
Designing Packet Buffers with Statistical Guarantees

Gireesh Shrimali, Isaac Keslassy, Nick McKeown
Computer Systems Laboratory, Stanford University,

Stanford, CA 94305-9030
{gireesh, keslassy, nickm}@stanford.edu

Abstract -- Packet buffers are an essential part of routers. In high-
end routers these buffers need to store a large amount of data at very
high speeds. To satisfy these requirements, we need a memory with the
the speed of SRAM and the density of DRAM. A typical solution is to
use hybrid packet buffers built from a combination of SRAM and
DRAM, where the SRAM holds the heads and tails of per-flow packet
FIFOs and the DRAM is used for bulk storage. The main challenge
then is to minimize the size of the SRAM while providing reasonable
performance guarantees. In this paper, we analyze a commonly used
hybrid architecture from a statistical perspective, and ask the following
question: if the packet buffer designer is willing to tolerate a certain
drop probability, then how small can the SRAM get? To do so, we
introduce an analytical model for representing the SRAM buffer occu-
pancy, and derive drop probabilities as a function of SRAM size under
a wide range of statistical traffic patterns. As a consequence of our
analysis we show that, for low drop probability, the required SRAM
size is proportional to the number of flows.

I. INTRODUCTION

Packet buffers in high-performance routers are challenging to design
because of two factors: memory speed and memory size.

Packets belonging to different flows (for example, these flows might
correspond to different IP source-destination pairs) arrive and depart at
line rate, and are typically stored in per-flow queues. Consecutive pack-
ets may belong to different flows according to unpredictable patterns.
This requires that the buffer should be able to store as well as retrieve
packets at line rates, in an unpredictable and uncorrelated order. Thus,
the buffer has to match a raw bandwidth (in bits/s) as well as a memory
random access speed (in packets/s) of at least twice the line rate.

In addition, a widely used rule of thumb indicates that, for TCP to
work well, the buffer should be able to store an amount of data equal to
the product of the line rate and the average round-trip-time [1]. There-
fore, both the speed and size of the memory grow linearly with the line
rate.

As an example, consider a 40Gbits/s linecard. This requires the packet
buffer to have a raw bandwidth of 80Gbits/s. In addition, assuming a
constant stream of 40-byte packets,1 the buffer must read and write a
packet every 8ns (i.e., one memory operation every 4ns - translating to a
random access speed of 250Mpackets/s); and assuming an average
round-trip time of 0.25s [2], the buffer must hold 10Gbits.

We now investigate the properties of two popular commercially avail-
able memories - SRAM and DRAM - to see if they match these require-
ments.

1. This corresponds to minimum size IP packets containing TCP ACKs.

We note that the state of art SRAMs meet the raw bandwidth require-
ment of 80Gbits/s as well as the random access time requirement of 4ns.
However, these SRAMs can hold a maximum of 32Mbits per device,
while consuming 250mW/Mbit. Thus, an SRAM-only solution would
require over 300 SRAM devices and consume approximately 2.5kW, and
therefore be very costly in terms on board real estate as well as power.

On the other hand, the state of art DRAMs can hold up to 1Gbits per
device, while consuming 4mW/Mbit. So, a DRAM-only solution would
require only 10 DRAM devices, while consuming 40W, and therefore
can easily meet the real estate and power requirements. However,
DRAM access times haven’t kept up with the line rates - with today’s
DRAM technology, the random access times are in the range 20ns-40ns,
and barely meet the requirements for even a 10Gbits/s line card. This
shortfall is not going to be solved anytime soon since DRAMs are opti-
mized for size rather than random access times, and the random access
times improve by only 10% every 18 months [3]. On the other hand, the
line rate doubles in the same time period [4]. Thus, this problem will get
worse rather than better over time.

Thus, an SRAM-only or a DRAM-only solution cannot meet both the
speed and size requirements simultaneously. Since, overall, we would
like to have a fast and large memory with the speed of SRAM and the
density of DRAM, a solution would be to use both, in a manner very
similar to computer systems where fast SRAMs are used as caches
whereas dense DRAMs hold bulk of data.

