
A Scalable Switch for Service Guarantees
Bill Lin ∗ Isaac Keslassy∗∗

∗University of California, San Diego, La Jolla, CA 92093–0407. Email: billlin@ece.ucsd.edu
∗∗Technion – Israel Institute of Technology, Haifa 32000, Israel. Email: isaac@ee.technion.ac.il

Abstract— Operators need routers to provide service guarantees
such as guaranteed flow rates and fairness among flows, so as to
support real-time traffic and traffic engineering. However, current
centralized input-queued router architectures cannot scale to fast
line rates while providing these service guarantees. On the other
hand, while load-balanced switch architectures that rely on two
identical stages of fixed configuration switches appear to be an
effective way to scale Internet routers to very high capacities, there
is currently no practical and scalable solution for providing service
guarantees in these architectures.

In this paper, we introduce the interleaved matching switch
(IMS) architecture, which relies on a novel approach to provide
service guarantees using load-balanced switches. The approach is
based on emulating a Birkhoff-von Neumann switch with a load-
balanced switch architecture and is applicable to any admissible
traffic. In cases where fixed frame sizes are applicable, we also
present an efficient frame-based decomposition method. More
generally, we show that the IMS architecture can be used to emulate
any input queued or combined input-output queued switch.

I. I NTRODUCTION

A. Background

There has been recent interest in a class of switch archi-
tectures calledload-balanced routers[2]–[6]. This class of
architectures is based on aload-balanced switch architecture
where two identical stages of fixed configuration switches are
used for routing packets. Figure 1 shows a diagram of a generic
two-stage load-balanced switch architecture. The first switch
connects the first stage of input linecards to the center stage
of intermediate input linecards, and the second switch connects
the center stage of intermediate input linecards to the final stage
of output linecards. As shown in [4], this class of architectures
appears to be a practical way to scale Internet routers to very
high capacities and line rates. The scalability of this class of
architectures can be attributed to two key aspects. First, they
do not require a scheduler. Second, these architectures are built
using two identical stages of fixed configuration switches whose
deterministic interconnection patterns are independent of packet
arrival. Thus, there is no need for arbitrary per-packet dynamic
switch configuration, which is extremely difficult to achieve
at high-speeds. The use of fixed configuration switches are
particularly amendable to scalable implementations with optics,
as exemplified by the100 Tb/s reference design described in [4].
This reference design is based on a fixed hierarchical mesh of
optical channels that interconnectsN = 640 linecards, each
operating at a rate ofR = 160 Gb/s.

Although the load-balanced routers described in [2]–[5] can
achieve guaranteed throughput for all admissible traffic on abest
effort basis, they do not provideservice guaranteesrequired
by network operators to support real-time traffic, bandwidth
provisioning, and various other critical traffic engineering tasks.

1

2

N

1

2

N

1

2

N

… … …

Linecards Linecards Linecards

Fig. 1. Generic load-balanced switch architecture.

The objective of this paper is to investigate an approach for
providing service guarantees that retains the key aspects of a
load-balanced switch architecture.

In [6], two schemes are proposed for providing service
guarantees on a load-balanced switch. The first scheme is based
on timestamping individual packets and buffering packets at
the center stage. Packets are then scheduled at the center stage
using an Earliest-Deadline-First (EDF) scheduling policy. Using
an EDF scheduling policy, packets may arrive at the final
destination output linecard out-of-order. A packet resequenc-
ing mechanism is implemented at the final output stage to
correct mis-sequenced packets. As noted in [6], the proposed
EDF-scheduling and resequencing mechanisms require complex
hardware that are difficult to implement at very high speeds.
The second scheme is a frame-based approach that requires
choosing a frame sizeF . The end-to-end delay of this approach
is Θ(NF), whereN is the number of switch ports. Therefore, a
large frame size implies a large multiplicative end-to-end packet
delay. On the other hand, a small frame size implies a large rate
granularity. As a result, the approach fails to provide uniform
service guarantees for all non-uniform traffic.

B. Contributions of the Paper

The paper has three major contributions. First, from a the-
oretical point of view, we show that our proposed interleaved
matching switch (IMS) architecture can be used to emulateany
input queued (IQ) or combined input-output queued (CIOQ)
switch byinterleavingthe associated matchings across the inter-
mediate input nodes of a load-balanced switch. Consequently,
many of the throughput and service guarantees provided in the
literature for IQ and CIOQ switches directly extend to load-
balanced switches.

