
On Guaranteed Smooth Scheduling For Input-Queued Switches

I. Keslassy∗ Murali Kodialam† T. V. Lakshman† Dimitrios Stiliadis†

∗ Computer Systems Laboratory † Bell Laboratories
Stanford University 101 Crawfords Corner Road
Stanford, CA 94305-9030 Holmdel, NJ 07733
keslassy@stanford.edu {muralik, lakshman, stiliadi}@bell-labs.com

Abstract— Input-queued switches are used extensively in the
design of high-speed routers. As switch speeds and sizes increase,
the design of the switch scheduler becomes a primary chal-
lenge, because the time interval for the matching computations
needed for determining switch configurations becomes very small.
Possible alternatives in scheduler design include increasing the
scheduling interval by using envelopes [1], and using a frame-
based scheduler that guarantees fixed rates between input-output
pairs. However, both these alternatives have significant jitter
drawbacks: the jitter increases with the envelope size in the
first alternative, and previously-known methods do not guarantee
tight jitter bounds in the second.

In this paper, we propose a hybrid approach to switch
scheduling. Traffic with tight jitter constraints is first scheduled
using a frame-based scheduler that achieves low jitter bounds.
Jitter-insensitive traffic is later scheduled using an envelope-based
scheduler. The main contribution of this paper is a scheduler
design for generating low-jitter schedules. The scheduler uses a
rate matrix decomposition designed for low jitter and different
from the minimum-bandwidth Birkhoff-Von Neumann (BV)
decomposition. In addition to generating low-jitter schedules,
this decomposition yields fewer switch configuration matrices
(O(n)) than the BV decomposition (O(n2)), and so uses far less
high-speed switch memory. We develop an efficient algorithm for
decomposing the rate matrix and for scheduling the permutation
matrices. We prove that our low-jitter algorithm has an O(log n)
factor bound on its bandwidth consumption in comparison to
the minimum-bandwidth BV decomposition. Experimentally, we
find that the bandwidth increase in practice is much lower than
the theoretical bound. We also prove several related perfor-
mance bounds for our scheduler. Finally, we propose a practical
bandwidth-guaranteed algorithm, and show how our findings
could even be extended to systems with large tuning time.

I. INTRODUCTION

Most high-speed core routers today use input-queueing with
a crossbar switch fabric, virtual output queues and fixed-
size cells At each time-slot, a scheduler finds a matching
between the inputs and the outputs, and configures the crossbar
according to this matching. Many heuristic algorithms have
been proposed for finding this matching [2], [3], [4]. However,
the need for routers with more ports and faster line rates makes
these algorithms difficult to scale. For instance, with line rates
of 40Gbps (OC768) and 64-byte cells, an algorithm would
have to compute a matching every 12.8 ns, while the current
highest-capacity commercially available centralized scheduler
takes about 50 ns per matching. At least four alternatives
have been proposed in the literature in order to decrease the
frequency of the matching computation. First, by increasing

∗ This work was done while the author was with Bell Labs.

the cell size through the use of envelopes [1]. Second, by
using pipelining [5]. Third, by using several times the same
matching, possibly with slight changes [6], [7].

In this paper, we will be focusing on a fourth alternative:
frame-based scheduling. In this approach, at the beginning of
each frame period (for instance, every 100 time-slots), the
scheduler is assigned a guaranteed rate table (GRT), which
is a list of rate requirements. Then, it computes a list of
matchings called the schedule table, such that during the
following frame period, the schedule table will provide any
input/output pair with at least as many services as the GRT
would guarantee. Finally, the switch fabric transfers the input-
queued cells according to the matchings of the schedule table.

In order to compute the schedule table, most of the algo-
rithms in the literature are based on the Birkhoff Von-Neumann
(BV) decomposition [8], [9], [10], [11]. As explained in
section 2, this BV algorithm minimizes the bandwidth require-
ment for the schedule and provides bandwidth guarantees.

It can be noted that this frame-based scheduling approach
applies to several systems other than input-queued routers.
First, it is used in SONET all-optical circuit-switches, which
switch cells in circuit-based frames by using delay lines
[12]. Second, it applies to the satellite TDMA scheduling
problem [13]. Third, it is of interest in time-slotted wireless
FDMA systems where any station can communicate with
any other according to a TDM schedule often established
by a centralized scheduler. And finally, it is also useful in
star-based WDM broadcast-and-select optical systems with
tunable transmitters and fixed receivers (or fixed transmitters
and tunable receivers), where a centralized scheduler assigns
a specific wavelength to a specific station for any time-slot
[14]. Therefore, although this paper will exclusively consider
this problem in the context of input-queued router scheduling,
most of the findings extend to these other systems.

For input-queued routers, this frame-based approach has
several advantages. First, it solves the scheduling-frequency
scalability issue mentioned above, which is one of the main
bottlenecks in designing faster core routers. Second, it can be
adapted to implement SONET, ATM, DiffServ, MPLS, and
most (virtual) circuit- and frame- based schemes, which are
predominant in the Internet core with which any Internet core
router needs to interact. Third, it is one of the only input-
queued policies that provably guarantee 100% throughput for
both a router in isolation [9], [10], [11] and a network of
routers [16], and therefore guarantees to the operators that

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

the lines they expensively laid will be fully utilized. Fourth,
the method for computing the frame weights is often flexible.
Therefore, this flexibility can be used to provide specific
bandwidth guarantees for any high-priority input/output pair,
which could correspond to a specific customer. This flexibility
can also be used to ensure fairness among flows, capping for
instance the bandwidth usage of aggressive users. Finally, this
method provides equal guarantees to uniform as well as non-
uniform traffic, contrarily to many scheduling heuristics based
on uniform traffic.

However, frame-based scheduling suffers from an important
drawback: it often results in large cell delays and large delay
variability (jitter). This is especially true for an algorithm such
as BV, which does not take delays into account. The objective
of this paper is to define, study and approximate a class of
smooth frame-based scheduling, which minimizes the jitter
resulting from the schedule table.

For instance, consider the following simplistic example.
Assume that for every frame period of 100 time-slots, we need
to schedule the following GRT:

GRT =
(

50 50
0 50

)
.

In this GRT, input 1 needs to send 50 cells to output 1 and
50 cells to output 2. Input 2 only needs to send 50 cells
to output 2. Call M1 the matching connecting input 1 to
output 1 and input 2 to output 2, and call M2 the matching
connecting input 1 to output 2 and input 2 to output 1.
A straightforward implementation of BV, as explained later,
would lead to a schedule table first implementing 50 times
M1, then implementing 50 times M2, and so on periodically.
However, the objective of this paper is to obtain instead a
smooth scheduling, which implements M1, then M2, again
M1, then M2, and so on.

There are several reasons to desire this smoother scheduling.
First, as noted above, this smooth scheduling would reduce
the delay variability of the traffic, which is one of the main
objections made to frame-based scheduling. Also, not only
is this a good property, but guaranteeing a given amount of
bandwidth to low-jitter traffic is a requirement of DiffServ for
Expedited Forwarding traffic [17]. Therefore, if a router is to
implement DiffServ, it has to find a method for implementing
such guarantees, even though the jitter-sensitive traffic may
only represent a small part of the total traffic. More generally,
a typical implementation in core routers would first schedule
traffic with tight jitter constraints using smooth frame-based
scheduling, and then schedule the remainder bandwidth for
jitter-insensitive traffic using an envelope-based scheduler [1].