Arriving
Cells

Departing
Cells

Large DRAM

Head Cache

Figure 1: Hybrid SRAM-DRAM memory architecture.

1

Q

1

Q

1

Q

b cells b cells

Tail Cache

SRAM

R R

A common approach is to use a hybrid SRAM-DRAM architecture
[5][6][7], as shown in Figure 1. We encourage the reader to read [5]
for a detailed background and motivation for this architecture. Under
this architecture, one can envision the memory hierarchy as a large
DRAM containing a set of cell FIFOs with the heads and tails of
FIFOs in a dynamically shared SRAM.

The SRAM behaves like a cache, holding packets temporarily
when they first arrive and just prior to their departure. Variable size
packets arrive at the SRAM at rate R. They are segmented into fixed-
size cells and are stored into one of the Q tail FIFOs depending on
their flow ID. Later, a Memory Management Algorithm (MMA)
writes cells into the DRAM in blocks of b cells. Similarly, the MMA
transfers blocks of b cells from the DRAM FIFOs to the correspond-
ing head FIFOs in the SRAM. Finally, cells from head FIFOs depart
when requested by an external arbiter. Note that the MMA always
transfers cells at a time - never less - between an SRAM FIFO and
the corresponding DRAM FIFO. By transferring b cells every b time-
slots, it ensures that the DRAM meets the memory speed requirement
in the long run.2

Note that a cut-through path may exist between the tail and head
caches. However, for simplicity, we analyze the tail and head caches
independently, as tail and head SRAMs, and neglect the effects of the
cut-through path.

In this paper, we look at the problem of independently sizing the
tail and head SRAMs from a statistical perspective under a wide range
of arrival traffic patterns. We provide models of the SRAM buffers,
present MMAs that would minimize the SRAM sizes for a given drop
probability, and derive formulas relating SRAM sizes to the drop
probability. As a consequence of our analysis we show that, in order
to provide low drop probability, the required SRAM sizes scales lin-
early with . When Q is large, this linear dependence would make
such a buffer hard to implement.3 Therefore, we exhibit an inherent
limitation of this architecture.

The rest of the paper is organized as follows. Section II presents a
model of the tail SRAM followed by a detailed analysis. Similarly,
Section III presents a model of the head SRAM along with analytical
results. Section IV provides some simulation results and Section V
concludes the paper.

II. ANALYSIS OF THE TAIL SRAM

A. Tail SRAM Model

In this section, we introduce a queueing model for the tail SRAM,
together with some simplifying assumptions.

As illustrated in Figure 2, we model the tail SRAM as a single
queue served by a deterministic server of rate 1. For simplicity, we
assume time to be a continuous variable. A similar analysis could be
carried out in discrete time domain as well. We also assume that the
SRAM is dynamically shared among queues corresponding to
flows.

We denote by the cumulative number of cells arriving at the
SRAM in . is assumed to be the sum of arrival pro-
cesses corresponding to the Q flows. have rates such
that .4 We also assume that are independent and

identically distributed (IID) stationary and ergodic processes.5 We
similarly denote by the cumulative number of departures in

. We then denote as the number of cells present in queue
, and as the total SRAM occupancy at time t.
To find the drop probability, we start by assuming that the SRAM is

infinite. We then obtain the steady state probability that the sum of
queue sizes exceeds (i.e.,) as a surrogate for the steady
state overflow probability for a SRAM of size .

We assume that the MMA works as follows [5]. Whenever the
DRAM is free, it serves an arbitrary queue from the set of all queues i
satisfying . For example, it could service the longest queue
with at least b cells, or the oldest queue with at least b cells, and so on.

We refer to this MMA as a b-Work Conserving MMA (BWC-
MMA) since it is work conserving as soon as at least one queue has
occupancy of at least . Because of work conservation, BWC-MMA
minimizes the tail SRAM occupancy among all possible MMAs in
this architecture. Therefore, given a tail SRAM of size S in the hybrid
architecture, BWC-MMA ensures that the drop probability P is mini-
mized. Equivalently, it minimizes S given a fixed P.