Second, we show that our proposed IMS architecture can
practically provide service guarantees byemulatinga Birkhoff-
von Neumann input-queued switch [1]. In the IMS architecture,

the switch interconnection patterns are fixed and independent of
packet arrival. This is in contrast to crossbar-based Birkhoff-
von Neumann switches that require arbitrary per-packet dy-
namic switch configurations, which are difficult to scale to high
capacities and line rates. In addition to using scalable fixed
configuration switches, an IMS only requires a fully-distributed
online fair queueing mechanism at each input linecard with
O(logN) complexity, based only on local state information.
The online scheduling complexity can be reduced toO(1) time
by using either a round-robin based scheduler [13], [14] or
a pipelined-sorting mechanism [12] with a timestamp-based
scheduler. Since the IMS architecture guarantees that packet
ordering is maintained throughout the switch, it does not require
packet resequencing at the output or the associated resequencing
delays. IMS can provide uniform service guarantees for all non-
uniform admissible traffic where the traffic profile is known.

Third, in cases where a fixed frame size is applicable, we
present an efficient offline decomposition method that has sig-
nificantly lower complexity than Birkhoff-von Neumann decom-
position, and the online scheduling step simply requires constant
time operation. In contrast to the frame-based scheme presented
in [6] that has anΘ(NF) end-to-end delay bound, we show
that our approach has a significantly lowerO(F + N) end-
to-end delay bound. In particular, ifF is a constant integer
multiple of N , then the frame-based scheme presented in [6]
incurs anΘ(N2) end-to-end delay bound, whereas our approach
only incurs anΘ(N) end-to-end delay bound.

C. Organization of the Paper

The rest of the paper is organized as follows. Section II
introduces the IMS architecture. Section III demonstrates that
the IMS architecture can emulate an IQ switch, which in turn
can emulate a Birkhhoff-von Neumann switch to provide service
guarantees, as developed in Section IV. Further, in cases where
a fixed frame size is applicable, Section V describes a frame-
based scheme that has low end-to-end delay. Section VI shows
how the IMS architecture can be extended to emulate any CIOQ
switch as well. Section VII provides an illustrative example.
Finally, Section VIII briefly outlines how the architecture can
be optimized to improve delay bounds.

II. T HE INTERLEAVED MATCHING SWITCH

A. Overview of the Architecture

This section describes the IMS architecture. Note that
throughout this paper, we assume that packets have a fixed
length and time is slotted.

The IMS architecture consists of three linecard stages that
are interconnected by two fixed configuration switches, exactly
like the load-balanced switch architectures described in [2]–[5].
However, in case of congestion, these architectures primarily
buffer packets in thecenterstage whereas the IMS architecture
primarily buffers packets in theinput stage. This is depicted in
Figure 2.

Specifically, the first stage consists ofN input linecards. Each
input linecardi maintainsN virtual output queues (VOQ) for
buffering incoming packets, one per final output destination.
The center stage consists ofN intermediate input linecards.
Each intermediate input linecardj maintains a set ofN slots:

...

N
V

O
Q

s

N
sl

ot
s

...

1

2

N

1

2

N

1

2

N

… … …

Linecards Linecards Linecards

Fig. 2. The interleaved matching switch architecture.

Bj1 . . . BjN . These slots are used for coordination, as we shall
see. The final stage consists ofN output linecards where packets
depart.

To simplify presentation, we model the two switches as
uniform meshes, as in [4]. Each linecard in the first stage is
connected to each linecard in the center stage by a channel at
rateR/N via the first mesh, whereR is the line rate andN is the
number of linecards. Similarly, each linecard in the center stage
is connected to each linecard at the final stage by a fixed equal
rate channel at rateR/N via the second mesh. As described
in [4], [5], the uniform mesh model can be readily implemented
at very high capacities and line rates using different types of
switches, such as optical meshes with space and/or wavelength
multiplexing, as well as time-multiplexed cyclic permutation
switches (also called round-robin switches) with no speed-up.

As usual, we assume that a packet sent at the start of time
slot n through a line of rateR will be completely transferred
by the end of time slotn, taking one full time slot. Similarly,
a packet sent through a line of rateR/N will take N full time
slots, and therefore will be transferred by the end of time slot
n+N − 1.

B. Packet Path

To understand the operation of the IMS architecture, consider
a stream of packets arriving at an input linecardi, one new
packet at the start of every time slotn. The packets are
immediately queued at their appropriate VOQs, depending on
their final output destination.

At the start of every time slotn, after packet arrivals, each
input linecardi selects a VOQZik to service, using a selection
mechanism described later. Then, all input linecards send in
parallel the packets at the head of their respective selected VOQs
to intermediate input linecardj, where

j = ((n− 1) mod N) + 1. (1)

These packets can be sent in parallel over the first mesh because
each linecard in the first stage is connected to each linecard in
the center stage by a channel of rateR/N . Therefore, no speed-
up is required.