Second, this smooth scheduling leads to less burstiness. For
instance, in the example above, instead of receiving batches
of 50 cells followed by 50 empty slots, output 2 will receive
exactly one cell every two time-slots. Therefore, even though
the throughput of the router itself is the same, a smoother
scheduling may increase the throughput of a network of routers
considered as a whole, because the routers down the line
will receive a more regular traffic, thus allowing for better

multiplexing effects. This is especially true for TCP traffic,
for which a bursty scheduling may affect the round-trip time
estimation and incur additional losses [18].

Third, a smoother scheduling results in better short-term
fairness among flows, from a delay, jitter and bandwidth point-
of-view.

Fourth, suppose that in the example above, the capacity
of the second transmitter is only half of the line rate. The
transmitter wouldn’t then be able to use a BV scheduling,
because it would be required to send at twice its capacity
during half the time (send 50 packets in 50 slots, while
it can only send 25 packets during this time). Therefore,
smooth scheduling facilitates different per-port transmission
(or reception) speeds. This is useful in heterogenous optical
networks, with transmitters (and receivers) having different
capacities. It is also useful in a wireless slotted FDMA system,
in which the capacity may vary in time and depend on the
position of the stations.

Finally, and perhaps most significantly, a smoother schedul-
ing reduces the amount of buffering needed in the system.
First, because a better multiplexing effect reduces the buffering
needed in the following routers on the cell path, as explained
above. But also because the instantaneous outgoing rates are
better suited to the incoming rates. For instance, consider the
second input in the example. If the incoming packets always
come at the same rate, equivalent to 50% of the line rate, then
input 2 will receive and buffer 25 cells during the 50 time-
slots in which it is idle. With a smoother traffic, it wouldn’t
have to buffer more than one cell. While the effects of this
second point are negligible in routers, they are crucial for
optical, wireless and satellite systems, in which the buffers (or
the optical delay-lines) incur significant power consumption,
buffer (or delay-line) management complexity, and purchase
cost.

Finally, in addition to finding a smooth scheduling algo-
rithm, our objective is also to find a practical scheduling
algorithm. First, because the BV algorithm needs O(n2)
permutations [9], these are difficult to store on a single chip
when n is large (for n = 512, each permutation takes
n · log2(n) = 4, 608 bits, hence we would need to store up
to 150 Mbytes). Second, the BV algorithm complexity is in
O(n4.5) [9], and thus it is difficult to implement at high speeds.

The rest of the paper is organized as follows: We first
outline the decomposition problem in Section II, provide
a heuristic algorithm for solving this problem, and prove
efficiency bounds for this algorithm. Then, in Section III, we
explain how to use the decomposition algorithm in order to
compute a schedule table that achieves low jitter. Section IV is
devoted to experimental results. Section V develops a practical
algorithm for bandwidth-guaranteed traffic, and finally section
VI extends these results to long-tuning systems.

II. DECOMPOSITION OF THE GUARANTEED RATE TABLE

We consider an n × n input-output buffered packet switch
with virtual output queueing. In each time slot, a central arbiter
matches each output to at most one input. We will assume

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

that for the portion of the traffic that has bandwidth and jitter
requirements, we have some knowledge of the rates required
for each input/output port pair. Within the Internet architecture
this knowledge is supplied either through a bandwidth broker
or through MPLS signaling.

We are concerned only with the scheduling of the bandwidth
guaranteed low jitter traffic that is specified by a (Guaranteed)
Rate Matrix. Best effort traffic can be scheduled using any of
the matching algorithms available in the literature.

Let P represent the per-port capacity of the fabric. Let the
n × n non-null matrix R = [rij] represent the Rate Matrix
where rij represents the rate required from input i to output
j. Let M represent the maximum row or column sum of the
matrix R. Using standard techniques [9], it is easy to augment
R into a matrix R′ = [r′

ij] where all the row and column sums
of R′ are M . For the rest of this paper we will assume that
all the row sums and column sums of R are M . When M is
not given, it is assumed that M = 1 - and in this case, R is
called a Doubly Stochastic Matrix. Finally, note that the rate
matrix can be scheduled (without jitter constraints) if and only
if the aggregate amount of traffic going to (respectively coming
from) any port is less than the port capacity, i.e. M ≤ P .

A. Birkhoff Von-Neumann Decomposition

The basic idea of the Guaranteed Rate Tables is that once
a rate matrix is provided, it is decomposed into schedule
tables. Each schedule table is either a permutation or a partial
permutation matrix (i.e. a 0 − 1 matrix whose row sums and
column sums are at most one without it being a permutation
matrix). The standard approach to creating the schedule tables
from the rate matrix relies on the following result due to
Birkhoff and Von-Neumann [9].

Theorem 1: Any doubly stochastic matrix can be written as
a convex combination of permutation matrices.
Therefore the BV decomposition of the rate matrix R is to
generate a set of permutation matrices (schedule tables) Y k

for k = 1, 2, . . . ,K such that

R =
K∑

k=1

αkY
k.

In other words rij =
∑K

i=1 αkY
k
ij . We refer to

∑K
k=1 αk as

the bandwidth requirement of the schedule tables generated by
the BV decomposition. After scaling the results of Theorem 1
by a factor of M , we can see that the value of

∑K
i=1 αk = M ,

where M is the row and column sum of the rate matrix
R. Thus, the BV decomposition minimizes the bandwidth
requirement. The number of matrices in the BV decomposition
is O(n2) and the running time of the algorithm is O(n4.5).
More details and references on the decomposition algorithm
can be found in Chang et al. ([9], [10]). The permutation
(switching) matrices are scheduled across the switch using
some Weighted Round Robin (WRR) scheme. Chang et al. [9]
gives a scheduling algorithm and provides bounds on its per-
formance. This method that is based on the BV decomposition
is reasonable in the case that there are no jitter constraints. The

BV decomposition, however, results in poor jitter performance
especially when there is a large number of ports in the switch.

B. The Low Jitter Decomposition

In the BV decomposition of the rate matrix R, a given entry
rij is striped across several permutation matrices. Therefore,
independently of the type of algorithm used to schedule the
permutation matrices, there is no control on when individual
entries in the rate matrix will be scheduled. It is possible
to derive bounds on the jitter [9], but it is not possible to
ensure that the jitter is low. The bounds on the jitter for
the traffic between input port i and output port j depends
on the number of matrices in the decomposition that rij is
striped across and also on the number of matrices in the
decomposition. Since both these factors increase with the
number of ports in the switch, the jitter problem becomes
severe when the number of ports is large. We formulate
an alternate decomposition which we term Low Jitter (LJ)
Decomposition. As in the case of the BV decomposition, we
decompose the rate matrix into a combination of permutation
matrices with the additional restriction that each non-zero
entry in the rate matrix appears in only one of the permutation
matrices. Let Xk, k = 1, 2, . . .K be the set of permutation
matrices that form the LJD. Associated with each matrix Xk in
the decomposition is a rate mk which represents the bandwidth
requirement for the switching matrix Xk.

