
Minimizing Delay in Shared Pipelines
Ori Rottenstreich, Isaac Keslassy

Technion
{or@tx, isaac@ee}.technion.ac.il

Yoram Revah, Aviran Kadosh
Marvell Israel

{yoramr, aviran}@marvell.com

Abstract—Pipelines are widely used to increase throughput in
multi-core chips by parallelizing packet processing. Typically, each
packet type is serviced by a dedicated pipeline. However, with
the increase in the number of packet types and their number of
required services, there are not enough cores for pipelines.

In this paper, we study pipeline sharing, such that a single
pipeline can be used to serve several packet types. Pipeline sharing
decreases the needed total number of cores, but typically increases
pipeline lengths and therefore packet delays. We consider the
optimization problem of allocating cores between different packet
types such that the average delay is minimized. We suggest a
polynomial-time algorithm that finds the optimal solution when
the packet types preserve a specific property. We also present
a greedy algorithm for the general case. Last, we examine our
solutions on synthetic examples, on packet-processing applications,
and on real-life H.264 standard requirements.

I. INTRODUCTION

A. Background

This paper introduces the problem of pipeline sharing,
which designers face when implementing the emerging class
of dedicated pipeline-based multi-core chips. This group en-
compasses multi-core network processors [1], and application-
specific systems-on-chip (AS-SoC) such as telecommunication
applications [2] and high-end multiprocessors [3].

Consider a set of numbered services, and a flow of incoming
packets, where each packet may need to go through a different
subset of services in an increasing order. Dedicated chips
used to be implemented with a single general-purpose core
that could provide all the needed services using software-
based algorithms. However, such a single software-based core
would not be scalable. Therefore, dedicated chips have become
implemented as multi-core chips, where each core (or engine)
is specifically designed to implement a single needed service.
Thus, each packet could go through all the corresponding cores
to obtain all its needed services.

Letting packets go through their needed cores without flow
control would result in unpredictable queueing delays, and
therefore a lack of performance guarantees. Hence, an appeal-
ing solution is to use pipelines. Assume that packets are divided
into k different packet types, where each packet type needs a
specific set of services. Then, the chip can be implemented
using exactly k pipelines, where the pipeline that corresponds
to each packet type includes the cores that implement its
needed services. Incoming packets are simply forwarded to
their appropriate pipelines. If at most one packet arrives every
time slot, and each core processing takes one time slot, then it
is guaranteed that each packet will be done with processing in

the minimal needed time, without any potential conflict on its
processing path.

For instance, Fig. 1(a) illustrates a simplified example of
packet-processing chip. It accepts k = 3 packet types that
are respectively served by k = 3 dedicated pipelines, with a
total number of 8 cores. If the k packet types are uniformly
distributed, the obtained average delay is (3+2+3)/3 ≈ 2.67
time slots.

However, following the increase in (a) the number of packet
types, and (b) the pipeline lengths, the number of needed cores
does not fit multi-core chips anymore. Therefore, we need to
rely on pipeline sharing, such that different packet types may
need to go through the same pipeline. As a result, a pipeline
may include more services than needed by a packet. When a
packet encounters a core that it does not need, it simply does
not use it, but still spends time in it in order not to break the
pipeline. Therefore, while pipeline sharing decreases the needed
number of cores, it can also increase the packet delay.

Fig. 1(b) illustrates this pipeline sharing. The first and the
third packet types share the first pipeline, which includes the
4 cores required by at least one of these types. Hence, we
only need 6 cores instead of 8. On the other hand, since these
two types now require a larger delay of 4 time slots to go
through their shared pipeline, the average delay increases to
(4 + 2 + 4)/3 ≈ 3.33.

There is a clear tradeoff between the number of needed cores
and the average packet delay. This tradeoff creates a capacity
region in the design exploration, in the sense that a designer
cannot go below some optimal bounds. This is illustrated in
Fig. 1(c). The goal of this paper is to further analyze these
optimality bounds.

B. Related Work

Pipeline sharing is a novel problem, and as a result there is
little relevant related work.

First, a network-processor architecture with several small
parallel pipelines is described in [1]. However, this architecture
does not deal with dedicated cores, and also does not study
our optimization problems. In addition, network processors may
adopt additional alternative architectural models. For instance,
the multipass NP architectural model is suggested in [4] as
an alternative to pipelining. As mentioned above, while such a
model may have less synchronization issues than pipeline-based
models, it may also provide fewer guarantees of service.

Furthermore, several past papers have considered the prob-
lem of mapping the pipelines onto the chip cores in order

(a) Three pipelines with 8 cores (without pipeline
sharing). The average delay is T ≈ 2.67 time
slots.

(b) Example of pipeline sharing: Two pipelines with 6 cores.
The average delay is T ≈ 3.33 time slots.

(c) Tradeoff between the number of cores
and the average delay, defining a capacity
region for the problem.

Fig. 1. Illustration of pipeline sharing.

to reduce energy consumption and bandwidth utilization [5]–
[7]. These mapping issues are outside the scope of the paper,
and the mapping solutions are complementary to our suggested
algorithms, in the sense that they can be applied on the resulting
pipelines.

Last, pipeline scheduling was discussed in [8]. This work
deals with a simpler problem in which the cores are not con-
figurable and each of them can perform a single predetermined
task.

C. Contributions

In this paper we introduce the pipeline sharing problem in
multi-core chips. A limited number of cores should be divided
into pipelines, each serving several packet types. To minimize
the delay of a packet we would like to reduce the average length
of these pipelines.