As explained above, intermediate input linecardj then re-
ceives up toN packets in parallel by the end of time slot

n+N − 1. (2)

These packets are stored in the set of slotsBj1 . . . BjN . Specif-
ically, if a packet is destined for outputk, it is stored inBjk.
To avoid conflict, we need to ensure that packets received from
different inputs are destined to different outputs. This is the
usual bipartite matching constraint, as we shall see.

Then, at the start of time slot

n+N, (3)

intermediate input linecardj sends up toN packets in parallel
over the second mesh to theN output linecards, including at
most one packet to each output linecardk from the correspond-
ing slotBjk. Again, these packets can be sent in parallel over
the second mesh with no speed-up. Each output linecardk then
receives the packet sent by intermediate input linecardj by the
end of time slot

(n+N) + (N − 1) = n+ 2N − 1, (4)

and the packet departs immediately from the router.
The above process operates continuously. Specifically, at time

slot n = 1, all input linecards can send a packet each in parallel
to intermediate input linecardj = 1, and all output linecards
may receive a packet each in parallel from intermediate input
linecard j = 1 by time slot 1 + 2N − 1. At time slot n =
2, all input linecards can send packets to intermediate input
linecard j = 2, and all output linecards may receive packets
from intermediate input linecardj = 2 at time slot2 + 2N − 1,
and so on. Thus, each input linecard can continuously select at
every time slot a new packet to send over the first mesh, and
each output linecard may continuously receive a new packet at
every time slot from the second mesh for departure. All linecards
operate in parallel, and the operations of the first mesh and the
operations of the second mesh effectively overlap in time.

Note that above operation implies that each input linecard
sends packets inround-robin order to intermediate input
linecards, and each output linecard receives packets in the same
round-robin order from intermediate input linecards, starting
with the first intermediate input linecard, moving next to the
second intermediate input linecard, and so on, possibly not
sending a packet to or receiving a packet from a particular
intermediate input linecard at some time slots.

III. IMS C AN EMULATE ANY IQ SWITCH

In this section, we prove that the IMS architecture can emulate
any IQ switch using the same matching algorithmm. There are
two main reasons behind our desire to emulate IQ switches.
The first reason is a fundamental and historical need to better
understand hownewswitch architectures work by studying how
they would emulatecurrent switch architectures. The second
reason is the desire to emulate the Birkhoff-von Neumann input-
queued switch [1], which is known to provide service guarantees
with only a low-complexity online scheduler that can be fully
distributed.

The intuition behind the emulation of any IQ switch by
an IMS is as follows: everyN time slots, an IQ switch

consecutively makesN matchings between its inputs and its
outputs, and transfers packets from the inputs to the outputs
accordingly. An IMS will make the very sameN matchings,
and implement each matching using a different intermediate
input linecard. Therefore, putting aside the fixed propagation
delays, it will move the same packets at the same time, hence
emulating the IQ switch. In the next paragraphs, we will first
formalize this intuition by defining the terms used in the proof,
and then we will prove that an IMS can emulate any IQ switch.

Definition 1 (Conflict-Free Matching):Let m be a matching
algorithm, let πm(n) represent the matching of all inputs to
outputs under the matching algorithmm at time slotn, and let
k = πm(i, n) denote the matching from inputi to output k
underm at time slotn. Thenπm(n) is said to be a conflict-free
matching if and only ifi1 6= i2 ⇒ πm(i1, n) 6= πm(i2, n).

In the remainder, we assume that an IQ switch only uses
conflict-free matchings.

Definition 2 (Match Time):Let c be a packet queued at a
VOQ Zik at input linecardi. Let MT (c) be the time slot that
it gets matched for transfer from input linecardi. ThenMT (c)
is referred to as the match time forc.

Definition 3 (Departure Time):Let c be a packet that has
been matched for transfer and it is destined to output linecardk.
Let DT (c) be the time slot that it completely arrives at output
linecardk where it departs. ThenDT (c) is referred to as the
departure time ofc. We assume that once a packet completely
arrives at an output linecard, it departs immediately through its
outgoing link.

Definition 4 (Shadow Switch):Let X be a switch. A shadow
switch Y is a switch with the same number of input and
output ports asX. It receives identical input traffic patterns,
and operates at the same line rate asX.

Definition 5 (Emulation):A switch X is said to emulate a
shadow switchY if under identical inputs, the departure times
for identical packets are within a constant.

In other words, two switches emulate each other if they
have the same queueing delay under all possible traffic patterns
(ignoring the fixed propagation delays inside the switches). The
following theorem shows that an IMS can emulate any IQ
switch. It is illustrated using a practical example of IQ emulation
in Section VII.

