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Abstract— We revisit the problem of scheduling optical packet
switched networks such as packet switches, WDM rings, and gen-
eral mesh structures, when propagation delays are not negligible.
We use a general model based on delay graphs, and show that sev-
eral optical packet switched networks can be modeled using this
abstraction. We devise mechanisms that take into account prop-
agation delays and can achieve ���	��
 throughput for admissible
traffic patterns, when traffic demands are known. We then present
necessary and sufficient conditions for providing ���	��
 throughput
in such graphs.

I. INTRODUCTION

Optical packet/burst switching over Wavelength Division
Multiplexing (WDM) has been extensively studied over the last
few years and the technology has been applied to packet fabrics,
ring architectures and mesh networks. The evolution of optical
components with devices such as fast tunable lasers [10], [19]
or large Arrayed Waveguide Grating Routers (AWGR) [2] make
such architectures feasible.

For example, packet fabrics can be built with tunable trans-
mitters, AWGRs and fixed receivers, or with fixed transmitters,
optical star couplers and tunable receivers [10], [13]. Ring net-
works can be also built using similar techniques. In TTFR rings,
transmitters are tunable and receivers are fixed; traffic is trans-
mitted in terms of packets or bursts, and communication be-
tween two nodes is achieved by tuning the wavelength of the
transmitter to the fixed wavelength associated with the receiver
[18]. The second alternative (FTTR) assumes that transmit-
ters are fixed and receivers are tunable and is equivalent to a
“broadcast-and-select” architecture. Receivers can choose the
transmitter that they want to listen to, and traffic is transmitted
again in bursts. A third alternative allows both transmitters and
receivers to be tunable providing further flexibility. In mesh
networks, one can assume similar models where each receiver
is associated with a wavelength and transmitters are tunable. A
mesh of buffer-less optical switches interconnects the nodes. A
node can transmit a packet to any other node by utilizing the
appropriate wavelength.

If we abstract the operation of all the above architectures, we
can identify the common requirements for correct operation.
Data from two transmitters cannot arrive to one receiver at the
same time and a transmitter cannot send data to two receivers at
the same time. In addition data for the same receiver must not� This work was done while the author was with Bell Labs.

conflict at any point of the network. Therefore, some contention
resolution mechanism is necessary to prevent conflicts.

In addition, the above technologies are often applied in net-
work settings, with relatively long propagation delays; for ex-
ample, a single packet switched network within a campus, or a
metro-area ring, or a core optical switched network. In these
cases, propagation delays are an important component of the
scheduling problem. Our goal is to study the structural proper-
ties of the propagation delays and show necessary and sufficient
conditions for achieving 100% throughput in such networks.

Although the scheduling problem has been formally studied
before in most of the above settings, and with different param-
eters [13], [4], [12], [11], [17], [5], [6], the problem of vari-
able propagation delays has not been addressed in a general-
ized form. In this paper, we revisit the problem of schedul-
ing in such applications, by using a generalized model of de-
lay graphs. Based on this model, we study large optical packet
switched networks and show that in all of these cases we can
achieve 100% throughput when propagation delays are decom-
posable. Further, we present a mechanism for achieving this
structure in general optical nodes.

II. PROBLEM FORMULATION

A. Notations and Assumptions

We first introduce some notations, describe the different
problem settings, and show how these different settings can be
modeled in a similar fashion. Consider the general model of
Figure 1. A set of transmitters and receivers are interconnected
through some buffer-less optical network. The network can be
a ring, a star, or some other non-blocking structure (i.e. every
permutation of arrivals on the receivers can be satisfied, as long
as there are no output conflicts). �� and ��� denote propagation
delays to some intermediate network node � , and without loss
of generality we assume that delays are expressed in terms of
integer timeslots.

Mesh – In the most general setting, we can assume that the
interconnection network is a mesh connecting � edge nodes
numbered ���������	��������� � . Each node has a fast Tunable Trans-
mitter and a Fixed Receiver (TTFR). The fast tunable transmit-
ter is an optical device that can be made to transmit in different
wavelengths. The fixed receiver is an optical device that al-
ways receives data using the same wavelength. Therefore the
fixed receiver of a node ! , where �#"$!%"&�'� will always
receive data at an associated wavelength ()� , with � distinct
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Fig. 1. General network model
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Fig. 2. Bipartite delay graph

wavelengths associated to the � distinct nodes. In order for
node * to transmit data to node ! , it tunes its tunable transmitter
to the wavelength ( � , and then transmits data. Since node ! is
the only node listening to wavelength ( � , it will be the only one
to receive this packet. Therefore, a given wavelength is always
associated with a specific receiving node, preventing contention
for wavelengths between two different receiving nodes. In addi-
tion, the path taken by packets is assumed to be pre-determined
by a routing algorithm, which ensures that the propagation time
between any two nodes is the same for all packets. This as-
sumption implies that if two packets do not collide at a shared
intermediate node, they will also not collide at the destination
node.