We first present an optimal algorithm that applies when the
set of required tasks for the ith packet type includes the first Xi

tasks out of some r tasks. We show how to recursively calculate
the optimal solution for the first packet types. Based on this
observation, we suggest a polynomial dynamic-programming
algorithm that achieves the minimal possible delay.

Then, we describe general properties of the problem. In
particular, we suggest bounds on the optimal delay as a function
of the number of cores. We also calculate the exact number of
possible solutions as a function of the number of packet types.

Later, we suggest a greedy algorithm for the general case.
This algorithm merges pairs of pipelines, with cores servicing
common tasks, to reduce the number of cores. For each possible
pair of pipelines it examines the expected increase in the delay
and the possible reduction in the number of cores.

We also provide detailed experimental results to examine
the efficiency of the concept of pipeline sharing in general
and in particular of the suggested algorithm. We first conduct
experiments based on synthetic data. Later, we also examine
examples such as a packet-processing application and the
features of the H.264 video-compression standard. We show
that in both cases the greedy algorithm obtains a delay that is
often close to the optimal delay.

II. MODEL AND PROBLEM DEFINITION

Let’s start by introducing notations and formally defining the
problem.

A. Traffic

We consider a system where each packet needs to perform a
set of required tasks among r possible tasks, {1, · · · , r}. Each
task is performed exactly once for each packet, in an increasing
index order. For instance, out of r = 10 possible tasks, a packet
may need to perform tasks {1, 2, 7}. It will successively run
tasks 1, then 2, and finally 7.

We further assume that there are k types of packets. Each
incoming packet has a probability pi of belonging to type i,
and packets of type i need to perform a fixed set of tasks Si.
For instance, an incoming packet may either be of type 1 with
probability p1 = 1/2 and require tasks S1 = {1, 2, 3}; or it
may be of type 2 with probability p2 = 1/2 and require tasks
S2 = {1, 4}.

B. Pipeline Sharing

We are now interested in studying how the set of cores in
our multi-core chip can be subdivided into shared pipelines that
can service the different packets.

We assume that the chip holds N cores. Each core is an
homogeneous general-purpose core that can be configured to
serve any task. At run-time, the chip manager configures each of
the cores to serve a single task among the set of possible tasks,
e.g. by loading it with a different code. It further subdivides
the N cores into d pipelines of multiple separate cores. Let Qi

be the set of tasks served by the ith pipeline.
For example, a chip with N = 9 cores could be subdivided

into one pipeline of 2 cores that respectively deals with tasks 1
and 2; another pipeline of 3 cores that processes tasks 1, 2, 3;
and another pipeline of 4 cores that deals with tasks 1, 3, 4, 5.
Note that each of the three pipelines holds a separate core that
processes task 1, i.e. several cores may be assigned the same
task.

In addition, the chip manager assigns a single pipeline to
each packet type, such that the pipeline contains all the tasks
required by this packet type. For instance, it may assign packets
of type 2 that needs the task set S2 = {1, 4} to the last pipeline
of cores, which processes tasks 1, 3, 4, 5. In this case, note that
the packets will just go through the cores of tasks 3 and 5
without any processing.

C. Optimization Problem

We model the delay of a pipeline as equal to its length, i.e.
its number of cores. In our example, it will take 4 time-slots to

go through the pipeline of 4 cores that processes tasks 1, 3, 4, 5.
So if a packet that needs the task set S2 = {1, 4} goes through
this pipeline, it will still take 4 time-slots, out of which the
two slots for processing tasks 1 and 4 are useful, while the two
other slots are simply empty.

Thus, there is a clear tradeoff between the flexibility of a
longer pipeline, which can process more packet types, and its
higher delay. Given our set of N cores, our goal is to use this
tradeoff in order to reduce the average packet delay.

Formally, we state the problem as follows: Given N cores,
and the k sets of tasks Si of probability pi, our goal is to find
shared pipelines that will minimize the average packet delay.
We denote by TOPT (N) this minimal possible average delay.

III. A SIMPLE CASE OF THE REQUIRED TASKS: Si = [1, Xi]

Finding an optimal solution of the problem might be difficult
in the general case. In this section, we consider a property
of the sets of tasks required by the different packet types
S1, · · · , Sk that when satisfied we can efficiently calculate an
optimal solution that minimizes the average delay.

In some applications all packet types demand several con-
secutive tasks starting from the first task. The different packet
types differ in the number of required tasks in each of them.
Then, the set of tasks of packet type i can be presented as
Si = {1, · · · , Xi} = [1, Xi] for Xi ∈ [1, r]. For instance,
consider the following three packet types. First, parsing is
performed on all types. Two types require also L3 routing and
egress resolution. In addition, access control rules have to be
executed on packets of one among these two types.

We show that in such cases an optimal solution has several
properties such as specific forms of its pipelines as well as
simplicity in the matching of the packet types to one of the
pipelines. These properties will later enable us to suggest an
efficient algorithm for finding an optimal solution. There might
be more than a single optimal solution. We will try to obtain
one of them.

In the rest of the section, we assume that S1 =
[1, X1], · · · , Sk = [1, Xk] ⊆ [1, r] are ordered such that Xa ≤
Xb if a < b. We then have that S1 ⊆ S2 ⊆ · · · ⊆ Sk−1 ⊆ Sk.
Indeed, we can show that the set of tasks can be ordered
such that S1, · · · , Sk satisfy the required condition whenever
S1 ⊆ S2 ⊆ · · · ⊆ Sk−1 ⊆ Sk. Let Q1, · · · , Qd be the set
of tasks serviced by the cores in the d pipelines in an optimal
solution and let (B1, · · · , Bk) be a vector indicating the serving
pipeline for each packet type s.t. Bi ∈ [1, d].