∑

k

mkx
k
ij ≥ rij ∀i, j (1)

∑

k

xk
ij = 1 ∀i, j (2)

∑

i

xk
ij ≤ 1 ∀j, k (3)

∑

j

xk
ij ≤ 1 ∀i, k (4)

xk
ij ∈ {0, 1} ∀i, j, k. (5)

Constraints (3)(4) and (5) specify that Xk is a partial per-
mutation matrix. Constraint (1) specifies that the weighted
sum of these permutation matrices should be greater than the
rate matrix. Constraint (2) enforces that each entry in the rate
matrix belongs to precisely one element in the decomposition.
Note, that unlike the BV decomposition which uses only
(full) permutation matrices, LJ decomposition splits the rate
matrix into partial permutation matrices. Using the scheduling
algorithm developed in the next section, we show that the
above set of constraints are sufficient to guarantee low jitter. It
is possible to construct specific examples where constraint (2)
is not necessary to guarantee low jitter. We will comment on
this in the last section of the paper. The bandwidth requirement
for the schedule is

∑K
i=1 mk. Therefore the objective of the LJ

decomposition is to solve the following integer programming
problem (ILJD):

D = min
K∑

k=1

mk

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Subject to the constraints (1)(2)(3)(4)(5) defined above. Since
the BV decomposition solves the above problem without
constraint (2), and the schedule length of BV is at most M ,
then D ≥ M . Therefore there will be rate matrices that
are schedulable by the BV decomposition but not by the LJ
decomposition. This will especially be true if the amount of
low jitter guaranteed traffic is a large fraction of the total
switch traffic. In the applications that we consider the low-
jitter traffic is a relatively small fraction of the total switch
traffic. This is a valid assumption within the context of the
EF class, that is expected to occupy less than 50% of the
total bandwidth. In our experiments we varied the low-jitter
traffic load from 10% to 60% and all the rate matrices were
schedulable with LJD. As in the case of BV decomposition, the
LJ decomposition of the rate matrix is not unique. Unlike the
BV decomposition, the integer programming problem ILJD is
NP-hard. The proof of the theorem below is a simple variant
of a proof due to Rendl [19]. (In [19] the number of matrices
in the decomposition is restricted to n, which is not the case
here.)

Theorem 2: The problem ILJD is NP hard.
Several flavors of matrix decomposition problems have been
studied extensively in the TDMA scheduling literature [20],
[21], [22], [23]. As in our case, the two most important
considerations in TDMA scheduling (especially for satellite
scheduling) are to minimize the number of matrices in the
decomposition and the total bandwidth needed to support the
decomposition. However, the TDMA literature does not deal
with low-jitter implementation of the rate matrix decomposi-
tion. Since the ILJD problem is NP-hard, our objective is to
derive lower bounds on solutions to this problem, and then to
use these lower bounds in order to get intuition and motivate a
heuristic for solving the problem and implementing a low-jitter
decomposition. We first prove a lemma on vector-ordering, and
then use this lemma in order to find a lower bound on D. Note
that proofs are placed in the appendix for ease of reading.

Lemma 3: Consider two vectors (v1, v2, . . . , vp) and
(w1, w2, . . . , wp) where v1 ≤ v2 ≤ . . . ≤ vp. Then a
permutation σ of the set {1, 2, . . . , n} that minimizes

p∑

i=1

max{vi, wσ(i)}

is a permutation where

wσ(1) ≤ wσ(2) ≤ . . . ≤ wσ(p).

Theorem 4: Let R be a rate matrix. Sort each column of the
matrix R in descending order to get the matrix R′. Compute
the maximum gi of each row i of the matrix R′. Then

∑n
i=1 gi

is a lower bound on D. Similarly sort each row of R in
descending order to get the matrix R′′. Compute the maximum
hj of each column j of R′′. Then

∑n
j=1 hj is a lower bound

on D. Hence D ≥ max(
∑n

i=1 gi,
∑n

j=1 hj).
The higher of the two lower bounds computed above is a

lower bound on D and is tighter than M . Let’s illustrate the

bounds of this theorem on the 4 × 4 doubly-stochastic rate
matrix R introduced in [9].

R =

0.38 0 0.22 0.40
0.11 0.24 0.60 0.05
0 0.53 0.14 0.33
0.51 0.23 0.04 0.22

First we sort each column of R in descending order to obtain
matrix R′ as per Theorem 4.

R′ =

0.51 0.53 0.60 0.40
0.38 0.24 0.22 0.33
0.11 0.23 0.14 0.22
0 0 0.04 0.05

We find the sum of the maximum of each row to get∑n
i=1 gi = 0.60 + 0.38 + 0.23 + 0.05 = 1.26. Now we sort

each row to obtain matrix R′′.

R′′ =

0.40 0.38 0.22 0
0.60 0.24 0.11 0.05
0.53 0.33 0.14 0
0.51 0.23 0.22 0.04

We find the sum of the maximum of each column to get∑n
j=1 hj = 0.60 + 0.38 + 0.22 + 0.05 = 1.25. Therefore

the lower bound for this problem is 1.26. As a comparison,
we solved the integer programming problem (ILJD) using the
CPLEX optimization program. The ILJD optimization yields:

R = 0.60

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 + 0.05

0 0 0 0
0 0 0 1
0 0 0 0
0 0 1 0

+0.33

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 + 0.38

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Therefore the optimal LJ decomposition has a value D =
0.60 + 0.38 + 0.33 + 0.05 = 1.36. We can check 1.26 ≤ D.

Consider now a particular matrix Xk in the LJ decompo-
sition. The rate mk associated with this matrix is the largest
entry in R that is covered by this matrix. Therefore the total
amount of bandwidth can be optimized by covering entries
of roughly equal size with the same matrix. Of course, the
entries should not share the same row or column in order to
be in a decomposition. This is the basis of the Greedy Low-
Jitter Decomposition (GLJD) which is a heuristic to solve the
integer programming problem ILJD.

C. The Greedy Low-Jitter Decomposition

The GLJD algorithm is defined as follows. First, the el-
ements in R are sorted in descending order and put in an
ordered list L. Note that each element in L corresponds to
some element Rij in the matrix R. Two elements in L are
defined to be non-conflicting if these two elements do not
belong to the same row or column in R. Then, we fill up each
of the decomposition sub-matrices by traversing the list from
the top and picking non-conflicting elements greedily. Once
an element is picked to be inserted into the decomposition
sub-matrix, the element is deleted from L. Once the end of

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

GREEDY LOW JITTER DECOMPOSITION

1: Sort the entries in R is descending order to create list L.
2: ∀m ∈ L, if L(m) = rij then set ρ(m) = i and κ(m) = j.
3: k = 1.
4: While L �= ∅

Set mk = 0 and l = 1
Set C[j] = 0 ∀j = 1, 2, . . . , n
While (Not end of list L)

If (C[ρ[l]] = 0 and C[κ(l)] = 0)
Xk

ρ(l)κ(l) = 1
C[ρ(l)] = C[κ(l)] = 1
If (L(l) > mk) mk = L(l)
Eliminate entry l from list L

End If
l ← l + 1

End While
k ← k + 1

End While
5: Output the matrices Xk and the corresponding weights mk .