Under BWC-MMA, service to an individual queue depends on the
occupancy of all the queues in the system. This makes it hard to ana-
lyze the queues in isolation, and we need to analyze the queue occu-
pancies together. This analysis is extremely challenging due to the
interactions between the queue occupancies.

B. The Fixed-Batch Decomposition

In this section, we simplify the analysis by decomposing the sum of
occupancies into elements that can be analyzed independently.

We start by noting that each can be written down as

, (1)
where and are the quotient and the remainder after

 is divided by . Now the arrival process can be written as

. (2)

We can also write

, (3)
where and are referred to as
the batch arrival process and remainder workload, respectively.

2. With line rate R, DRAM random access time T, and cell size c, we
define . Thus, time-slots.
3. For example, in edge routers can be as large as a million.

b

b 2RT c⁄= T b=

Q

Q

Q Q

A t()
0 t,[] A t() Q

A
i

t() A
i

t() λi
λ λi∑ 1<≡ A

i
t()

4. In this paper, all the finite sums are over index i over the range 1 to Q.
5. We believe this independence assumption is reasonable since the traf-
fic on a high speed WAN link usually comprises of traffic generated by
thousands of independent sources. In addition, in [8] we show that the
drop probability in the IID case upper bounds the corresponding proba-
bility in the non-IID (independent but not identically distributed) case.
Thus, analysis for the IID case suffices for the scope of this paper.

A(t) D(t)

source 1

source Q

Figure 2: The tail SRAM model

L(t)A1(t)

AQ(t)

+

D t()
0 t,[] L i t,()

i L t() L i t,()∑=

S P L S>()
S

L i t,() b≥

b

A
i

t()

A
i

t() b MA
i

t()× R
i

t()+=

MA
i

t() R
i

t()
A

i
t() b A t()

A t() A
i

t()∑ b MA
i

t()× R
i

t()+[]∑= =

A t() b MA t()× R t()+=

MA t() MA
i

t()∑= R t() R
i

t()∑=

Having defined the arrival process, we now examine the departure
process. Since cells are serviced by fixed batches of b,

, (4)
where represents the cumulative number of batch departures
in .

Finally, having considered arrivals and departures, we look at the
sum of occupancies , which can simply be written down as

. (5)
Substituting for and from Equation (3) and

Equation (4), we get

(6)
or

, (7)
where is referred to as the batch work-
load.

Equation (7) indicates that the system workload can be
decomposed into two terms. The first term, , is the product
of the batch size and the batch workload. The second term, , is
the simply the remainder workload.

We now show that the two terms in this decomposition are indepen-
dent. This greatly simplifies the analysis since it is now possible to
study them separately. The independence between the batch workload
and the remainder workload is provided by the following theorem.

Theorem 1: The remainder workload is independent of the batch
workload.

Proof: See Appendix.�
Theorem 1 provides what we call the fixed-batch decomposition. It

indicates that the steady state distribution of the system workload can
be derived simply by convolving the steady state distributions of the
remainder and batch workloads, i.e,

, (8)

where , , and are the steady state probability den-
sity functions (PDF) of system, remainder, and batch workloads,
respectively. Thus, Theorem 1 allows us to translate the general queue
analysis to two more tractable problems.

C. Steady State Distributions

We first derive the steady-state distributions of remainder and batch
workloads. The fixed-batch decomposition can then be used to obtain
the steady-state distribution of the queue occupancy.

1) Steady State Distribution of the Remainder Workload

The steady state distribution of the remainder workload can be
given by the following theorem.

Theorem 2: As the number of flows increases (i.e.,), the
steady state distribution of the remainder workload tends towards a
Gaussian distr ibution wi th mean and variance

.