The properties are summarized in the following propositions.

Proposition 1. The pipelines in an optimal solution
Q1, · · · , Qd satisfy (∀j ∈ [1, d]) Qj ∈ {S1, · · · , Sk}, i.e. the
sets of tasks in the pipelines in an optimal solution are among
the sets of tasks of the different packet types in the input. In
particular, (∀j ∈ [1, d]) Qj is of the form Qj = [1, Yj] for
Yj ∈ [1, r].

Proof: Let h be the number of packet types served by
pipeline Qj and let Si1 , Si2 , · · · , Sih−1 , Sih

be the tasks of
these packet types such that i1 < i2 < ih−1 < ih. According

to the order of S1, · · · , Sk, we have that Si1 ⊆ Si2 ⊆ · · · ⊆
Sih−1 ⊆ Sih

. By the correctness of the solution, we have
that

∪h
m=1 Sim ⊆ Qj . In addition, by the optimality of the

solution, an equality must hold i.e.
∪h

m=1 Sim
= Qj . This is

because otherwise, cores of the pipeline could be eliminated
to reduce the delay. By the assumption that Si = [1, Xi]
for Xi ∈ [1, r] and that Xa ≤ Xb if a < b, we have that
Qj =

∪h
m=1 Sim = Sih

= [1, Xih
].

Proposition 2. Assume that Q1, · · · , Qd are ordered such that
Q1 $ Q2 $ · · · $ Qd−1 $ Qd. Then, the packet types are
served by an increasing order of the pipelines, i.e. Bi ≤ Bj

for i < j. In particular, the packet types served by each pipeline
in the solution form a subset of consecutive packet types from
the input. In addition, the last packet type is served by the last
pipeline, i.e. the kth packet type is served by QBk

= Qd = Sk.

Proof: First, such an order of Q1, · · · , Qk exists according
to Proposition 1. Assume that the claim does not hold and let
i, j be two indices such that i < j and Bi > Bj . Then, based
on the order of S1, · · · , Sk and the correctness of the solution
Si ⊆ Sj ⊆ QBj $ QBi and in particular Si ⊆ QBj . We can let
packet type i to be served by QBj that satisfies |QBj | < |QBi |
and reduce the average delay. A contradiction to the optimality
of the solution. Finally, with the last proposition if Bi = Bj

(for i < j) we must have that Bm = Bi = Bj for all m ∈ [i, j].
Finally, the set of tasks Sk is served by one of the pipelines
Q1, · · · , Qd. By Proposition 1, this pipeline has the form of
Si ∈ {S1, · · · , Sk}. The only option that satisfies Sk ⊆ Si is
for i = k. Thus QBk

= Sk. By the order of Q1, · · · , Qd we
must have that Qd = Sk.

Following this proposition, we would like to suggest a
dynamic-programming algorithm to find an optimal solution to
this special case of the problem. To do so, we suggest several
additional definitions. We denote by T i(n) (for i ∈ [0, k], n ∈
[0, N]) the minimal possible average delay that can be achieved
in serving the first i packet types with an architecture of at
most n cores. If no such solution exists we define T i(n) = ∞.
Likewise, we denote by Bi(n) (for the same possible values of
i, n whenever T i(n) ̸= ∞) the vector of length i that indicates
for each packet type the serving pipeline in an optimal solution
for the first i packet types with at most n cores. Last, let Qi(n)
denote the list of pipelines in this optimal solution. This list is
ordered as assumed in Proposition 2. We later add an example
to clarify these notations. For the correctness of the following
recursive formulas, we set T 0(n) = 0 for n ≥ 0, T 0(n) = ∞
for n < 0 and T i(n) = ∞ for i > 0, n ≤ 0. Likewise, for
n ≥ 0 we set B0(n) = () (an empty vector) and Q0(n) = {}
(an empty set of pipelines).

Proposition 3. (i) For i ≥ 1, the variable T i(n) satisfies

T i(n) = min
j∈[1,i]

(
T i−j(n − |Si|) +

(
i∑

m=(i−(j−1))

pm

)
· |Si|

)
(1)

(ii) Let j be the minimal value of the corresponding parameter
that minimizes the value of T i(n) in its formula. Then, there

exists an optimal solution that satisfies

Qi(n) = Qi−j(n − |Si|)
∪

{Si}, and (2)

Bi(n) = Bi−j(n − |Si|) · (|Qi(n)|, · · · , |Qi(n)|)︸ ︷︷ ︸
j times

(3)

where · denotes the vector concatenation operation.

Proof: We first explain (i). We consider an optimal solution
for the first i packet types. By Proposition 2, the ith packet type
(Si, pi) is served by the last pipeline QBi = Si and has a delay
of |Si|. Additional packet types may be served by this pipeline.
If we denote the total number of packets served by this pipeline
by j, then j ∈ [1, i] and by the same proposition, we must have
that these are the packet types with indices [i − (j − 1), i]. To
calculate the minimal delay, we consider the best option for the
value of j from the above values. Since |Si| cores are used by
the last pipeline, the first (i − j) packet types can be served
by the other (n− |Si|) available cores. Their minimal possible
contribution to the average delay is T i−j(n−|Si|) and it can be
achieved according to an optimal solution for these parameters.

We now explain (ii). If there exists a solution with j packet
types served by the last pipeline, we add to the pipelines in an
optimal solution of the first i − j packet types, an additional
single pipeline of Si. The vector B is now updated such that
the last j packets are served by the last pipeline with an index
of |Qi(n)|.