Fig. 1. Description of the Greedy Low Jitter Decomposition Algorithm.

the list is reached, then a new decomposition sub-matrix is
initiated. This process is repeated until all the elements of
L are inserted into some sub-matrix. It is easy to see that
the worst case running time of the algorithm is O(n3). The
description of the GLJD algorithm is shown in Figure 1. For
the numerical example above, the GLJD algorithm generates
the following decomposition.

R ≤ 0.60

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 +0.38

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

+0.23

0 0 1 0
1 0 0 0
0 0 0 0
0 1 0 0

 +0.22

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

+0.05

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

GLJD yields a schedule time of 0.60+0.38+0.23+0.22+
0.05 = 1.48 (as expected, it is greater than the optimal ILJD
schedule time of D = 1.36 and the BV schedule time of 1).
Therefore if the low-jitter traffic load is less than 1

1.48 = 0.68
then the LJ heuristic can guarantee a full capacity to the traffic.
This is useful because, in practical situations, we expect the
low-jitter traffic to not be a sizable portion of the traffic across
the switch. Also, it can be noted that the bandwidth is not
necessarily wasted just because the LJ heuristic has a higher
value than the BV decomposition. Indeed, any bandwidth not
used by the low-jitter traffic class can then carry best-effort
traffic.

D. Guarantees on the GLJD Algorithm

The primary objective of the GLJD algorithm is to enable
traffic scheduling with low-jitter guarantees. However, the
following theorems prove that it also provides additional

guarantees, with upper bounds on the number of partial per-
mutations needed, the bandwidth required for the scheduling
and the competitive ratio with respect to the optimal algorithm.

For the sake of simplicity, in this section, we will always
assume that M = 1, and thus a rate matrix R has to be doubly
stochastic with line and column sum 1. The results will then
be easy to generalize to any given M . The following theorem
provides an upper bound on the number of partial permutations
used by GLJD. It derives from a more general result on greedy
on-line edge coloring [24], [13].

Theorem 5: Let K be the number of partial permutation
matrices needed in the GLJD algorithm. Then

K ≤ 2n − 1.

We have just found that the GLJD algorithm provides a
guarantee on the number of matrices that it will use. We are
now interested in the worst-case bandwidth that it will require.
More generally, define the length of the schedule provided
by an algorithm ALG for a rate matrix R as TALG(R) =∑K

k=1 mk. Then, define the worst-case bandwidth requirement
of algorithm ALG as: BW (ALG) = maxR(TALG(R)),
where the maximum is taken over the set of rate matrices
R. Then, the next theorem guarantees that BW (GLJD) =
O(log n).

Theorem 6: Let n ≥ 2 and let H represent the harmonic
series (Hn =

∑n
k=1 1/k). Then

BW (GLJD) ≤ 2Hn − 1 ≤ 2 ln(n) + 1.

How good is the upper bound provided by this theorem?
Theorem 6 states that GLJD guarantees at least 1

2Hn−1 of the
bandwidth to low-jitter traffic. Therefore, GLJD guarantees at
least 11.8% of the bandwidth to low-jitter traffic when n = 64,
and 7.1% when n = 1024.

However, during simulations, the bandwidth generally guar-
anteed to low-jitter traffic was around 60% with n = 64, as
described later. One may thus wonder if BW (GLJD) really
grows as Θ(logn) and reaches this worst-case bound. The
objective of the next theorem is to show that BW (GLJD)
indeed grows as Θ(logn). In addition, this theorem will prove
that for any algorithm ALG which satisfies the conditions
of the integer programming problem, BW (ALG) grows at
least as fast as Θ(logn). In particular, if ILJD is an optimal
such algorithm, i.e. D(R) = TILJD(R) for any rate matrix R,
then the bandwidth-guarantee competitive ratio BW (GLJD)

BW (ILJD) is
bounded.

Theorem 7: For any n ≥ 3, there exists at least one rate
matrix Rn with the following lower bound on the length of
its optimal LJ decomposition:

D(Rn) ≥ ln(n + 2)
2 ln 2

− 1
2
.

Corollary 8: BW (GLJD) = Θ(log n) and
BW (ILJD) = Θ(log n), hence BW (GLJD)

BW (ILJD) = Θ(1).

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Is this bound meaningful? The fact that the bandwidth-
guarantee competitive ratio of GLJD has a constant upper
bound is indeed meaningful. This result implies that the
bandwidth guarantee of any other algorithm satisfying the low-
jitter decomposition would not better the bandwidth guarantee
of GLJD by much as the scheduling complexity increases with
n, contrarily to what one would have intuitively thought when
considering the Θ(log n) behavior of BW (GLJD). However,
note that the bound on the competitive ratio is not tight, and
that the following theorems will prove in particular that this
ratio is at most 2.

We are now interested in the performance of the GLJD
algorithm with any given rate matrix R, rather than with its
worst-case rate matrix. The following theorems will slightly
improve the lower bound on D(R) = TILJD(R) provided
by Theorem 4, and then prove that for any rate matrix R,
TGLJD(R)
TILJD(R) ≤ 2 − 1

n . This means that for any matrix, the
bandwidth required by GLJD is less than twice the band-
width required by the optimal low-jitter decomposition. A
consequence of this result is that the bandwidth-guarantee
competitive ratio is also less than 2 − 1

n .
Theorem 9: For any given schedule, assume without loss

of generality that m1 ≥ m2 ≥ ... ≥ mK . Then for any k ∈
{1, . . . , n},

mk ≥ max(gk, hk), and (6)

D(R) = TILJD(R) ≥
n∑

k=1

max(gk, hk). (7)

Theorem 10: For any rate matrix R,

TGLJD(R)
TILJD(R)

≤ 2 − 1
n
.

Corollary 11: The bandwidth-guarantee competitive ratio
of the GLJD algorithm is upper-bounded by 2 − 1

n .
Itis interesting to note that it is possible to derive a doubly-

stochastic bipartite version of the worst-case matching in [24]
in order to prove that this bound of 2 is actually tight for large
n.

We now outline the scheduling algorithm that will be used
to schedule the matrices generated by the LJ decomposition.

III. SCHEDULING THE LJ DECOMPOSITION

Since rij is the desired rate from input port i to output port
j, we ideally want the time slots when i is matched to j to be
spaced 1

rij
apart, i.e., the points 0, 1

rij
, 2

rij
, 3

rij
, Given that

there are multiple connections that share the same bandwidth,
this is not possible in general. We settle for a slightly degraded
jitter performance. We call a connection Low Jitter if we
have exactly one match for this connection in each of the
time intervals

[
m
rij

, m+1
rij

]
,m = 0, 1, 2, At the end of the

LJ decomposition, we have K (perhaps partial) permutation
matrices. Let mk be the bandwidth for the switching matrix
Xk and let D =

∑K
k=1 mk. We assume that D < P, where P

is the switch speed. We define φk = mk

P , where φk represents

LOW JITTER SCHEDULER

1: Lat Ak denote the current start time and
Bk the current finish time for class k.