Proof: See Appendix.�
2) Steady State Distribution of the Batch Workload

Having derived the steady state distribution of the remainder work-
load, we now derive the steady state distribution of the batch work-
load. We use the batch queue model shown in Figure 3. In this model,

we analyze arrivals and departures of batches of cells instead of indi-
vidual cells. The batch arrival process is the superposition of IID
processes , with total rate . Under the BWC-MMA disci-
pline, the batch queue is serviced by a work-conserving server of rate

.
Using Lindley’s recursion [9], the batch workload can be written as

. (9)

Equation (9) indicates that, given the steady-state distribution of
the batch arrivals, it is theoretically possible to derive the steady-state
distribution of the batch workload.

For general arrival patterns it is often not easy to find a closed-form
solution. However, for a broad range of arrival traffic patterns, the
superposition of an increasing number of flows can be shown to result
in a steady-state workload distribution that converges towards the
steady-state workload distribution of an M/D/1 queue.

To do so, we first make the following additional assumptions on the
arrival processes . We assume that each is a simple point
process satisfying the following properties [10]. First, the expected
value of is given by . Second, a source cannot send more
than one cell at a time. And third, the probability of many cells arriv-
ing in an arbitrarily small interval decays fast as .

These assumptions are fairly general and apply to a variety of traf-
fic sources, including Poisson, Gamma, Weibull, Inverse Weibull,
ExpOn-ExpOff, and ParetoOn-ExpOff. These point processes model
a wide range of observed traffic [10], including wide area network
traffic.

Given these assumptions, we can state the following theorem.

Theorem 3: As the number of flows increases (i.e.,), the
steady state exceedence probability of the batch work-
load approaches the corresponding exceedence probability with a
Poisson source with the same load.

Proof: See Appendix.�
Theorem 3 shows that as the number of multiplexed IID sources

increases, the exceedence probability approaches the corresponding
probability assuming Poisson sources, which is known explicitly
through the analysis of the resulting system [11].

3) Steady State Distribution of the System Workload

Using the fixed-batch decomposition, can easily be derived
as the convolution of and , which were obtained above.

D t() b MD t()×=

MD t()
0 t,[]

L t()
L t() A t() D t()–=

A t() D t()

L t() b MA t()× R t()+[] b MD t()×–=

L t() b ML t()× R t()+=

ML t() MA t() MD t()–=

L t()
b ML t()×

R t()

fL x() fR x() fML x b⁄()⊗=

fL x() fR x() fML x()

Q ∞→

Q b 1–() 2⁄
Q b

2
1–() 12⁄

MA(t) MD(t)

source 1

source Q

Figure 3: The batch queue model

ML(t)MA1(t)

MAQ(t)

+

Q
MA

i
t() λ b⁄

1 b⁄

ML t() max0 s t≤ ≤ MA t() MA s()–() t s–() b⁄–()=

A
i

t() A
i

t()

A
i

t() λi t

0 t,[] t 0→

Q ∞→
P ML x>()

M D⁄ 1⁄

fL x()
fR x() fML x()

We now provide an intuitive analysis of for a large number
of flows.6 For low values of , behaves like an impulse close
to zero. Since a convolution with an impulse at zero produces an out-
put equal to the input, would very much resemble for
low values of , and therefore be close to a Gaussian.

Figure 4 plots and as predicted by the theoretical
model and shows that this is indeed the case. At , the plots
corresponding to and are indistinguishable. At ,
the plots are still very close. The plots then separate out as the load
increases.

The main consequence of this observation is that, even for low
loads, would result in more than 50% drops for an SRAM size
less than , the mean of the Gaussian. However,
falls very quickly due to the low variance of the Gaussian, and low
drop probabilities can be obtained close to . Therefore, to
give reasonable performance guarantees, the SRAM has to be slightly
more than , or .