Theorem 1 (IQ Emulation):An IMS can emulate any IQ
switch under the same matching algorithmm.

Proof: Let Y be a shadow IQ switch that uses some
conflict-free matching algorithmm. Let X be an IMS.

Assume thatX uses the same matching algorithmm to select
which VOQ Zik to service at every time slot. By assumption,
the inputs inX as well asY have the same arrival process,
both switches use the same matching algorithm, and in both
switches packets depart from the inputs as soon as they are
matched. Therefore, by recurrence, we can see that at all time
slots, both input stages have the same arrival and departure
processes, as well as the same states. In particular, for every
packet c scheduled in the shadow IQ switchY , match time
MTX(c) = MTY (c).

For a shadow IQ switch with a crossbar implementation, once
a packetc has been scheduled, it is assumed to depart through

the corresponding output in the same time slot. That is,

DTY (c) = MTY (c). (5)

For the IMSX, once a packetc has been scheduled, there
are no conflicts in the middle linecards sincem is conflict-
free. Following Equation 4, the packetc will depart through the
corresponding output in time slot

DTX(c) = MTX(c) + 2N − 1. (6)

Therefore, the difference in departure time is a constant delay
(propagation time):

DTX(c)−DTY (c) = 2N − 1. (7)

It is interesting to note that in effect, the set of slots
Bj1 . . . BjN at each intermediate input linecardj corresponds
to an equivalent crossbar configuration in the shadow IQ switch
at some point in time. In fact, this architecture can be seen as
extending the idea oftime-slicing among parallel crossbarsto
time-slicing among intermediate linecards. It is a particular case
of time-space conversion.

At first glance, this architecture also shares similarities with
a Clos network. However, there is a crucial difference in that
a Clos network needs active (electronic) switch elements that
require per-slot dynamic configuration for each match, whereas
the current architecture is able to use passive (optical) elements.

IV. PROVIDING SERVICE GUARANTEES

A. Background on Birkhoff-von Neumann Decomposition

In [1], an approach based on Birkhoff-von Neumman decom-
position was presented for providing service guarantees on IQ
crossbar switches when the traffic profile is knowna priori.
In particular, letΛ = (λik) be anN × N arrival traffic rate
matrix whereλik represents the mean rate of traffic from input
i to outputk. Λ = (λik) is said to beadmissibleand doubly
sub-stochasticif

N∑
i=1

λik ≤ 1,∀k
N∑

k=1

λik ≤ 1,∀i

and it is said to bedoubly stochasticif

N∑
i=1

λik = 1,∀k
N∑

k=1

λik = 1,∀i

Given an admissible traffic rate matrixΛ, the problem of
crossbar matching can be defined as a decomposition ofΛ into
a series of permutation matrices (πh) such that

Λ ≤
H∑

h=1

φhπh (8)

where0 < φh ≤ 1 and
∑

h φh = 1. With the decomposition,
each permutation matrixπh can then be used for crossbar
matching for the corresponding fraction of timeφh. Here, we
overload the notation ofπh to represent both a permutation
matrix and the corresponding matching that it implies.

The overall approach in [1] consists of the following:

1) It first uses anO(N3) von Neumman algorithm [7] to
convert an admissible traffic rate matrix into a doubly
stochastic matrix.

2) It then uses anO(N4.5) Birkhoff decomposition algo-
rithm [8] to find the decomposition shown in Equation 8.
Both steps 1 and 2 are performedoffline.

3) It finally uses the Packetized Generalized Process Sharing
(PGPS) algorithm in [10], [11] to determine which per-
mutation matrixπh (obtained in Step 2) is to be used in a
given time slot in proportion toφh. Thisonlinescheduling
step hasO(logN) complexity.

B. Birkhoff-von Neumann Switch Emulation, Throughput Guar-
antees, and Service Guarantees

It follows directly from Section III that an IMS can provide
the same throughput and service guarantees as a Birkhoff-von
Neumann input-queued switch.

Theorem 2:An IMS can emulate a Birkhoff-von Neumann
IQ switch.

Proof: The result derives directly from Theorem 1.
Using this emulation theorem, we can directly extend most

of the properties of a Birkhoff-von Neumann switch to an IMS
that emulates it.

Theorem 3:If the arrival traffic is a stationary and ergodic
stochastic process with the mean rateΛ = (λik), then an IMS
provides 100% throughput.

Proof: This is a known result for the Birkhoff-von
Neumann IQ switch [1], [2]. It extends directly to the IMS
architecture using the emulation proved in Theorem 2.

We next show that an IMS has the same service guarantees
as the Birkhoff-von Neumann switch that it emulates.

