

=
λik

N
. (36)

But each function Gijk(n) is non-decreasing, and therefore
we will now prove that the above limit can be extended to
time-slots that are not multiples of N . For instance, for each
time-slot n, let t(n) be such that Nt(n) ≤ n < N(t(n) + 1).
Then by monotonicity of G

Gijk(Nt(n)) ≤ Gijk(n) ≤ Gijk(N(t(n) + 1)), (37)

which can be rewritten as
Gijk(Nt(n))

Nt(n)
· Nt(n)

n
≤ Gijk(n)

n

≤ Gijk(N(t(n) + 1))
N(t(n) + 1)

· N(t(n) + 1)
n

. (38)

By Equation (36), both the above left and right expressions
converge to λik/N w.p. 1 as n goes to infinity, and therefore
the middle one as well: w.p. 1

lim
n→∞

Gijk(n)
n

=
λik

N
. (39)

Since packet departures directly correspond to grant token
generations with a fixed delay (Equation (15)), w.p. 1

lim
n→∞

Dijk(n)
n

=
λik

N
. (40)

Finally, summing up over all N intermediate input linecards,
we obtain w.p. 1

lim
n→∞

Dik(n)
n

= λik, (41)

which is exactly the definition of stability.

APPENDIX IV
PROOF OF THEOREM 4

Proof: (of Theorem 4) As in the proof of Theorem 2, the
proof using speedup is exactly the same as the one without
speedup. The only change is an external property: we know
that that at most one packet arrives to every input at every time-
slot. In other words, at most one packet arrives to every input
at every S phases. This is a less constraining property, and as a
result the request token queue size can be reduced by a factor
S (new leaky bucket constraint in the proof of Lemma 1).
All the following results are the same (inequalities are simply
tightened), and likewise the same conclusion follows.