Finally, we describe the suggested dynamic-programming
algorithm. We first initialize T 0(n) = 0 for n ≥ 0, T 0(n) = ∞
for n < 0, T i(n) = ∞ if i > 0 and n ≤ 0, B0(n) = () and
Q0(n) = {} for n ≥ 0. We continue to calculate in step i
(for i ∈ [1, k]) the values of T i(n) for n ∈ [0, N] according
the formulas presented in Proposition 3 based on the values
calculated in the previous steps. In the required solution, all
the k packet types have to be served with N available cores.
Thus the optimal average delay TOPT (N), the pipelines in an
optimal solution and the matching of packet types to pipelines
are all given by T k(N), Qk(N) and Bk(N), respectively.

We now discuss the time complexity of the suggested algo-
rithm. The algorithm is composed of k steps, in each step we
calculate the (N + 1) values of optimal delays for n ∈ [0, N].
For each value, we take the minimal value out of at most k
possible values. Thus the time complexity is O(k2 · N).

Example 1. Assume an input of k = 3, N =
8 and (S1, p1), (S2, p2), (S3, p3) = ([1], 0.3), ([1, 3], 0.2),
([1, 5], 0.5). We would like to find a solution with at most
N = 8 cores that minimizes the delay. We can easily see that
T 0(3) = 0, T 1(3) = 0+0.3·1 = 0.3. Likewise, by Proposition 3
T 2(3) = min (T 1(0) + 0.2 · 3, T 0(0) + 0.5 · 3) = 1.5.

In addition, by the same proposition, we have that the optimal
average delay satisfies TOPT (N) = T k(N) = T 3(8) =
min (T 2(3) + 0.5 · 5, T 1(3) + 0.7 · 5, T 0(3) + 1 · 5) =
min (1.5 + 2.5, 0.3 + 3.5, 5) = 3.8. The minimal value
among the three is the second value obtained for the value
of j = 2 in the recursive formula from Proposition 3. The

value j = 2 means that in an optimal solution the last two
packet types are served by the last pipeline S3 = [1, 5].
With this value of j, we deduce Q3(8) = Q1(3)

∪
{[1, 5]}

and B3(8) = B1(3) · (3, 3). In addition, we can simply
see that Q1(3) = {[1]}, B1(3) = (1). Finally, we
can obtain that Qk(N) = Q3(8) = {[1], [1, 5]} and
Bk(N) = B3(8) = (1, 3, 3).

IV. GENERAL PROPERTIES

We now describe some basic properties of the general prob-
lem, formally described earlier in Section II. We first present
bounds on the optimal delay as a function of the number
of cores. We also calculate the number of solutions for the
optimization problem, i.e. the number of options for sharing
pipelines. Considering these options might be a technique to
find the optimal delay. We also explain that in some cases the
problem can be partitioned into two smaller subproblems. These
properties can be used by a designer to understand the limits
of the chip design capacity region.

Proposition 4. (i) For all N ≥ 0, the optimal average delay
TOPT (N) satisfies TOPT (N) ≥

∑k
i=1

(
pi · |Si|

)
(ii) TOPT (N) =

∑k
i=1

(
pi · |Si|

)
for N ≥

∑k
i=1 |Si|.

(iii) TOPT (N) satisfies TOPT (N) = ∞ for N < |
∪k

i=1 Si|.

Proof: First, in any solution each packet type (Si, pi) is
served by a pipeline Qj that satisfies Si ⊆ Qj . Thus |Si| ≤
|Qj |, the delay of the packet is |Qj | and the packet type (with
probability pi) contributes at least pi · |Si| to the average delay.

In addition, if the number of cores is at least the sum of the
set sizes in the input, each packet type can be served separately
and the minimal possible delay can be obtained.

Last, if N < |
∪k

i=1 Si| at least one of the packet types
cannot be served since one of its tasks is not implemented by
any of the N available cores.

Proposition 5. In any optimal solution (i.e. a solution with a
delay of TOPT (N)), every packet type is served by a pipeline
that has the minimal length among the pipelines that serve all
the tasks of the packet type.

Proof: Clearly, if this is not the case for one of the packet
types, we can let this packet type be served by the additional
pipeline with smaller length and reduce the average delay.

Proposition 6. Let k be the number of packet types. Then,
(i) Given an unlimited number of cores, the number of solu-
tions with d pipelines Q1, · · · , Qd is given by S(k, d), where

S(k, d) = 1
d! ·

∑d
j=1

(
(−1)d−j ·

(d
j

)
· jk

)
, is the Stirling

number of the second kind of k, d.
(ii) The total number of solutions is given by G(k) =∑k

d=1 S(k, d).

Proof: A solution with d pipelines can be described as a
partition of the set of k distinct packet types into d non-empty
pipelines Q1, · · · , Qd. Each pipeline is simply the union of the
corresponding sets of tasks in the corresponding packet types.

It cannot contain any additional redundant cores. The number
of such possible partitions is given by S(k, d).

In addition, since the number of pipelines in a solution can
be any number in the range [1, k], the total number of solutions
is given by G(k).

Example 2. Consider the example from Section I with k = 3
packet types. The number of solutions with d = 1 pipelines is

S(3, 1) = 1
d! ·
∑d

j=1

(
(−1)d−j ·

(d
j

)
· jk

)
= 1 ·

(
(−1)1−1 ·(1

1

)
· 13

)
= 1. Likewise, there are S(3, 2) = 3 solutions

with 2 pipelines and another single (S(3, 3) = 1) solution
with 3 pipelines. The total number of solutions is G(3) =∑3

d=1 S(3, d) = 1 + 3 + 1 = 5. (Incidentally, in this example
with its specific parameters, two of the solutions yield exactly
the same tradeoff.)