Bipartite delay graph – Let us model the mesh as an abstract�,+'� weighted bipartite graph. Input and output vertices are
representing the � nodes, and edge weights are representing
the propagation delays between the nodes. Thus, the edge from
input vertex * to output vertex ! has weight -�.� . We will call
such a graph a bipartite delay graph (Figure 2).

Separable graph – In the simpler case of packet switches
based on AWGRs [10], [2] and broadcast systems based on star
couplers, the propagation delays typically consist of two con-
secutive stages: from the source node to the hub, and from the
hub to the destination node. It is possible to model these two
stages as follows. First, each node * sends packets to a central
hub, taking a propagation time �  . Then, this hub switches the
packet and sends it to its destination node ! , taking an addi-
tional time ��� (possibly including some fixed processing time).
Therefore, there exists two sequences � and � such that-/.�102�3345��� for all *6�7!8� (1)

Since we can separate the delays of this graph into two distinct
components, we will call it a bipartite delay graph with sepa-
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Fig. 3. WDM packet switched ring with tunable transmitters and fixed re-
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rable delays, or simply a separable graph (Figure 1).9
-Separable graph – Consider a uni-directional ring with� nodes and a total round-trip-time of : (Figure 3). For any

nodes * and ! , the union of the paths from node * to node � and
from node � to node ! is either equal to the path from node * to
node ! (if node � is on this path), or to the path from node * to
node ! augmented by the full round-trip of the ring. Therefore,
the propagation time between node * and node ! is always equal,
modulo : , to the sum of the propagation time between node *
and node � and the propagation time between node � and node! . Defining �  0;- =< and � � 02- <7� for all nodes *��7! , we get:- .� 0#�  45� �?>A@�B : for all *6�C!)� (2)

We will call any graph that satisfies this equality a bipartite
delay graph with separable delays modulo : , or simply an : -
separable graph. For instance, any bi-directional ring of round-
trip-time : is an : -separable graph as long as the routing pol-
icy involves no backtracking in the middle of a path. In addi-
tion, any separable graph is also : -separable. Note, that an : -
separable graph is a generalization of the separable graph that
allows the inclusion of ring architectures in our model abstrac-
tion.

B. Problem Definition

As is customary, we will assume for simplicity that time is
slotted, and that all delays are multiples of a time-slot. Variable-
length packets arriving to the mesh are segmented into fixed-
length packets (or simply packets), and departing packets are
reassembled into variable-length packets again. In addition, in-
side the mesh, each node can receive (respectively transmit) at
most one packet per time-slot.

Rate matrix – We will assume that the network needs to
periodically schedule a given rate matrix D&0FE DGH�JIK<�L3KM �JL3N .D .� is the rate of packets arriving to node * (from outside the
mesh) and destined to node ! . This rate matrix could be ex-
plicitly given to the node (for instance in SONET), or could be
periodically re-computed (for instance with data traffic), with
a computation period significantly larger than the propagation
and schedule times. In any case, we will assume that the rate
matrix D is - or can be made - non-oversubscribed, i.e. doubly



sub-stochastic, so that a node would not need to transmit (and
receive) more than one packet per time-slot. Thus, for any two
nodes *��7! : O$P NQ�R < DS Q "T�U� and

P N Q�R < D Q �V"T��� (3)

Finally, we will assume that D is rational, so as to always be
able to schedule it in a finite period. For instance, in SONET
transport networks, traffic demands in the network can be based
on an STS-1 granularity. The rate matrix D is then expressed
as the ratio of an integer matrix by : , the number of STS-1
circuits. As an example, at OC192 speeds, D will be equal to
the ratio of an integer matrix by :W0W�	XY� , where all rows and
columns of the integer matrix sum to at most : so that D is not
over-subscribed.