Theorem 4:Let Fik be a continually backlogged flow from
input i to outputk, and letCik(t) be the cumulative number of
packets served from a continually backlogged flowFik by time
t. Let t1 and t2 be two time slots such that(2N − 1) ≤ t1 ≤
t2. Then any time-independent bounds on service guarantees
defined by

Cik(t2)− Cik(t1)

are exactly the same for an IMS and the input-queued switch
that it emulates.

Proof: Let X be an IMS, and letY be an input-queued
switch that it emulates. Given that the departure time for a packet
in X is a constant offset(2N − 1) from the departure time for
the same packet inY (Equation 4), we have

CX
ik (t2) = CY

ik(t2 − (2N − 1)), (9)

CX
ik (t1) = CY

ik(t1 − (2N − 1)). (10)

Then it follows that any time-independent bounds defined by
Cik(t2)− Cik(t1) are the same forX andY .

In [1], it was shown that for any admissible traffic rate matrix
Λ = (λik), the difference in the cumulative number of packets
served from a continually backlogged flowFik in a Birkhoff-
von Neumman switch for anyt1 ≤ t2 is bounded by∑

h∈Eik

φh(t2 − t1)− σik ≤ Cik(t2)− Cik(t1) (11)

≤
∑

h∈Eik

φh(t2 − t1) + σik,

where

σik = min

[
H, |Eik|+

∑
h∈Eik

φh(H − 1)

]
,

Eik is the subset of permutation matrices with the(i, k) entry
equal to 1, andH is the number of permutation matrices in
Equation 8. Therefore, it follows that an IMS that emulates a
Birkhoff-von Neumann switch has the same service guarantees.

C. Optimizing the IMS Architecture for Service Guarantees

In this section, we describe a number of optimizations that
can be used in emulating a Birkhoff-von Neumman switch.

1) Distributed Scheduling: Instead of performing PGPS
scheduling in a centralized manner, each input linecard can
perform the same PGPS scheduling in afully-distributed
manner to select which of its own VOQs to service at
each time slot. If sequential hardware is used, the PGPS
scheduling step requiresO(logN) complexity. When
O(logN) parallel hardware can be afforded, then it has
been shown in [12] that this online scheduling step can
be reduced toO(1) time with pipelining. Alternatively,
another practical solution is to use anO(1) complexity
round-robin based scheduler [13], [14] to approximate
PGPS scheduling. The combination of the IMS architec-
ture and fully distributed online scheduling withO(logN)
or O(1) time complexity enables this approach to be
highly scalable.

2) Distributed Storage: It was shown in [1], [8] that the
number of components in Equation 8 is bounded by
H ≤ N2 − 2N + 2. Therefore, the memory requirement
is O(N3 logN) for storing up toO(N2) permutation
matrices withN logN bits per matrix. However, with
N = 1024, about10 Gbits of storage would be required,
which is obviously not feasible. But with a distributed
scheduling approach, each input linecard is only respon-
sible for selecting a packet from its own VOQs to service
at each time slot. Therefore, we only need to store theith

row of each permutation matrixπh at input linecardi. As
a result, the memory requirement for each input linecard
is reduced toO(N2 logN) for storing up toO(N2) rows
with logN bits per row,1/N th of the storage required.
With N = 1024, about10 Mbits of storage is required,
which is achievable in SRAM.

V. FRAME-BASED SCHEME

A. Low Complexity Decomposition

In cases where a fixed frame size is applicable, the de-
composition problem can be greatly simplified. Specifically, let
Λ = (λik) be an admissible arrival traffic rate matrix where
each entry is within the interval0 ≤ λik ≤ 1. Suppose there
is a frame sizeF , whereF is an integer, such thatΨ = F · Λ
contains only integers or entries that can be rounded off into
integers with acceptable roundoff error. Then the Birkhoff-
von Neumann decomposition procedure and online scheduling
algorithm outlined in Section IV-A are unnecessarily complex.

Alternatively, it is well-known that the Slepian-Duguid [15]
algorithm can perform the decomposition ofΨ = F · Λ into

F permutation matrices inO(N2F) time. If the chosen frame
size F is an integer multiple ofN , then the decomposition
complexity is bounded byO(N3). However, the decomposition
complexity can be further improved by formulating decomposi-
tion as an edge-coloring problem.