Proposition 7. Assume that the set of tasks of the k packet types
can be partitioned into two disjoint sets, i.e. they can be ordered
such that (∃m ∈ [1, k])

(∪m
i=1 Si

)∩(∪k
i=(m+1) Si

)
= ∅.

Then, (∃N0 ∈ [0, N]) s.t. an optimal solution given N cores
can be obtained as the union of the two sets of pipelines in the
optimal solutions for packet types [1,m] with N0 cores and for
packet types [(m + 1), k] with (N − N0) cores.

Proof: Any pipeline in an optimal solution cannot serve
tasks from both sets

(∪m
i=1 Si

)
,
(∪k

i=(m+1) Si

)
. Otherwise,

it could be partitioned into two smaller pipelines to reduce the
average delay. By dividing the pipelines in an optimal solution
into two subsets based on this property, we obtain the result.

V. PIPELINE MERGING ALGORITHM

We would like to suggest an efficient greedy algorithm for
reducing the average packet delay for a general input. The
algorithm starts with an initial state in which there is a pipeline
for each of the packet types. This initial state would need
many cores to be implemented, and would typically exceed the
number of available cores on our multi-core chip. Therefore,
our algorithm iteratively reduces the number of needed cores.
Specifically, at each iteration, it merges two of the remaining
pipelines into a single shared pipeline. It only ends when the
merged pipelines can finally be implemented using our multi-
core chip (or when there is no clear solution).

In other words, consider a given iteration of the algorithm.
Assume that its pipelines currently use n cores. If n ≤ N , the
pipelines can be implemented and the current state is returned
as the solution. Else, we select two pipelines and merge them.
Then, packet types that make use of these pipelines might
observe a larger delay after this operation.

For a given pair of pipelines, let x be the expected increment
in the average delay if these pipelines are merged. Further let
y be the corresponding decreased number of cores. Intuitively,
we would like to merge the pair of pipelines that minimizes
the ratio x/y.

We would like now to calculate x, y for every pair of
pipelines. Let Ai (for i ∈ [1, 2]) be the set of cores in each of
the two pipelines of the pair. This set of cores is the union of
the cores required by the packet types served by this pipeline.
Likewise, let zi be the probability of an arbitrary packet to
belong to a packet type served by this pipeline. This is the sum
of the probabilities for a packet to belong to one of the packet
types served by the merged pipeline.

We consider only valid pairs of pipelines, i.e. pairs with
common cores. Merging pipelines with disjoint sets of cores
cannot reduce the number of cores. For these valid pairs,
we examine the three following criteria. (a) Large number of
common cores, (b) Small number of non-common cores, and
(c) Low probability for an arbitrary packet to belong to a type
served by the merged pipelines.

The additional delay for packets previously served by the
first pipeline (ratio of z1 of all packets) is |A2 \A1|. Likewise,
for packets served by the second pipeline (z2 of all packets)
the additional delay is |A1 \ A2|. Thus the expected increase
in the average delay if these pipelines are merged is x = z1 ·
|A2 \A1|+ z2 · |A1 \A2|. This is the possible cost. If the two
pipelines in the pair are merged, the total number of cores is
reduced by the number of common cores y = |A1 ∩ A2| > 0.
This is the possible gain in such merging.

For this pair, we define the ratio R as the marginal cost, i.e.
R = x/y = (z1 · |A2 \A1|+ z2 · |A1 \A2|)/|A1 ∩A2|. In each
step of the algorithm we simply merge the pair of pipelines
with the minimal marginal cost.

Example 3. Consider again the input from Example 1
with k = 3, N = 8 and (S1, p1), (S2, p2), (S3, p3) =
([1], 0.3), ([1, 3], 0.2), ([1, 5], 0.5). For i, j ∈ [1, 3], let Ri,j

be the value of the ratio R as defined above for the pair of
packet types (Si, pi) and (Sj , pj). Here, R1,2 = (0.3 · 2 + 0.2 ·
0)/1 = 0.6, R1,3 = (0.3 · 4 + 0.5 · 0)/1 = 1.2 and R2,3 =
(0.2 ·2+0.5 ·0)/3 ≈ 0.133. Since the minimal ratio is R2,3, the
suggested algorithm merges the second and third pipelines. We
then obtain a solution with two pipelines Q1 = [1], Q2 = [1, 5]
which is the optimal solution for this input.

In Section VI, we show applications for which the suggested
(greedy) algorithm results in a delay that equals, in most cases,
the minimal possible delay. Unfortunately, this algorithm is not
necessarily optimal in the general case.

Proposition 8. The greedy algorithm that successively merges
at each step the pair of pipelines with the minimal ratio R =
x/y is not optimal in the general case.

Proof: We present the following counterexample. Let r =
14, (S1, p1), (S2, p2), (S3, p3) = ({1, 2, 3, 4, 5, 6, 7, 8, 9}, 1/3),
({1, 2}, 1/3), ({1, 2, 3, 10, 11, 12, 13, 14}, 1/3) and let N =
42 = 16 = 9 + 2 + 8 − 3 = |S1| + |S2| + |S3| − 3.