2: Set Ak = 0 and Bk = 1
φk

.
3: Let t represent the current time slot.
4: Let l = Arg mink:Ak≤t Bk.
5: If l �= ∅ schedule Xl in timeslot t.

– Set Al ← Bl and Bl = Bl + 1
φl

.
– Set t ← t + 1 and go to Step 3.

6: If l = ∅ then set t ← t + 1 and go to Step 3.

Fig. 2. Description of Low Jitter Scheduling Algorithm.

the fraction of timeslots that should use the schedule table
(switching matrix) Xk. We assume that

∑K
k=1 φk < 1. We

want to schedule matrix k at rate φk. Since each port pair
belongs in exactly one matrix in the decomposition, it is
possible to control the jitter for each port pair individually.
Let T j

k represent the time slot in which the schedule table k

is scheduled for the jth time. For low jitter, we want

j

φk
≤ T j

k ≤ j + 1
φk

.

We compute as follows the start time Sj
k and the finish time

F k
j for the jth schedule of table k:

Sj
k =

j

φk
F j

k =
j + 1
φk

.

In the implementation of the scheduling algorithm we define
iteratively Ak and Bk, respectively the current start time and
the current finish time for schedule table k, as shown in
Figure 2.

At the beginning of time slot t, schedule table k is defined to
be eligible if Sk ≤ t and ineligible otherwise. The scheduling
algorithm works as follows: At the beginning of each time
slot, among all the eligible schedule tables, the table with the
smallest finishing time is picked for scheduling. Let l represent
this table. The start time and the finish time for schedule
table l is updated. This process is then repeated. If no class is
eligible at the beginning of a given time slot, then the inputs
are matched to the outputs by some algorithm that optimizes
the performance of best effort traffic. Best effort traffic also
uses the slots where guaranteed jitter traffic is not available to
take its allotted slot or in the case where the schedule table is
a partial permutation table. The following theorem is a special
case of the general result in [25]. The proof of the result in
our case is straightforward and is proved directly.

Theorem 12: If
∑K

k=1 φk < 1, then for all classes k, the
LJS algorithm results in

j

φk
≤ T j

k ≤ j + 1
φk

+ 1.

Therefore by the above theorem, all connections are (al-
most) low jitter. Note that some connections may miss their
allotted range by one time slot. Under the moderate loading

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

conditions that we consider, this seems to happen very rarely.
In the experimental section, we compare the LJ decomposition
with the scheduling algorithm described above with the BV
decomposition and the scheduling algorithm outlined in Chang
et al. [9]. The main difference between the scheduling algo-
rithm described above and the one in [9] is that the scheduling
algorithm in [9] does not use starting times.We ran the BV
decomposition algorithm with our scheduling algorithm and
the results for BV are not qualitatively different from the ones
shown in the next section.

IV. EXPERIMENTAL RESULTS

The experimental results are shown to illustrate the advan-
tages in jitter performance of the LJD. In the simulations, we
consider 64 × 64 and 128 × 128 switches in the experiments,
and assume that the switches process 100 slots per second. It
is also assumed that the guaranteed rate for each input-output
pair is independently and uniformly distributed between 0 and
some upper bound u. The value of u determines the mean
guaranteed rate traffic load in the switch. We adjust the rate
to ensure that all row and column sums are the same. If the row
and column sums are different for different rows and columns,
then the performance of the algorithms are qualitatively similar
to the results for the balanced case. We measure the following
quantities:

Jitter Performance: For a given input-output pair (i, j), the
LJ decomposition will result in one match in each interval[

m
rij

, m+1
rij

]
, for m = 0, 1, 2, . . . In the case of the BV

decomposition some intervals will get multiple matches and
others will get none. In Figure 3 we plot the interval number
versus the number of matches produced by the different
decompositions. Results are shown for a particular input-
output port combination, but other input-output ports had
similar results. The results show a very poor jitter performance
for the BV decomposition. There are no matches for almost
20 intervals between 40 and 60, and almost 12 matches in
the interval 39. On the contrary, GLJD results in one match
per interval as predicted by Theorem 12. For BV, performance
was even worse with the 128 × 128 switch, not shown here.

Speedup Ratio: This represents the ratio of the bandwidth
requirement of the GLJD heuristic to the bandwidth require-
ment of BV. Recall that the bandwidth requirement of BV
decomposition is the row sum M of the rate matrix. We show
the result for 10 experiments in Figure 4. In our experiments
we varied the low-jitter traffic load from 10% to 60%, and in
all these cases the schedule table obtained by the GLJD was
feasible. In other words, the throughput requirement was not
higher than the switch capacity. As stated earlier, in practice,
we expect the low-jitter traffic load to be less than 50% of the
switch traffic.

Optimality Gap: We compute the ratio of TGLJD to the
lower bound D = TILJD generated by applying Lemma 3.
This ratio tracks the performance of GLJD to the optimal
solution. The result is shown in Figure 5. Note that in all
the cases, the heuristic is within 10% of the optimal solution.

INTERVAL NUMBER

N
U

M
B

E
R

 O
F

 M
A

T
C

H
E

S

0 20 40 60 80 100 120

0
2

4
6

8
10

12

BV DECOMPOSITION
LJ DECOMPOSITION

Fig. 3. Number of Matches per Interval for a 64 × 64 Switch

EXPERIMENT NUMBER

S
P

E
E

D
U

P
 R

A
T

IO

2 4 6 8 10

1.
40

1.
45

1.
50

Fig. 4. Speedup Ratio for a 64 × 64 switch

EXPERIMENT NUMBER

O
P

T
IM

A
LI

T
Y

 R
A

T
IO

2 4 6 8 10

1.
02

1.
04

1.
06

1.
08

Fig. 5. Optimality Ratio for a 64 × 64 switch

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

TABLE I

NUMBER OF MATRICES IN THE DECOMPOSITION

Trial BV LJ BV LJ
64 × 64 64 × 64 128 × 128 128 × 128
Switch Switch Switch Switch

1 854 68 1591 131
2 797 69 1575 134
3 878 69 1534 129
4 812 70 1612 137
5 878 67 1567 129

TABLE II

RUNNING TIMES OF THE ALGORITHM

Trial LJ BV LJ BV
64 × 64 64 × 64 128 × 128 128 × 128
Switch Switch Switch Switch
(Secs) (Secs) (Secs) (Secs)

1 0.05 5.42 0.32 59.7
2 0.04 5.37 0.35 58.7
3 0.04 5.22 0.41 56.4
4 0.05 5.68 0.37 57.2
5 0.06 5.44 0.35 51.7

Number of Matrices in the Decomposition: We compare
the number of matrices in BV and GLJD. Lower number of
matrices results in easier scheduling algorithms. The results are
shown for a 64 × 64 and 128 × 128 switch in Table I . With
n = 64, BV typically generates about 850 matrices versus
about 70 matrices for GLJD. Similarly, BV results in about
1600 matrices and GLJD results in about 135 matrices for
n = 128. Therefore the size of the schedule table is typically
an order of magnitude less for GLJD with respect to BV.