III. A NALYSIS OF THE HEAD SRAM

A. Head SRAM Model

As was the case for the tail SRAM, we assume the head SRAM to
be dynamically shared among flow queues. However, similarities
with the tail SRAM end here. For dynamic sharing to be useful for the
head SRAM, we need to be able to predict the (external) arbiter
request pattern in some way - if we can’t predict the request pattern to
the SRAM buffer, we have to buffer up cells for each queue in a static
way and the advantage of dynamic sharing is lost. Thus, we assume
the presence of a fixed length lookahead buffer, which we use to pre-
dict the request pattern to the SRAM. Note that this assumes that the
arbiter is willing to tolerate a fixed delay between the arrival of
requests and the delivery of cells from the SRAM buffer.

We use the scheme shown in Figure 5. Incoming requests ()
from an external arbiter enter the lookahead buffer to the right and
exit to the left after a fixed delay . Based on the requests in the
lookahead buffer and the cells in the SRAM, read requests ()

are made to the DRAM so as to ensure that the cells () are writ-
ten to the SRAM before the requests exit the lookahead buffer and
cells are read from the SRAM.

Similar to Section II.A, we define as the number of cells
present in queue , and as the total SRAM occu-
pancy at time t. We then define to be the number of requests
for queue in the lookahead buffer, and

 to be the deficit (number of unsatis-
fied read requests) for queue at time . A queue is defined to be
critical at time if . We also define to be the
delay through the fetch FIFO.

We assume that the MMA works as follows. Starting from an
empty SRAM, whenever the DRAM is free, it serves the earliest criti-
cal queue from the set of critical queues, provided there is space in the
head SRAM. If there are no critical queues then it doesn’t do any-
thing.

We refer to this MMA as a Deficit Work Conserving MMA (DWC-
MMA) since it is work conserving as soon as at least one queue has
gone critical. Because of the work conservation, DWC-MMA mini-
mizes the head SRAM occupancy among all possible MMAs in this
architecture. Therefore, given a head SRAM of size S in the hybrid
architecture, DWC-MMA ensures that the drop probability P is mini-
mized. Equivalently, it minimizes S given a fixed P.

In what follows we relate the (request) drop probability from the
head SRAM to the size of the lookahead buffer () as well as the
size of the SRAM (). This analysis can be extremely challenging
due to the interactions between the lookahead buffer and the SRAM.

B. Analysis of Head SRAM

The analysis of this complex system can be simplified as follows.
Observe that a request may not be served (or dropped) due to two rea-
sons. First, the lookahead buffer may not be deep enough to bring in
the required cells into the SRAM by the time the request traverses to
the end of the lookahead buffer. Second, even if the lookahead buffer
is deep enough, the SRAM may not be big enough to store the incom-
ing cells from the DRAM.

We refer to the overflowing of the lookahead buffer and head
SRAMs as events and , respectively. Now, the (request) drop
probability from the head SRAM of size , using a lookahead buffer
of size , can be given by the following

, (10)
6. In practice, we start observing the convergence indicated in Theorem 2
and Theorem 3 when the number of flows exceeds 100.

fL x()
λ fML x()

fL x() fR x()
λ

Figure 4: Theoretical PDF of L(t) for various loads for Q=1024 and
b=4 (the mean of the Gaussian is 1536)

fR x() fL x()
λ 0.1=

fR x() fL x() λ 0.5=

fL x()
Q b 1–() 2⁄ fL x()

Q b 1–() 2⁄

Q b 1–() 2⁄ Θ Qb()

Q

LA

D t()

LA
MD̂ t()

A t()

L i t,()
i L t() L i t,()∑=

LR i t,()
i

DEF i t,() L i t,() LR i t,()–=
i t

t DEF i t,() 0< FD t()

SRAM

DRAM

F

Lookahead Buffer

Buffer

D(t)D(t-LA)

A(t)

Figure 5: The head SRAM buffer model

L(t)

I
F
O

LAD(t-LA)

MAˆ t()

MDˆ t()

LA
S

E1 E2
S

LA

P S LA,() P E1 E2∪()=

or

. (11)
We again assume infinite buffers and use and

 as surrogates for and , respectively. This lets
us rewrite Equation (11) as

. (12)
Thus, we can analyze and separately to get

an upper bound on the drop probability of the head SRAM. It turns
out that both of these can be analyzed in a way very similar to the tail
SRAM.