Theorem 5 (Frame-Based Decomposition):Let Λ = (λik) be
an N × N admissible arrival traffic rate matrix, and letF
be an integer frame size such thatΨ = F · Λ contains only
integers. ThenΛ can be decomposed inO(NF logF) time into
F permutation matrices such that

Λ ≤
F∑

h=1

πh (12)

Proof: The matrixΨ = F · Λ can be transformed into a
bipartite graph withN nodesu1 . . . uN and v1 . . . vN on each
side, respectively, withψik edges fromui to vk for all i andk.
We then solve an edge-coloring problem, which can be solved
in O(E logD) time [9]. Since the number of edges isE = NF
and the maximum degreeD = F , the edge coloring problem
can be solved inO(NF logF) time with F colors. For each
color, a permutation matrix can be induced by the edges with
that color.

If the chosen frame sizeF is an integer multiple ofN ,
then the decomposition complexity is bounded byO(N2 logN).
The advantages of this approach over Birkhoff-von Neumann
decomposition in the cases where a fixed frame size is applicable
are as follows:

1) Much lower complexity than anO(N4.5) Birkhoff decom-
position.

2) No need to first make the traffic rate matrix doubly
stochastic via anO(N3) von Neumann conversion.

3) No need to use PGPS scheduling since theF permutation
matrices can be uniformly rotated in constant time.

4) The online memory requirement per input linecard reduces
to O(F logN), orO(N logN) if F is an integer multiple
of N .

B. End-to-End Delay

In this section, we compare the end-to-end delay of the frame-
based approach using the IMS architecture with the frame-based
scheme described in [6] since both schemes require a fixed frame
size. In the frame-based scheme described in [6], packets arrive
in frames, and packets that arrive within a frame ofF time slots
must satisfy the specified rate matrixΛ = (λik). Specifically,
let ψik = λikF . Then no more thanψik packets from inputi to
outputk can arrive within a frame. Assuming these assumptions
hold, it was shown in [6] that the maximum end-to-end delay
for all arrivals is bounded by2NF or Θ(NF). If F is an integer
multiple of N , then the bound becomesΘ(N2).

Theorem 6 (End-to-End Delay):Following the same as-
sumption that packets arrive in frames, with sizeF , and no
more thanψik packets from inputi to outputk arrive within
a frame, we can guarantee that the maximum end-to-end delay
for all arrivals is bounded byF + 2N − 1 or O(F +N).

Proof: Following the same assumption that packets arrive
in frames and no more thanψik packets from inputi to output
k arrive within a frame, we are guaranteed that a packet will

be scheduled for transfer no more thanF time slots later. From
Equation 4, once a packet has been scheduled for transfer, it
will depart at its final output2N − 1 additional time slots later.
Therefore, the maximum end-to-end delay is bounded byF +
2N − 1 or O(F +N).

If F is an integer multiple ofN , then the bound becomes
Θ(N), which is significantly better thanΘ(N2) required by the
frame-based scheme described in [6].

VI. IMS CAN EMULATE ANY CIOQ SWITCH

For completeness, we extend in this section the results in
Section III to show that the IMS architecture can also emulate
any CIOQ switch under the same positive integerspeedupS
(e.g.S = 2) and matching algorithmm. In a conventional CIOQ
crossbar switch with a speedup ofS, S matching phases are
performed in every time slot. Corresponding to theS matching
phases, up toS packets may be served from each input, and
up to S packets may be received at each output. Each output
maintains an output queue since only one packet may depart
from it at each time slot, and the crossbar switch operatesS
times faster.

To emulate a CIOQ switch, we make several extensions to the
IMS architecture. First, the two meshes operate at a speedup of
S: each linecard in the first stage is connected to each linecard
in the center stage by a channel at rateSR/N via the first
mesh, and each linecard in the center stage is connected to each
linecard in the final stage by a channel at rateSR/N via the
second mesh.

Then, at every time slotn, each input linecardi performs
S matching phases and selectsS VOQs to service based on
matching algorithmm, possibly selecting the same VOQ more
than once.

Definition 6 (Match Time under Speedup):Let C be the set
of up to S packets selected in theS matching phases at time
slot n. Then for allc ∈ C, the match time isMT (c) = n.

At every time slot, an intermediate input linecardj is chosen
in the same way as described in Section III (i.e.cf. Equation 1).
The S packets selected are then sent to this intermediate input
linecard via a channel at rateSR/N through the first mesh,
which will all completely arrive by the end of time slotn+N−1.

Then, at each intermediate input linecard, instead of eachBjk

holding one packet,Bjk can buffer up toS packets destined to
outputk.

Then, at the start of time slotn+N , each intermediate input
linecardj may send up toS packets to each output linecardk
from the packets buffered atBjk. These packets will be sent
to output linecardk via a channel at rateSR/N through the
second mesh, which will completely arrive at outline linecard
k for departure by the end of time slotn + 2N − 1. Since
up to S packets may arrive at an output in a given time slot,
and only one packet can depart through the outgoing link, they
have to be queued in the output queue. Therefore, instead of
defining a departure time, we define an output queue arrival
time as follows.