Total Computation Time: We compare the total computation
time to run both the BV and the LJ decompositions in Table
II . The runs were done on a 1 Ghz Pentium processor.
All run times are in seconds of system time. For the BV
decomposition we run a fast maximum flow algorithm at each
step in order to determine the next switching matrix in the
decomposition. Note that although both these computation
times could be minimized in hardware implementations, we
believe that the LJ decomposition (using GLJD) will still be
significantly faster.

V. A PRACTICAL ALGORITHM FOR

BANDWIDTH-GUARANTEED TRAFFIC

Assume that a router designer is to build a frame-based
scheduler for bandwidth-guaranteed traffic with little or no
jitter constraint. What algorithm should this designer use?

In a mathematical formulation, the designer needs to con-
sider a rate matrix R with real (floating point) coefficients,
and find an algorithm that would guarantee a schedule to
R with small speed-up (O(1)), a number of permutations
small enough to be stored on a single chip (say O(n)), and
a complexity small enough to be implemented at core-router
speeds.

For solving this problem, we have considered many algo-
rithms proposed in the literature. Most of them are based on a
common divisor in R and thus require too many permutations,

because the common divisor in router implementations might
be as small as the floating point precision. Thus, this excludes
algorithms related to call routing in Clos networks [26],
[27], to openshop scheduling [28], to heuristic row bottleneck
minimization in optical WDMA star networks [29] and in
TDM switching [30], and to bipartite graph matching [13].
Alternative algorithms which do not require a common divisor
are often too impractical because they require optimal edge
coloring in bipartite graphs, such as BV [9] and a traffic rate
approximation scheme proposed in [31].

Our approach is inspired by this last scheme. However,
contrarily to this scheme, we will use maximal matchings
[13] instead of optimal edge coloring. Maximal matchings are
faster, but provide less guarantees.

We thus propose the following iterative maximal frame-
scheduling. First, define an integer d, which will be a common
divisor in the coarse matrix, such that d = Θ(n) - for instance,
d = n, d = 4n, d = 2�log2(n)�, and so on.

Then, given the rates rij , compute uij =
d · rij� and
εij = rij − uij

d . Note that when d is a power of 2 and
numbers are represented in a binary form, this computation
simply truncates the first digits of rij . U1 = U = [uij], the
coarse approximation matrix, is a nonnegative-integer matrix
with row and column sum of at most d. ε = [εij] = R − U

d ,
the remainder matrix, is such that for all {i, j}, 0 ≤ εij ≤ 1

d .
Then, apply a maximal matching algorithm to U1, yielding

(partial) permutation σ1, and compute U2 = U1 − σ1. Apply
again a maximal matching to U2, yielding σ2, and compute
U3 = U2 −σ2. Continue likewise 2d−1 times, until obtaining
2d − 1 (partial) permutations {σ1, ..., σ2d−1}.

Finally, for 1 ≤ k ≤ n, call πk the permutation that
connects any input i to output i+k mod n, and consider the set
S = {σ1, ..., σ2d−1, π1, ..., πn}. Then the following theorem
proves that a schedule table using each of the permutations
in S exactly once in a cycle of d time-slots satisfies the rate
matrix requirements.

Theorem 13: At the end of the algorithm defined

above,
∑2d−1

k=1
σk

d ≥ U
d ,

∑n

k=1
πk

d ≥ ε, and therefore,∑2d−1

k=1
σk+

∑n

k=1
πk

d ≥ R.
Assume that d = Θ(n). The resulting decomposition satis-

fies our objectives. First, it uses at most 2d + n − 1 = O(n)
permutations in the schedule table, thus these permutations
will typically hold on a chip. Second, it needs a finite speed-up
of 2+ n−1

d = O(1) in order to guarantee 100% throughput. Fi-
nally, it takes a computation time of O(n3) with a centralized
scheduler, and O(n) with a distributed scheduling, as shown
below. It can also be noted that the jitter guarantee is in O(n)
(the length of the schedule), hence this is an alternative for
traffic not needing the extremely low jitter implemented with
GLJD.

Also, all the maximal algorithms used in current routers
can be extended to frame scheduling, and in particular as well
those based on pipelining such as WFA [2] as those based on
a request-grant-accept arbitration type such as iSlip [4]. This
is interesting for legacy issues. The pipelined version of WFA

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

seems especially suited for such an iterative algorithm, since
crosspoint (i, j) can start working on iteration k + 1 of the
decomposition algorithm at the same time as crosspoints (i, j+
1) and (i + 1, j) start working on iteration k [2]. Therefore,
for any given crosspoint, there are 2d − 1 iterations, with at
most one computation and two transmissions of information
per iteration. Hence, the distributed algorithm runs in O(d) =
O(n) time.

Finally, from a practical point of view, the main advantage
of such a scheme is that it can easily support incremental rate
updates without computing a whole new schedule again. For
instance, assume that r1

ij is updated into r2
ij . Compute the

change in the integer coarse matrix δ = u2
ij − u1

ij . If δ = 0,
do nothing. If δ < 0, remove δ elements in position (i, j) from
the set {σk}. If δ > 0, add δ elements in position (i, j) to the
set {σk} (possible because the set contains 2d − 1 elements
[13]). Hence, with a correct data structure, an update takes
O(n) time. Interestingly enough, this feature is related to the
ease for establishing and removing calls in a non-blocking
Clos network with 2d − 1 middle-stages.

VI. A LAST WORD ON BURSTY DECOMPOSITION

ALGORITHMS

A surprising side-effect of the greedy smooth scheduling
provided in this paper is that it can actually be helpful when
looking for the least smooth scheduling possible. For instance,
consider an input-queued router using an optical switch fabric.
Note that this fabric could be passive (for instance, based
on an arrayed waveguide grating with tunable lasers [32]) as
well as active (for instance, based on micro-mirrors [33]).
Similarly, consider a star-based WDM broadcast-and-select
optical system [14]. In those two cases, the tuning time from
one channel to another takes a major share of the frame
schedule time [31]. Thus, the main issue is not anymore the
bandwidth available, but rather the number of tuning times in
a given schedule: the designer will prefer a schedule with very
few permutations, and thus few tunings, even if it implies an
increased burstiness.

The primary objective is therefore to minimize as much as
possible the number of permutations in a schedule, in order
to minimize the number of tuning times, and a secondary
objective is to minimize the bandwidth taken by those permu-
tations. Towles and Dally [31] propose a heuristic algorithm
for this problem called MIN. MIN minimizes the number of
permutations used, and therefore uses at most n permutations.
However, MIN needs a speed-up of at least Θ(log n) in order
to schedule any rate matrix. Also, MIN needs to perform sev-
eral times edge coloring in a bipartite graph, and is therefore
difficult to implement in a core router. GLJD could thus be a
practical algorithm for approximating MIN. First, GLJD needs
at most 2n− 1 permutations (Theorem 5), and in simulations
the number of permutations is shown to be very close to n.
Second, GLJD also needs a speed-up of at most Θ(log n),
with simulations results close to a speed-up of 1.5. And finally,
GLJD was shown to have a low implementation complexity.