Schedule – A schedule Z of period : is a collection of :
matrices of size �F+ � that are to be scheduled periodically.Z�.��[]\_^ indicates the number of packets sent by node * to node !
at time-slot \ . Our objective is to find a schedule Z of period :
that satisfies the following four conditions, for all �G"`*6�C!a"b�
and cd"e\f"e:hge� .ijjk jjl [K*m^ P N Q�R < Z  Q []\_^n"o�[]*7*p^ P N Q�R < Z Q � [�[]\qgr- Q � ^ >A@�B :V^s"h�[]*7*7*p^ <t P tqu <v R�w Z�.��[]\_^nx;Dy.�[]*7�z^{Z�H��[K\_^n|}��c8�	�~� (4)

[]*p^ The first equation shows that each transmitter sends at
most one packet per time-slot.[]*7*p^ The second equation states that each receiver receives
at most one packet per time-slot. Packets received by node !
from node � at time-slot \ were sent at time-slot [K\�g5- Q ��^ . By
periodicity, the schedule at [K\8ga- Q ��^ is the same as the schedule
at [K\�gr- Q ��^ >A@zB : .[]*7*7*p^ The third condition imposes that the demand for rate
matrix D is satisfied.[]*7��^ The last equation indicates that at any time-slot, there is
either one or no packet sent by a given transmitter at a given
wavelength.

III. TIME-SHIFTED SCHEDULING

A. Birkhoff-von Neumann Scheduling

The key complexity for finding an appropriate schedule
stems from the inherent propagation delays. Indeed, consider
the hypothetical case where all delays are null ( -�.��0�c for all��"#*��7!�"2� ). Our objective is to find a schedule Z that satis-
fies Equation 4. Conditions (i),(ii) and (iv) of Equation 4 imply
that at each time-slot \ , Z�[K\_^ is a c�g�� matrix with at most a sin-
gle � per row and a single � per column. For instance, it could
be a permutation matrix, i.e. a cGge� matrix with exactly one �
per row and per column. Additionally, condition (iii) imposes
that the sum of the schedules over any period should be greater
than or equal to D . Given these constraints, it is known that it is
possible to schedule the rate matrix D using a Birkhoff-von Neu-
mann (BvN) decomposition. This decomposition is specified in
the following theorem, shown in [5], [6] and based on [3], [16].

It can be computed using a polynomial time edge-coloring al-
gorithm in a bipartite multigraph [9], [14], [1].

Theorem 1: Let D be an admissible rational rate matrix of
common denominator : . Then there exists a minimal inte-
ger � " >A��� [K���Ago�U��4%�8��:V^ , a set of positive integers[�� Q ^ <�L Q L3� , and a set of permutation matrices [CZ Q ^ <�L Q L�� ,
such that: D�" �: ��Q�R < � Q Z Q � and

��Q�R < � Q 02:n� (5)

In other words, it is possible to schedule each matrix Z Q for� Q time-slots, such that the resulting set of : schedule matrices
will satisfy Equation 4. We will call such a schedule a BvN
schedule.

B. Time-Shifted Scheduling

Theorem 1 shows that a BvN schedule always exists when
there are no propagation delays. However, if delays are intro-
duced in a mesh, the scheduling problem becomes more com-
plex. Can we generalize the BvN schedule to other graphs?
When can we guarantee that we will be able to find such a
schedule in a mesh? How can we find it? The following sec-
tions attempt to answer these questions.

Consider a separable graph defined as in Equation 1. A
packet sent from any node * to node ! will first arrive to some
intermediate hub after a delay of �� , and then to node ! af-
ter an additional delay of ��� . Therefore, any packet sent from
another input *m� that could potentially collide with this packet
when arriving at node ! would also collide at the hub. As a con-
sequence, making sure that packets do not collide at the hub is
enough to make sure that they do not collide at the destination
node. Therefore, by computing a BvN schedule at the hub, and
then working backwards for each source node * in order to get
the schedule �� time-slots earlier, it is possible to make sure that
there are no collisions. We call this the Time-Shifted Scheduling
(TSS).

TSS scheduling can be applied to : -separable graphs. More
specifically, the following theorem proves that the set of graphs
to which it is possible to generalize BvN schedules of period :
includes all the : -separable graphs.

Theorem 2: Consider an : -separable graph, and a rate ma-
trix D with BvN schedule Z�� of period : . Define the TSS
schedule Z as: Z�H�Y[K\_^�0TZ �H� [�[]\�45���^ >d@�B :V^�� (6)

where �;"$*6�C!�"�� , co"$\}"�:�g%� , and � comes from
Equation 2. Then the TSS algorithm can schedule D in this: -separable graph.