C. A Model of the Queue

Similar to Section II we can develop a model for the head buffer
that is easy to analyze. We denote the request arrival process to the
buffer by , where is the cumulative number of requests
arriving in . is further assumed to be generated by the
superposition of arrival processes , where is the
cumulative number of requests sent for flow in . Each
is assumed to have rate , with . In addition, we
assume that the request arrival processes satisfy the assump-
tions stated the cell arrival processes in Section II.

We start by noting that each can be written down as the fol-
lowing

, (13)
where and are the remainder and quotient after

 is divided by .
Now, similar to Equation (3), the multiplexed process can be

written as
, (14)

where and .
We now define a derivative process that is more useful in analyzing

the DRAM traffic due to DWC-MMA. The derivative process is
defined as the following

. (15)
 Breaking down in the same way as , we get

, (16)
where and are the remainder and quotient after

 is divided by . Thus, in a way similar to Equation(14), we
get

, (17)
where , , and

. (18)
 is precisely the arrival process to the fetch FIFO. This is

due to the fact that, starting from an empty SRAM buffer, arrival
numbering to an SRAM queue result in fetches
from the DRAM.

Now, as mentioned earlier, the fetch FIFO is served at a rate ,
resulting in the departure process , where is related
to the arrival process to the SRAM buffer (i.e.) in the following
way

. (19)
The first equality in Equation (19) represents the fact that arrivals

to the SRAM always occur in batches of . The second equality
reflects the fact that the there is a fixed delay of in reading from the
DRAM. Now, noting that the departure process from the SRAM
buffer is given by , the SRAM buffer occupancy can
be given by

. (20)
Using Equation (18) and Equation (19), we can write this as

. (21)
Substituting for from Equation (17), we get

(22)
or

, (23)
where

 (24)
and

. (25)
Realize that Equation (23) looks strikingly similar to Equation (7) -

in what follows, we show that it can be analyzed in a similar way.
However, for the sake of brevity, we intentionally stay away from
proving theorems that pretty much resemble the ones proved in Sec-
tion II, and state the results in an intuitive way.

We start by looking at the steady state distribution of (i.e,
). We note that) can be obtained from the distribution

of (i.e.,) by first flipping around the origin and
then shifting to the right by .7 In addition, it can be proven,
in a way very similar to Theorem 2, that is a Gaussian with
mean and variance .8 So, for large ,
after going through the linear transformations mentioned above,

 would pretty much be the same Gaussian as .
Now we are ready to look at the distribution of . To do so,

we use the following inequalities
(26)

and
. (27)

In Equation (26), the right hand side inequality is pretty straightfor-
ward. The left side inequality comes from the fact that in time
there can be at most fetch requests. Equation (27) can be
explained in a similar way.

Using Equation (26) and Equation (27) in Equation (24), we get
(28)

or
(29)

or
(30)

where is the occupancy of the fetch
FIFO. Equation (30) shows that the steady state distribution of

 (i.e.,) can be obtained from the distribution of
 (i.e.,) by first flipping around the origin and

then shifting to the right by . Note that, for IID , Theo-
rem 3 applies, and can be derived as the steady state distribu-
tion of an queue.

At this point, we have the distributions of both the components of
Equation (23). It can be shown, in a way very similar to Theorem 1,
that and are independent of each other, given the
assumptions on . Since and are linear transfor-
mations of and , they are also independent of each other,
and the PDF of (i.e.,) can be obtained by convolving

 and , i.e.,

P S LA,() P E1() P E2()+≤
P FD LA>()

P L S>() P E1() P E2()

P S LA,() P FD LA>() P L S>()+≤
P FD LA>() P L S>()

D t() D t()
0 t,[] D t()

Q D
i

t() D
i

t()
i 0 t,[] D

i
t()

λi λi∑ λ 1<=
D

i
t()

A
i

t()
D

i
t()

D
i

t() b MD
i

t()× R
i

t()+=
R

i
t() MD

i
t()

D
i

t() b
D t()