VII. CONCLUSION

In this paper we considered the problem of schedul-
ing guaranteed-bandwidth low-jitter traffic in input-queued
switches. We proposed to combine the GLJD algorithm and
a Low Jitter Scheduler, and found experimentally that they
are both both practical and efficient. We provided several
performance bounds on these algorithms, with respect to the
number of permutations as well as the schedule time. We
proposed a practical algorithm for scheduling the remaining
jitter-insensitive bandwidth-guaranteed traffic, and found that
it supports incremental updates. Finally, we showed how our
findings could even be extended to non-smooth systems with
large tuning time.

REFERENCES

[1] K. Kar, T. V. Lakshman, D. Stiliadis, L. Tassiulas, “Reduced complexity
input buffered switches,” Proceedings of Hot Interconnects VIII, Palo
Alto, Aug. 2000.

[2] Y. Tamir and H.C. Chi, “Symmetric crossbar arbiters for VLSI com-
munication switches,” IEEE Transactions on Parallel and Distributed
Systems, vol. 4, no. 1, pp. 13-27, 1993.

[3] T.E. Anderson, S.S. Owicki, J.B. Saxe, and C.P. Thacker, “High speed
switch scheduling for local area networks,” ACM Transactions on
Computer Systems, vol. 11, no. 4, pp. 319–52, Nov. 1993.

[4] N. McKeown, M. Izzard, A. Mekkittikul, B. Ellersick, and M. Horowitz,
“The Tiny Tera: A packet switch core,” in Proceedings of Hot
Interconnects V, August 1996.

[5] D. Shah and M. Kopikare, “Delay bounds for approximate maximum
weight matching algorithms for input queued switches,” Proceedings of
IEEE Infocom ’02, New York, NY, June 2002.

[6] L. Tassiulas, “Linear complexity algorithms for maximum throughput
in radio networks and input queued switches,” Proceedings of IEEE
Infocom ’98, vol. 2, pp. 533-539, 1998.

[7] P. Giaccone, B. Prabhakar, and D. Shah, “Towards simple, high-
performance schedulers for high-aggregate bandwidth switches,” Pro-
ceedings of IEEE Infocom ’02, New York, NY, June 2002.

[8] A. Hung, G. Kesidis, and N. McKeown, “ATM input-buffered switches
with guaranteed rate property,” IEEE ISCC, Athens, 1998.

[9] C.S. Chang, J.W. Chen, and H.Y. Huang, “On service guarantees for
input-buffered crossbar switches: a capacity decomposition approach by
Birkhoff and Von Neumann,” IEEE IWQoS, London, 1999.

[10] C.S. Chang, J.W. Chen, and H.Y. Huang, “Birkhoff-Von Neumann input-
buffered crossbar switches,” Proceedings of IEEE INFOCOM ’00, Tel
Aviv, Israel, pp. 1614-1623, 2000.

[11] E. Altman, Z. Liu and R. Righter, “Scheduling of an input-queued switch
to achieve maximal throughput,” Probability in the Engineering and
Informational Sciences, vol. 14, pp. 327334, 2000.

[12] R.S. Tucker, W.D. Zhong, “Photonic packet switching: an overview,”
IEICE Transactions on Communications, vol. E82-B, no. 2, pp. 254-
264, Feb. 1999.

[13] T. Weller and B. Hajek, “Scheduling nonuniform traffic in a packet-
switching system with small propagation delay”, IEEE Transactions on
Networking, vol. 5, pp. 813-823, Dec. 1997.

[14] V. Sivaraman and G.N. Rouskas, “A reservation protocol for broadcast
WDM networks and stability analysis,” Computer Networks, vol. 32,
no. 2, pp. 211-227, Feb. 2000.

[15] J. Lin and N. Ansari, “Enhanced Birkhoff-von Neumann Decomposition
Algorithm for Input Queued Switches,” IEE Proceedings Communica-
tions, vol. 148, no. 6, pp. 339-342, 2001.

[16] M. Ajmone Marsan, P. Giaccone, E. Leonardi, and F. Neri, “Local
scheduling policies in networks of packet switches,”’ unpublished, 2002.

[17] A. Charny et. al., “An Expedited Forwarding PHB,” draft-ietf-diffserv-
rfc2598bis-02.txt, Internet Engineering Task Force.

[18] B. Sikdar, K.S. Vastola and S. Kalyanaraman, “On reducing the degree
of self-similarity in network traffic,” unpublished, 2002.

[19] F. Rendl, “On the complexity of decomposing matrices arising in satellite
communication,” Operations Research Letters, vol. 4, May 1985.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

[20] G. Bongiovanni, D. Coppersmith, and C.K. Wong, “An optimal time
slot assignment for an SS/TDMA system with variable number of
transponders,” IEEE Transactions on Communications, vol. 29, May
1981.

[21] E. Balas and P.R. Landweer, “Traffic assignment in communication
satellites,” Operations Research Letters, vol. 2, November 1983.

[22] I. Gopal, and C.K. Wong, “Minimizing the number of switchings in
an SS/TDMA system”, IEEE Transactions on Communications, vol. 33,
June 1985.

[23] C.A. Pomalaza-Raez, “A note on efficient SS/TDMA assignment al-
gorithms,” IEEE Transactions on Communications, vol. 36, September
1988.

[24] A. Bar-Noy, R. Motwani, and J. Naor, “The greedy algorithm is optimal
for on-line edge coloring,” Information Processing Letters, vol. 44, no.
5, pp. 251-253, 1992.

[25] N.R. Figueria and J. Pasquale, “An upper bound on delay for the virtual
clock service discipline,” IEEE Transactions on Networking, vol. 3,
August 1995.

[26] I. Gragopoulos and F.-N. Pavlidou, “A new evaluation criterion for Clos-
and Benes-type rearrangeable switching networks”, IEEE Transactions
on Communications, vol. 45, no. 1, pp. 119-126, Jan. 1997.

[27] H. Lee, F. Hwang and J. Carpinelli, “A new matrix decomposition al-
gorithm for rearrangeable Clos interconnection networks”, IEEE Trans-
actions on Communications, vol. 44, no. 11, pp. 1572-1578, Nov. 1996.

[28] A. Ganz and Y. Gao, “Efficient algorithms for SS/TDMA scheduling”,
IEEE Transactions on Communications, vol. 40, no. 6, pp. 1367-1374,
Aug. 1992.

[29] K.L. Chen, “A conflict-free protocol for optical WDMA networks”,
Proceedings of IEEE Globecom ’91, pp.1276-1281, 1991.

[30] K.L. Yeung, “Efficient time slot assignment algorithms for TDM hier-
archical and nonhierarchical switching systems”, IEEE Transactions on
Communications, vol. 49, no. 2, pp. 351-359, Feb. 2001.