Here, R1,2 =
(
(1/3) ·0+(1/3) ·7

)
/2 = 7/6. Likewise, R1,3

=
(
(1/3) · 5 + (1/3) · 6

)
/3 = 11/9 and R2,3 =

(
(1/3) · 6 +

(1/3) · 0
)
/2 = 1. Thus the minimal ratio is achieved for the

pair pipelines serving packet types 2 and 3. If we first merge

this pair, the obtained number of cores is |S1| + |S2| + |S3| −
|S2 ∩ S3| = 9 + 2 + 8 − 2 = 17 > N . Thus if this pair of
pipelines is merged, the obtained number of cores is larger than
their upper bound. Therefore, an additional merging operation
with the remaining first pipeline is required. Finally, a single
pipeline with r = 14 cores is achieved and the average delay
is T = (1/3) · 14 + (1/3) · 14 + (1/3) · 14 = 14.

The optimal solution for this case includes two pipelines. The
first 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11 →
12 → 13 → 14 with 14 cores serving the first and the third
packet types. In addition, a second pipeline 1 → 2 with two
cores serving packet of the second type. The obtained average
delay is only T = (1/3) · 14 + (1/3) · 2 + (1/3) · 14 = 10.

VI. EXPERIMENTAL RESULTS

We would like now to conduct experiments to examine the
efficiency of the suggested greedy algorithm from Section V for
the general case in comparison with an optimal solution. In the
experiments, we first rely on synthetic examples. In addition,
we consider applications from diverse fields such as packet
processing and video compression.

A. Effectiveness on Synthetic Examples

We first perform synthetic simulations and compare the
performance of the greedy algorithm and the minimal possible
delay obtained by considering all possible solutions. In both
of the two following experiments, the sets of required tasks
are created synthetically. In these experiments, we assume a
variety of k = 8 types with tasks among r = 10 possible
tasks, {1, · · · , r = 10}. The tasks required by each type are
selected randomly. The results are based on the average of 103

simulations.
In our first experiment, each type requires a specific task

w.p. q = 0.5, without any dependency between the different
types and the different tasks, i.e. (∀i ∈ [1, k], j ∈ [1, r]) Pr(j ∈
Si) = q = 0.5. Fig. 2 presents the obtained average delay (in
time slots) as a function of the number of cores.

We assume a first subcase in which all types have a fixed
probability of 1

k = 0.125. For a given set of types and a
maximal value of N cores, we compare the delay obtained
by the greedy algorithm with the minimal possible delay found
while considering all possible solutions satisfying the constraint
on the number of cores. Here, the total number of solutions for
each input is G(k = 8) = 4140. Clearly, the minimal value of
N that guarantees that all tasks can be satisfied is N = r = 10.
In addition, the maximal observed total number of tasks in the
k = 8 types is smaller than 60. Thus, we examine the values of
N ∈ [10, 60]. The results are presented in the first two upper
curves in Fig. 2. For example, for large enough values of N ,
each type has its own pipeline and the delay is approximately
the average number of tasks per type, r · q = 10 · 0.5 = 5. In
general, the delay obtained by the greedy algorithm is relatively
close to the optimal delay and it becomes even closer for larger
N . For instance, for N = 16 the greedy delay is 8.47, larger
by 4.4% than the optimal delay of 8.11. This option suggests
a reduction of (60 − 16)/60 = 73.3% in the number of cores

Fig. 2. Average delay (in time slots) as a function of the number of available
cores (N) for the first experiment with synthetic data. Here, the probability
for a packet type to require each task is 0.5. The two upper curves present the
delay when the k = 8 types appear with a uniform distribution. The two bottom
curves examine the case where the types appear with geometrically-decreasing
probabilities. The results are based on the average of 103 experiments. The
greedy algorithm performs relatively close to the optimal one.

Fig. 3. The average delay (in time slots) as a function of the number of
available cores (N) for the second experiment with synthetic data. Here, the
probability for a packet type to require each task is either 0.9 or 0.1, according
to one of three predetermined distributions. The two upper curves present the
delay when the k = 8 types appear with a uniform distribution. The two bottom
curves examine the case where the types appear with geometrically-decreasing
probabilities. The results are based on the average of 103 experiments. Again,
the greedy algorithm achieves close-to-optimal results.

with a cost of a delay larger by 70% or 62.8%. For N = 40 the
delay of the greedy is 5.12 when the minimal possible delay
(5.11) is smaller by less than 0.2%. The average difference, for
N ∈ [10, 60], between the two delays is 0.10 time slots.

For the presented scheme of the selection of the tasks, we
examine also a second subcase in which the types appear
with variable probabilities. We set the probabilities to be
geometrically decreasing such that the k = 8 probabilities of
the k types are 2−1, 2−2, 2−3, 2−4, 2−5, 2−6, 2−7, 2−7. These
non-homogenous probabilities enable us to distinguish between
the types to further improve the obtained delay. For instance,
we might prefer to have a dedicated pipeline for the most
common type containing only cores for its required tasks.
The observed delays, again by the greedy algorithm and the
exhaustive search are illustrated in the two additional curves in
Fig. 2. For instance, again for N = 16 the observed delays
are 7.35 and 7.12, respectively. Both delays are smaller by
approximately a single time slot than the corresponding delays
in the homogenous case. Here, the average difference between
the average delay of the greedy algorithm and the minimal
possible delay is even smaller and equals 0.07 time slots.

We also want to check whether a possible dependency be-
tween the different types can further improve the effectiveness

TABLE I
SUMMARY OF THE SYNTHETIC EXPERIMENTS

(A) Average delay (in time slots)
Experiment Fixed Prob. Variable Prob.