Definition 7 (Output Queue Arrival Time):Let O be the set
of up toS packets received at an outputk in time slot t. Then
for all c ∈ O, the output queue arrival time isOQAT (c) = t.

Note that thist = n+ 2N − 1 is the same as in Equation 4
defined in Section III. Finally, since up toS packets may be
received at an output each time slot, but only one can depart,
output queues are added to each output linecard. With these
extensions, the packets will arrive in order at their final output
destinations as before.

Theorem 7 (CIOQ Emulation):An IMS can emulate any
CIOQ switch under the same speedupS and matching algorithm
m.

Proof: The proof follows the same line of arguments as
Theorem 1. LetY be a shadow CIOQ switch with speedup
S and some conflict-free matching algorithmm. Let X be an
IMS, and assume thatX has the same speedup and uses the
same matching algorithmm in S matching phases to select
up to S packets to service at every time slot. By assumption,
both switches have the same arrival process, both switches
make the same matchings, and packets depart from inputs as
soon as they are matched in both switches. By recurrence,
both input stages have the same arrival and departure processes,
and same state. Therefore, for every packetc scheduled inY ,
match timeMTX(c) = MTY (c), and departure time atY
is OQATY (c) = MTY (c). For X, since there is a constant
2N − 1 delay through the switch from match time to arrival at
destinated output,OQATX(c) = MTX(c)+2N−1. Therefore,
the difference in arrival time to the destined output queue is also
constant:

OQATX(c)−OQATY (c) = 2N − 1. (13)

Since only one packet can depart for an outgoing link in both
switches, their output queue lengths whenc arrives at their
respective output queue will also be the same. Therefore, the
2N − 1 difference in output queue arrival time will remain in
the difference in departure time.

VII. A N EXAMPLE

We illustrate in this section how an IMS emulates an IQ
switch, and more specifically a Birkhoff-von Neumann switch.
Specifically, we illustrate by means of an example how match-
ings generated via online scheduling of a Birkhoff-von Neumann
decomposition are executed. Consider the following3 × 3
example.

Λ =

 0 0.75 0.25
0 0.25 0.75

1.0 0 0

A possible decomposition is

Λ = 0.75

 0 1 0
0 0 1
1 0 0

 + 0.25

 0 0 1
0 1 0
1 0 0

A possible online schedule may be the following matching
sequence in time

Input Queues
Output

Linecards

AB-1AB-2

AC-1

CA-1CA-2CA-3

BC-1BC-2

BB-1

Intermediate
Linecards

CA-1

AB-1

BC-1

AC-1

CA-2

BB-1

AB-2

CA-3

BC-2

CA-1

AB-1

BC-1AC-1

CA-2

BB-1AB-2

CA-3

BC-2

n n + 3 - 1 n + 3 n + 3 + 1

n + 6 - 1 n + 6 n + 6 + 1

Time-slot
Legend

Fig. 3. Snapshots of switch in different time slots.

π(1) =

 0 1 0
0 0 1
1 0 0

 π(2) =

 0 0 1
0 1 0
1 0 0

π(3) =

 0 1 0
0 0 1
1 0 0

 π(4) =

 0 1 0
0 0 1
1 0 0

...

...

where π(1), π(3), π(4) are schedules of the first component,
π(2) is a schedule of the second component, and so on.

The flow of packets for this matching sequence is illustrated
in Figure 3. In the figure, theN = 3 ports are labelledA,
B, andC. Each packet is labelled with its input source, output
destination, and sequence number – e.g. packetBC-1 originates
from inputB, is destined for outputC, and has sequence number
1. Figure 3 depictssnapshotsof the switch at different points in
time. Suppose that at time slotn, the packets inwhiteare queued
at the input stage. By the end of time slotn + 3 − 1, packets
CA-1, AB-1, andBC-1 completely arrive at middle linecardA,
as shown in thenext shade of grayin the figure. Other packets
in-flight are not explicitly animated. By the end of the next
time slot, n + 3, packetsCA-2, BB-1, and AC-1 completely
arrive at middle linecardB. This is shown with thenext darker
shade of gray. Still other packets arein-flight, and so on. By
the end of time slotn+ 6− 1, packetsCA-1, AB-1, andBC-1
completely arrive at their respective output linecards where they
depart. Consider in particular the packet path forBC-1: it leaves
input linecardB at timen, arrives at middle linecardA at time
n+3−1, and departs from output linecardC at timen+6−1.
Therefore, this example illustrates how packets are scheduled in
a simple way that exactly emulates the corresponding Birkhoff-
von Neumann switch.