[31] B. Towles and W.J. Dally, “Guaranteed scheduling for switches with
configuration overhead,” Proceedings of IEEE Infocom ’02, New York,
NY, June 2002.

[32] J. Gripp et. al., “Demonstration of a 1.2 Tb/s optical packet switch
fabric based on 40 Gb/s burst-mode clock-data-recovery, fast tunable
lasers, and a high-performance NxN AWG,” ECOC ’01, vol. 6, 2001.

[33] Special issue on optical MEMS, IEEE Journal on Selected Topics in
Quantum Electronics, vol. 8, no. 1 , Jan.-Feb. 2002.

APPENDIX

Proof for Lemma 3: Let σ be an optimal permutation. For
some k < l let wσ(k) ≥ wσ(l). Let vl = max{wσ(k), vl}. By
interchanging wσ(k) and wσ(l) note that the objective function
value is non increasing. The same result can be shown if
wσ(k) = max{wσ(k), vl}.

Proof for Theorem 4: We show the result for the case
where the rows are sorted. The proof for the column sorting
is identical. Assume that the decomposition has n matrices.
It is easy to show that the lower bound is valid if there
are more than n matrices in the decomposition. Consider the
first row of the matrix R. Assume without loss of generality
that the columns of R are permuted so that the first row is
sorted in descending order. Each entry in the first row has to
belong to a different matrix in the decomposition. Each entry
in the second row has to belong to a different matrix in the
decomposition. If we ignore the constraint that each column
in each decomposition matrix has to have exactly one entry,
then the minimum amount of bandwidth that we need for the
first two rows, by Lemma 3 is given when the second row is
in sorted order. It is a lower bound because we ignore one
of the constraints. This argument can be repeated in order to
show the result.

Proof for Theorem 6: Let R be a rate matrix, and assume
that rij is an element of R that still remains to be scheduled

after k iterations of the GLJD algorithm. Consider the set of
all elements in L that belong to the same row or column as
rij and have at least the same weight. Then, during the first
k iterations, the algorithm picked at least k elements from
this set (by construction of this greedy maximal algorithm,
see also [13]).Thus, according to the pigeonhole principle, the
algorithm picked at least �k

2 of these elements either in row
i or in column j - without loss of generality, let’s assume that
it was in row i. Therefore, on row i, there were initially at
least 1+ �k

2 elements with a rate of at least rij (counting rij

itself). Hence, since the row sum is 1, rij ≤ 1
1+� k

2 � . We thus
know that after k iterations, all remaining elements have a rate
of at most 1

1+� k
2 � . This implies that the weight of the partial

permutation picked at the next iteration will have the same
upper bound (mk+1 ≤ 1

1+� k
2 �). Using m1 = maxi,j(rij) ≤ 1

and K ≤ 2n − 1 (Theorem 5), we get

K∑

k=1

mk ≤ 1 +
K−1∑

k=1

1
1 + �k

2

≤ 1 +
1
2

+
1
2

+
1
3

+
1
3

+ · · · +
1
n

+
1
n
,

i.e. TGLJD(R) ≤ 2Hn − 1. Using the inequality 1
k ≤∫ k

k−1(
1
x) dx = ln(k) − ln(k − 1) for k ≥ 2, one gets

Hk ≤ 1 + ln(k) for k ≥ 2, hence the result of the theorem.
Note that this proof shows that for if rij is unscheduled after

k ≥ 1 iterations, then rij is at least the (1 + �k
2)th element

of either its row or column. Thus a finer approximation
is mk+1 ≤ max(g1+� k

2 �, h1+� k
2 �), where g and h are as

defined in Theorem 4. Hence
∑K

k=1 mk ≤ max(g1, h1) +
2
∑2n−2

k=1 max(g1+� k
2 �, h1+� k

2 �) = g1 + 2
∑n

k=2 max(gk, hk)
(because g1 = h1). We can then get the result of the theorem
by using the upper bound max(gk, hk) ≤ 1

k for k ≥ 1.
Proof for Theorem 7: For any n ≥ 3, define k such that

2k+1 − 1 ≤ n < 2k+2 − 1. Let Rn be the following bloc-
diagonal doubly-stochastic n × n matrix:

Rn =

A1 0 0
0 A2 0 0
... 0

. . . 0 0
...

... 0 Ak 0 . . . 0
...

...
... 0 1 0 0

...
...

...
... 0

. . . 0
0 0 0 0 0 0 1

,

where for any k′ ≥ 1, Ak′ is the uniform doubly stochastic
2k′ × 2k′

matrix of sum 1: Ak′ =
[

1
2k′

]

ij
. Rn is an n × n

doubly stochastic rate matrix (as in [31]). Theorem 4 provides
the following lower bound on the length of the optimal LJ
decomposition of Rn: D(Rn) ≥ 1 + 1

2 + 2
4 + · · · + 2k−1

2k =
k+1
2 . Since 2k+2 − 2 ≥ n, k ≥ log2(n + 2) − 2, and thus

D(Rn) ≥ log2(n+2)−1
2 .

Proof for Corollary 8: For n ≥ 3, ln(n+2)
2 ln 2 − 1

2 ≤
BW (ILJD) ≤ BW (GLJD) ≤ 2 ln(n) + 1.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Proof for Theorem 9: Let’s prove that mk ≥ gk for a given
k ∈ {1, ..., n}. By definition of gk, there is an element rij in
the matrix R such that rij = gk, and rij has the kth weight
of its column j. In other words, in column j, there are at least
k elements with the same weight as rij . Since two elements
from the same column can’t be scheduled at the same time, by
the pigeonhole principle, at least one of these k elements does
not belong to the first k − 1 permutations - say it is ri′j . ri′j

thus belongs to some permutation k′ such that k ≤ k′ ≤ K.
But then mk ≥ mk′ ≥ ri′j ≥ rij = gk. Similarly, mk ≥ hk.

Proof for Theorem 10: For k ∈ {1, ..., n}, let fk =
max(gk, hk). First, since g1 ≥ ... ≥ gn and h1 ≥ ... ≥ hn,
clearly f1 ≥ ... ≥ fn and n · f1 ≥

∑n
k=1 fk.

Second, from the comment in the proof of Theorem 6, we
know that TGLJD(R) ≤ f1 + 2

∑n
k=2 fk. Third, from Theo-

rem 9, we also know that D(R) = TILJD(R) ≥
∑n

k=1 fk.
Hence, combining these three results, we get TGLJD(R)

TILJD(R) ≤
2 − f1/(

∑n
k=1 fk) ≤ 2 − 1

n .
Proof for Corollary 11: Consider R such that

BW (GLJD) = TGLJD(R). Then from Theorem 10
BW (GLJD) ≤

(
2 − 1

n

)
· TILJD(R) ≤

(
2 − 1

n

)
·

BW (ILJD).
Proof for Theorem 13: The inequality

∑2d−1
k=1 σk ≥ U

is a property of maximal matchings [13]. By definition, ε ≤
[1]ij =

∑n
k=1 πk. Finally, R = U

d + ε.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

	INFOCOM 2003
	Return to Main Menu