Greedy Optimal Greedy Optimal
(i) Independent 6.20 6.09 5.80 5.73

types
(ii) Distribution-based 5.65 5.60 5.47 5.42

types

(B) Delay for N = 16 (in time slots)
Experiment Fixed Prob. Variable Prob.

Greedy Optimal Greedy Optimal
(i) Independent 8.47 8.11 7.35 7.12

types
(ii) Distribution-based 6.80 6.65 6.36 6.17

types

of our approach. In a second experiment, the tasks required by
the types are selected in a different manner. We first randomly
produce three task distributions. Each distribution randomly
defines for each of the r tasks whether it will be required with a
high probability of 0.9 or only with a smaller probability of 0.1.
For each task, both options are obtained with equal probabilities
of 0.5. Next, each of the k = 8 types is assigned with a
distribution and its tasks are randomly selected accordingly.
In this experiment, the probability of a type to require a task is
0.5 ·0.9+0.5 ·0.1 = 0.5, as in the first experiment. The results
are displayed in Fig. 3.

Informally, we expect two types selected from the same
distribution to have relatively similar sets of tasks. Therefore,
a possible merging operation of their pipelines is expected to
result in an additional delay which is smaller than on average.
We consider the same two options for the probabilities for the
different types as in the first experiment (fixed and geometri-
cally decreasing). In the first subcase, with fixed probabilities
for the k types, illustrated in two upper curves, the average (over
N ∈ [10, 60]) of the optimal delay is 5.60 in comparison with
a corresponding average delay of 6.09 in the first experiment.
Likewise, for N = 16 the greedy delay is 6.80 and the optimal
delay is 6.65. In the second subcase, with non-homogenous
probabilities, as shown in the two last curves, the average
optimal delay is even smaller and equals 5.42. Here, for N = 16
the delay of the greedy algorithm is 6.36 and of the optimal
equals 6.17 time slots. The results, in both experiments, of the
average delay (over N ∈ [10, 60]) and the obtained delays for
N = 16 are summarized in Table I.

B. Effectiveness on a Packet-Processing Application

We now consider an example of packet processing. Typically
L2-L4 packets require a subset of the following r = 11 tasks:

1. Parsing - parsing the header stack, classifying its parts to
specific layers and extracting the relevant fields in each layer.

2. Ingress interface attributes - assigning different attributes
related to the ingress interface (port/VLAN).

3. Ingress ACL - executing access control rules on the
incoming packet.

TABLE II
PACKET-PROCESSING APPLICATION: PACKET TYPES WITH THEIR REQUIRED

TASKS (AS DETAILED IN SECTION VI-B)

packet type tasks
1 L2 unicast packet S1 = {1, 2, 4, 10}
2 L2 unicast packet with security control S2 = {1, 2, 3, 4, 10, 11}
3 L3 multicast packet S3 = {1, 2, 5, 6, 8, 9, 10}
4 MPLS packet S4 = {1, 2, 3, 7, 8, 10, 11}
5 Packet trapped to the CPU S5 = {1, 2, 3, 10}

4. L2 bridging - bridging based on MAC addresses and
VLAN.

5. L3 routing - L3 forwarding based on IP addresses.
6. L3 replication - replicating packets to different sub-

nets/hosts based on the router forwarding decision.
7. MPLS switching - forwarding packets based on MPLS

header. Packets can be on and off LSP (Label Switching Path)
as a result of the forwarding decision.

8. Header modification - modifying outgoing packet header
based on forwarding (L2, L3, MPLS) decisions.

9. L2 replication - replicating packets based on the bridging
forwarding decision.

10. Egress interface resolution - mapping the destination
resolved by the forwarding decision to a specific interface/port
in the device.

11. Egress ACL - executing access control rules on the
outgoing packet.

Based on the r = 11 tasks from above, we can consider
k = 5 packet types with their corresponding required sets of
tasks as detailed in Table II. We assume that the probabilities
for a packet to belong to each of the k types {1, · · · , k} are
(p1, · · · , pk) = (0.25, 0.15, 0.2, 0.3, 0.1).

We examine how the average delay depends on the number of
available cores. Since in this example the number of types k =
5 is relatively small, we can consider all the possible solutions
and present the minimal possible delay given the number of
cores. By Proposition 6, the number of solutions with d ∈
[1, k = 5] pipelines is S(k, d). For instance, there are S(5, 2) =
15 solutions with 2 pipelines. The total number of solutions is
G(5) =

∑5
d=1 S(5, d) = 1 + 15 + 25 + 10 + 1 = 52.

The left black bar in Fig. 4(a) presents this minimal pos-
sible delay obtained by the exhaustive search. Given only
N = r = 11 cores, only a single pipeline with all 11 tasks
is possible and the average delay is also 11. When N = 15,
a solution that minimizes the delay includes two pipelines.
The first serves packet type 3 with |S3| = 7 cores and the
second serves all other types with |S1

∪
S2

∪
S4

∪
S5| =

|{1, 2, 3, 4, 7, 8, 10, 11}| = 8 additional cores. Here, the ob-
tained average delay is T = p3 · 7 + (p1 + p2 + p4 + p5) · 8 =
1.4 + 6.4 = 7.8. Finally, if N = 4 + 6 + 7 + 7 + 4 = 28 we
have a pipeline for each packet type and the average delay is
0.25 · 4 + 0.15 · 6 + 0.2 · 7 + 0.3 · 7 + 0.1 · 4 = 5.8. Here, by
using pipeline sharing, we can significantly reduce the number
of cores by 46% (from 28 to 15) with a cost of an increase of
34% in the average delay (7.8 in comparison with 5.8).