VIII. D ELAY OPTIMIZATIONS

In this section, we informally outline how propagation delays
can be improved. As noted in [5], two uniform meshes can
be replaced by a single mesh running twice as fast, with each
linecard containing three logical parts (input, intermediate input,

and output). This approach can also be applied to the IMS
architecture. In the case of IQ emulation, each logical input
would be connected to each logical intermediate input by a
channel at rate2R/N instead ofR/N via the first logical mesh,
and each logical intermediate input would also be connected to
each logical output by a channel at rate2R/N via the second
logical mesh. The channels in the first logical mesh can betime-
multiplexedwith the channels in the second logical mesh. In this
case, we can reduce the fixed delay in Equation 4 by a factor of
2, and results from Sections III, IV, and V extend accordingly.

In the case of CIOQ emulation with speedupS, if the two
meshes are not combined, each input is connected to each
intermediate input by a channel at rateSR/N via the first mesh,
and each intermediate input is connected to each output by a
channel also at rateSR/N via the second mesh. Packets arriving
at an intermediate input linecard can be sent to the destinated
outputs immediately without waiting for allS packets to arrive.
Therefore, we can reduce delay by a factor ofS when using a
speedupS. Similarly, if the two meshes are combined, then each
logical input would be connected to each logical intermediate
input by a channel at rate2SR/N via the first logical mesh,
and each logical intermediate input would be connected to each
logical output by a channel at rate2SR/N via the second logical
mesh. Therefore, we can reduce delay by a factor of2S. The
analysis from Section VI extends accordingly.

IX. A CKNOWLEDGMENTS

The authors would like to acknowledge the support of the
ATS-WD Career Development Chair.

REFERENCES

[1] C. S. Chang, W. J. Chen, H. Y. Huang, “On service guarantees for input
buffered crossbar switches: a capacity decomposition approach by Birkhoff
and von Neumann,” IEEE IWQoS’99, pp. 79-86, 1999.

[2] C. S. Chang, D. S. Lee, Y. S. Jou, “Load balanced Birkhoff-von Neumann
switches, Part I: one-stage buffering,” Computer Communications, 2002.

[3] C. S. Chang, D. S. Lee, C. M. Lien, “Load balanced Birkhoff-von Neu-
mann switches, Part II: multi-stage buffering,” Computer Communications,
vol. 25, pp. 623-634, 2002.

[4] I. Keslassy, S. T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Solgaard, and
N. McKeown, “Scaling Internet routers using optics,” ACM SIGCOMM,
Karlsruhe, Germany, 2003.

[5] I. Keslassy, “The Load-Balanced Router,” Ph.D. Thesis, Stanford Univer-
sity, 2004.

[6] C. S. Chang, D. S. Lee, C. Y. Yue, “Providing Guaranteed Rate Services
in the Load Balanced Birkhoff-von Neumann Switches,” INFOCOM’03.

[7] J. von Neumann, “A certain zero-sum two-person game equivalent to the
optimal assignment problem,” Contributions to the Theory of Games, vol.
2, pp. 5-12, Princeton University Press, Princeton, NJ, 1953.

[8] G. Birkhoff, “Tres observaciones sobre el algebra lineal,” Univers. Nac.
Tucuman Rev. Ser. A, vol. 5, pp. 147-151, 1946.

[9] R. Cole, K. Ost, S. Schirra, “Edge-coloring bipartite multigraphs in
O(E log D) time,” Combinatorica 21 (1) (2001) 5-12.

[10] A. K. Parekh, R. G. Gallager, “A generalized processor sharing approach
to flow control in integrated service networks: The single-node case,”
IEEE/ACM Transactions on Networking, vol. 1, pp. 334-357, 1993.

[11] A. Demers, S. Keshav, S. Shenkar, “Analysis and simulation of a fair
queueing algorithms,” ACM SIGCOMM, pp. 1-12, Austin, TX, 1989.

[12] R. Bhagwan, B. Lin, “Fast and scalable priority queue architecture for
high-speed network switches,” IEEE INFOCOM, Tel Aviv, 2000.

[13] M. Shreedhar, G. Varghese, “Efficient fair queueing using deficit round
robin,” ACM SIGCOMM, pp. 231–242, Sept. 1995.

[14] S. Ramabhadran, J. Pasquale, “Stratified round Robin: a low complexity
packet scheduler with bandwidth fairness and bounded delay,” ACM
SIGCOMM, pp. 239-250, Karlsruhe, Germany, 2003.

[15] J. Hui. “Switching and traffic theory for integrated broadband networks,”
Kluwer Academic Publishers, Boston, 1990.