D t() b MD t()× R t()+=
MD t() MD

i
t()∑= R t() R

i
t()∑=

D
iˆ

t() D
i

t() b 1–()+=
D̂

i
t() D

i
t()

D̂
i

t() b MD̂
i

t()× R̂
i

t()+=
R̂

i
t() MD̂

i
t()

D̂
i

t() b

D̂ t() b MD̂ t()× R̂ t()+=
MD̂ t() MD̂

i
t()∑= R̂ t() R̂

i
t()∑=

D̂ t() D t() Q b 1–()+=
MD̂ t()

1 b 1 2b 1 …,+,+,

1 b⁄
MÂ t() MÂ t()

A t()

A t() b MA t()× b MÂ t b–()×= =

b
b

D t LA–() L t()
7. The steady state distribution of is the same as the steady
state distribution of as
8. While keeping similar assumptions in mind.

L t() A t() D t LA–()–=

L t() b MÂ t b–()× D̂ t LA–() Q b 1–()–()–=
D̂ t()

L t() b MÂ t b–() MD̂ t LA–()–()× Q b 1–() R̂ t LA–()–()+=

L t() b ML t()× RL t()+=

ML t() MÂ t b–() MD̂ t LA–()–=

RL t() Q b 1–() R̂ t LA–()–=

RL t()
fRL x() fRL x()

R̂ t() f
R̂

x() f
R̂

x()
Q b 1–()

R̂ t LA–()
R̂ t() t ∞→

f
R̂

x()
Q b 1–() 2⁄ Q b

2
1–() 12⁄ Q

fRL x() f
R̂

x()
ML t()

MD̂ t() LA b⁄– MD̂ t LA–() MD̂ t()≤ ≤

MÂ t() 1– MÂ t b–() MÂ t()≤ ≤

LA
LA b⁄

ML t() MÂ t() MD̂ t() LA b⁄–()–≤

ML t() LA b⁄ MD̂ t() MÂ t()–()–≤

ML t() LA b⁄ ML̂ t()–≤
ML̂ t() MD̂ t() MÂ t()–=

ML t() fML x()
ML̂ t() f

ML̂
x() f

ML̂
x()

LA b⁄ D
i

t()
f
ML̂

x()
M D 1⁄⁄

R̂ t() ML̂ t()
D

i
t() RL t() ML t()

R̂ t() ML̂ t()
L t() fL x()

fRL x() fML x()

. (31)
By analyzing for the distribution of we can get one of the

quantities (i.e.,) required by Equation (12). To derive the
other quantity (i.e.,) we simply note that the delay
through the constant-service-rate fetch FIFO is directly related to the
occupancy of the FIFO, i.e.,

. (32)
Thus, by solving for the distributions of and , we

get both the quantities required by Equation (12).

D. Putting it Together

We have talked about the sizes of the lookahead and SRAM buffers
as independent parameters. However, to get a reasonable value for the
upper bound indicated by Equation (12), we would have to first
choose a value of such that is fairly low. Once we
have picked , we can then get using as a constant.

Note that this value of would depend only on the load . How-
ever, in the context, the value of to achieve low values
of may blow up in the limit . So, how do we
choose a value of that works for all traffic loads? The solution is
to limit the maximum load and assume that a design has a small speed
up - for example, a maximum of 0.9 would require a speed up of

. Now, can be chosen for this maximum . In fact,
for large Q, the value of required to achieve low values of

 turns out to be much smaller than .
Figure 6 plots , as predicted by the theoretical model, for var-

ious values of when , , and . We
picked by noting that, as long as , the steady state
distribution for the queue dies out by the time the queue
occupancy gets to .

These plots are very similar to the ones in Figure 4, except for a
right shift by . For low values of , behaves like
an impulse close to . Thus, we expect to very much
resemble a Gaussian centered about . This would
of course change as , with the Gaussian being shifted to the
right and spread out a little. Again, note that in order to provide rea-
sonable performance guarantees, the head SRAM is required to be

.