In addition, the right gray bar describes the behavior of
the greedy algorithm. We can see that, in this example, it

(a) Packet processing

(b) H.264 video-compression standard

Fig. 4. The average delay (in time slots) as a function of the number of
cores (N). In Fig. 4(a) we consider the packet-processing example. The delay
obtained by the greedy algorithm equals in most cases the minimal possible
delay. Fig. 4(b) shows the delay obtained by the greedy algorithm for k = 9
profiles of the H.264 video-compression standard. The optimal algorithm was
too complex to run in that case.

obtains for most of the values of N the minimal possible
delay. Since the greedy algorithm performs a series of pipeline
merging operations, the number of cores in its solutions are not
necessarily consecutive. Here, the greedy algorithm first merges
the pipelines of packet types 2 and 5, is reducing the number
of cores from 28 to 24 and increasing the average delay from
5.8 to 6. The next step is to merge the last recently achieved
pipeline with the pipeline of packet type 1. A delay of 6.5
is obtained with 20 cores. Unlike the exhaustive search the
greedy algorithm does not tackle the optimal solution with 19
cores that achieves a delay of 6.8. Another minor difference is
achieved when N = 23. Finally, after performing four merging
operations, a single pipeline of 11 cores is again obtained.

C. Effectiveness on a Video-Compression Application

Next, motivated by studies that discussed implementations of
video compression in a multi-core chip [9], we consider a real-
life application of our study for the H.264 video-compression
standard [10]. The standard defines several profiles that sup-
port different sets of features. We consider k = 9 of the
more important profiles and refer to the features that each of
them supports as tasks required in the processing of a video
of that profile. We consider the profiles CBP, BP, XP, MP,
ProHiP, HiP, Hi10P, Hi422P and Hi444PP and assume they
are uniformly distributed. The profiles support a total number
of r = 21 features such as Flexible Macroblock Ordering

(FMO), Interlaced Coding and CABAC Entropy Coding. Some
of the profiles support different variants of Chroma formats
(4 : 2 : 0, 4 : 2 : 2, 4 : 4 : 4) and different sample depths
(8, 10, 12, 14) and we consider them as different features.

For this use-case, with a larger number of k = 9 profiles,
we present only the results of the greedy algorithm. Since the
number of solutions is relatively large (G(9) = 21147), we
could not perform an exhaustive search. The 9 profiles include
a total of 75 features (i.e. an average of 8.33 features per profile,
resulting in an average delay of 8.33). Therefore, 75 cores are
required to obtain the minimal possible average delay of 8.33
time slots. As shown in Fig. 4(b), an average delay of 10.11
is obtained when only 38 cores are used. Here, comparing the
last two mentioned points, the average delay increases by 21%
when the number of cores is roughly halved from 75 to 38.

VII. CONCLUSION

In this paper we introduced the pipeline sharing problem
in multi-core chips. We explained the tradeoff between the
number of needed cores and the average delay and described
general properties of the problem. We suggested an optimal
algorithm for a special case of the input and a greedy algorithm
for the general case. Finally, we presented experimental results
that demonstrated that the greedy algorithm often achieves an
average delay that is close to optimal. Finding the optimal
solution in the general case and determining when the problem
is NP-hard are left as open questions for future work.

VIII. ACKNOWLEDGMENT

This work was partly supported by the Andrew Viterbi grad-
uate fellowship, by the Google European Doctoral fellowship,
by the Intel ICRI-CI Center, by the Japan Technion Society and
Greenberg (Ottawa) Research Funds, and by the Israel Ministry
of Science and Technology. Part of this work was done when
Ori Rottenstreich was with Marvell Israel.

REFERENCES

[1] K. Karras, T. Wild, and A. Herkersdorf, “A folded pipeline network
processor architecture for 100 Gbit/s networks,” in ANCS, 2010.

[2] F. Clermidy et al., “Reconfiguration of a 3GPP-LTE telecommunication
application on a 22-core NoC-based system-on-chip,” in NOCS, 2011.

[3] Q. Yu, J. Cano, J. Flich, and P. Ampadu, “Transient and permanent error
control for high end multiprocessor systems-on-chip,” in NOCS, 2012.

[4] I. Keslassy, K. Kogan, G. Scalosub, and M. Segal, “Providing perfor-
mance guarantees in multipass network processors,” IEEE/ACM Trans.
Netw., vol. 20, no. 6, pp. 1895–1909, 2012.

[5] J. Subhlok and G. Vondran, “Optimal latency-throughput tradeoffs for
data parallel pipelines,” in SPAA, 1996.

[6] J. Hu and R. Marculescu, “Energy-aware communication and task
scheduling for network-on-chip architectures under real-time constraints,”
in DATE, 2004.

[7] C. A. M. Marcon et al., “Exploring NoC mapping strategies: An energy
and timing aware technique,” in DATE, 2005.

[8] K. S. Hwang, A. E. Casavant, C.-T. Chang, and M. A. d’Abreu, “Schedul-
ing and hardware sharing in pipelined data paths,” in IEEE International
Conference on Computer-Aided Design, 1989.

[9] A. Azevedo et al., “Parallel H.264 decoding on an embedded multicore
processor,” in HiPEAC, 2009.

[10] G. J. Sullivan, P. N. Topiwala, and A. Luthra, “The H. 264/AVC advanced
video coding standard: Overview and introduction to the fidelity range
extensions,” in Optical Science and Technology, the SPIE 49th Annual
Meeting. International Society for Optics and Photonics, 2004.