Proof: Let’s show that the TSS schedule satisfies all the
conditions of Equation 1 in order to prove the theorem. Con-
ditions []*p^ , []*7*7*m^ and []*7��^ of Equation 1 result directly from the
definition of the BvN schedule. Condition []*7*p^ can be written
as: N�Q�R < Z Q �Y[�[]\qgr- Q ��^ >A@�B :V^



0 N�Q�R < Z �Q � [m�Y[�[]\�geE � Q 4����/I]^ >A@zB :V^�4�� Q � >d@�B :V^0 N�Q�R < Z �Q � [_[]\qgr� � ^ >A@zB :V^0 N�Q�R < Z �Q � []\ � ^ where \p��0�[]\qgr����^ >d@�B :"T� (using condition [K*C*p^ for the BvN schedule).

The following corollary proves that the set of graphs to which
it is possible to generalize all BvN schedules includes all the
separable graphs. In other words, in separable graphs, it is pos-
sible to guarantee a schedule to all rate matrices D .

Corollary 3: Consider a separable graph and a rate matrixD . Then the TSS algorithm can schedule D in this separable
graph.

Proof: Apply Theorem 2, and use the fact that any sepa-
rable graph is : -separable.

IV. THEOREMS ON : -SEPARABLE AND SEPARABLE
GRAPHS

A. : -Separable Graphs
We will now show that the only architectures in which it is

possible to generalize the Birkhoff-von Neumann decomposi-
tion of frame period : are the bipartite graphs with separable
delays modulo : . In other words, after we found in the last
section that it is sufficient for the graph to be : -separable, and
proved it using the TSS algorithm, we will now prove that it
actually is a necessary condition.

Theorem 4: The following assertions are equivalent:
(i) It is possible to schedule any rate matrix D , where D has a

(minimal) BvN decomposition of period : .
(ii) - H� 0#- �< 45- <C� gr- <�<f>A@�B : for all *6�C! .

(iii) The graph is : -separable.
Proof: Assuming (iii), (i) is possible using the TSS algo-

rithm (Theorem 2).
Also, assuming (ii), (iii) is clear using ���0�-/=<�g -�<�< , ����0-�<7� , and therefore -	H�S0#�3�4���� .
Let’s assume (i) and show by contradiction that necessarily

(ii) is satisfied in order to prove the theorem. Otherwise, there
would exist * , ! and �?H� such that- H� 02- �< 45- <7� g}- <�< 4�� H�?>A@�B :n�
with ��H�¡ 0¢c >A@�B :n� Consider the matrix D with DG<�<�0DSH�S0���£�: and DS=<?02DG<7�10�[K:hgb��^�£~: . D looks like:

D¤0 �:¦¥§§¨ � c©cª:hgb�c c©c c:hgb�«c©c �c c©c c
¬/®

First, node � and node * need to send exactly one packet at each
time-slot, because the sum of the rates on rows � and * is � , and
they cannot send more than one packet per time-slot. Now, con-
sider a periodic scheduling of period : (the proof similarly ex-
tends to any arbitrary scheduling by using iteratively the proof

below). Since source node � sends packets to destination node� at rate ��£�: , it sends exactly one packet in each period. Sim-
ilarly from node * to node ! . For instance, assume source node� sends a packet to destination node � at the periodic times sat-
isfying \�02c >A@�B : . Since the packet arrives at -�<�< >A@zB : to
destination node � , node * couldn’t have sent any packet to node� at - <�< g`- =<s>A@�B : . But node * has to send a packet at any
time, and thus it sent it to node ! . This packet will reach node !
at - <�< g�- =< 4y- H�?>A@�B : , and therefore node � couldn’t have sent
a packet to node ! at - <�< gS- �< 4�- H� g¯- <7��>d@�B :�0#� .��>A@�B : .
But node � has to send a packet at any time, and thus sent it
to node * . Hence, summing up, if node 1 periodically sends
a packet to node � at times c >d@�B : , it also needs to send a
packet to node � at times �?.� >d@�B : , with ��.�e 0°c >A@zB :n�
This is not possible because node � should only send at most
one packet per period, hence contradiction.

B. Separable Graphs

Theorem 4 states the conditions needed to guarantee 100%
throughput to all rate matrices with a BvN decomposition of pe-
riod : . For example, in a SONET transport network at OC192
speeds with an STS-1 demand rate granularity, the rate matrix D
is (or can be made) non-oversubscribed with a period :�0���X�� .
Then, in order to guarantee 100% throughput for any rate ma-
trix, Theorem 4 states that the graph needs to be : -separable.

However, we are more generally interested in the conditions
needed to guarantee 100% throughput for rate matrices with
any frame period : . We can obtain the following key theorem
for scheduling rate matrices in bipartite delay graphs:

Theorem 5: It is possible to schedule any rate matrix D if
and only if the graph is separable.

Proof: Simply apply Theorem 4 for all : . Since for all: , -/.�a0±-	�<�4#-�<C�¯g�-�<�< >A@�B : , then -	H�²0±-/=<�4;-�<7�Sg`-�<�<
(because the difference can be divided by any positive integer,
and thus is null). Hence, the graph has separable delays.

This theorem is significant. It states that given all the as-
sumptions defined at the start, the only way that a network oper-
ator can have a 100% throughput guarantee for any rate matrixD is to have a separable mesh network.

V. GENERALIZATION TO NON-SEPARABLE GRAPHS

A. Optimization Problem

Consider a bipartite graph with non-separable delays. We
will call this a non-separable graph. Theorem 5 proves that it
is not possible to schedule all possible rate matrices D in this
graph. Therefore, we would like to transform this graph such
that any rate matrix D could be scheduled. In other words, we
would like to make a non-separable graph separable. We will
call this a separable extension of the non-separable graph.

In the remainder, we will assume that it is possible to add a
specific delay ³ H� to each connection between source node * and
destination ! . For instance, the transmitter of each node * could
be followed by the following devices. First, a ��+A� AWG pas-
sive optical device that splits the incoming packets to different
fibers according to their wavelength. Then, for each fiber asso-
ciated to a specific node ! and its wavelength ()� , a delay line
of delay ³/.� that adds a delay of ³	.� to each packet. Then, an



�´+a� AWG that combines again the different wavelengths into
a single WDM fiber. Since the delay lines are located in the
source nodes, our assumptions on the mesh definition are still
satisfied.

Using the additional delay lines ³ .� , our objective is to study
how to make the non-separable delays separable, while mini-
mizing the amount of delay lines used. In other words, our op-
timization function can be written mathematically as follows:>A���µ·¶ � ]M � ³ .��¸ , such that:ik l [K*m^ª¹- H� 02- H� 4`³ .�»º *6�C![K*7*m^ª¹- H� 02�  4�� � º *6�C![]*7*7*p^¼³ H� xec º *6�C! (7)

The objective function shows that we want to minimize the
sum of all delay lines for all the connections. The first condition
expresses that the delays ¹-�H� in the new system are equal to the
delays in the old system, augmented by the new delay lines.
The second condition states that the new system has separable
delays. Finally, the last condition means that the added delay
lines cannot be negative.

B. Optimal Separable Extension of Non-Separable Graphs
Let’s solve the optimization function by rewriting it. We

want to minimize:� ]M � ³/.�y0 � ]M � [/¹-/H�?gr-/.��^�0 � KM � [K�3345���?gr-/H��^J�
Since the - H� ’s are fixed, we are thus reduced to minimizing� KM � [K�  45� � ^�02�¾½�[ �  �  4 � � � � ^J�
The three conditions from the optimization problem can then be
combined into a single one, yielding the following equivalent
problem:>A���¿ M À2Á �¾½ ¶ �  �334 � � ��� ¸�Â , s.t.: ���45���Gxe-/H� º *6�C! (8)

In other words, we want to find the smallest separable delays
that are still larger than each of the current delays. This opti-
mization formula is surprisingly the same as another formula
in another field. It is the dual of the maximum weight bipartite
matching problem (Corollary 3.5.b. in [15]). As a consequence,
the total minimum amount of delay lines needed for a separable
extension of a graph with non-separable delays is:�¾½	ÃrÄAÅÇÆ�ÄÈg � KM � - H� �
where Ã ÄÇÅAÆqÄ is the weight of a Maximum Weight Bipartite
Match in the delay matrix - .

Thus, this brings another way of looking at separable and
non separable graphs. The separable graphs are the bipartite
delay graphs for which all matches have the same maximum
weight. On the contrary, some matches in non-separable graphs
have strictly smaller weight than the maximum weight match.
However, the smallest the weight difference, the less delay lines
will be needed in order to have a separable extension of the non-
separable graph, and therefore in order to be able to guarantee
100% throughput for any rate matrix D .

VI. CONCLUSION

We revisited the problem of scheduling in optical packet
switched networks, and we showed that when propagation de-
lays are taken into account, a variety of topologies and architec-
tures can be modeled by a delay graph. Based on this model, we
presented a simple algorithm that can achieve �	cUczÉ throughput
for all admissible traffic demands. Furthermore, we proved that
a necessary and sufficient condition for achieving a guarantee
of �	cUczÉ throughput in these graphs is that the delays are sepa-
rable, and showed how this can be achieved.
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