IV. SIMULATIONS

In this section we present some simulation results for the tail
SRAM and compare them to the predictions from Section II. The sim-
ulation results for the head SRAM are similar, and are not presented
here.

Figure 7 plots of the drop probability as a function of the tail
SRAM size when and . These zoomed-out plots
correspond to the prediction from theory and simulation results for
two traffic types: Bernoulli IID Uniform and Bursty Uniform (the
burst lengths are geometrically distributed with average burst length
12).

We observe that the plots for are pretty much indistin-
guishable. In addition, we observe that the plots are very close to the
Gaussian predicted by Theorem 2. Similarly, the plots for
are very close to each other, with the plot from theory upper bounding
the other two for large values of queue occupancy. This shows the
power of Theorem 3 and indicates that the Poisson limit has already
been reached for .

V. CONCLUSIONS

In this paper we presented a model for providing statistical guaran-
tees for a hybrid SRAM-DRAM architecture. We used this model to
establish exact bounds relating the drop probability to the SRAM size.
This model may be useful beyond the scope of this paper because it
may apply to many queueing systems with fixed batch service. These
systems are increasingly common due to the growing line rates and
the resulting use of parallelism and load-balancing.

Comparing to the deterministic, worst case analysis in [5], which
established as the lower bound on SRAM size, we note that
our results provide an improvement by at most a factor of two. How-

fL x() fRL x() fML x b⁄()⊗=
L t()

P L S>()
P FD LA>()

P FD LA>() P ML̂ LA b⁄>()=
RL̂ t() ML̂ t()

LA P FD LA>()
LA P L S>() LA

LA λ
M D 1⁄⁄ LA

P FD LA>() λ 1→
LA

λ
1 0.9⁄ 1.1≅ LA λ

LA
P FD LA>() Q b 1–() 2⁄

fL x()
λ Q 1024= b 4= LA cλ=

c 100= λ 0.9≤
M D 1⁄⁄

100λ

LA cλ= λ f
ML̂

x()
LA b⁄ fL x()

Q b 1–() 2⁄ LA+
λ 1→

Figure 6: Theoretical PDF of L(t) for various loads for Q=1024 and
b=4, with T=100*load

Θ Qb()

b 4= Q 1024=

λ 0.5=

λ 0.9=

Q 1024=

Figure 7: Complementary CDF for b=4 and Q=1024

(a) load=0.5

(b) load=0.9

Q b 1–()

ever, similar to [5], our bounds have a linear dependence on . The
linear dependence on could be undesirable in cases where is
large.

Thus, our results can also be interpreted as an negative result for
this architecture. This can be stated in the following way: under the
hybrid SRAM-DRAM architecture, is a hard lower bound on
the size of the SRAM, which can not be improved upon under any
realistic traffic pattern.

We believe this to be a characteristic of this architecture - since we
always transfer blocks of cells, this results in storing cells
for flows, resulting in a total storage of . This indicates
that we need to look at alternative architectures if design choices dic-
tate using SRAM sizes orders of magnitude lower than . We
plan to look at such alternative architectures as part of our future
work.

REFERENCES

[1] C. Villamizar and C. Song, “High Performance TCP in ANSNET,”
Computer Communication Review, Vol. 24, No. 5, pp. 45--60, October
1994.

[2] “Round-Trip Time Measurements from CAIDA’s Macroscopic Internet
Topology Monitor”, available at http://www.caida.org/analysis/perfor-
mance/rtt/walrus2002.

[3] D. A. Patterson and J. L. Hennessy, Computer Architecture, A Quanti-
tative Approach, Section 8.4., pp. 425-432, Morgan Kaufmann, 1996,

[4] K.G. Coffman and A. M. Odlyzko, “Is there a “Moore’s Law”” for data
traffic?,” Handbook of Massive Data Sets, eds., Kluwer, 2002, pp. 47-
93.

[5] S. Iyer, R. R. Compella, and N. McKeown, “Designing Buffers for
Router Line Cards”, Stanford University HPNG Technical Report -
TR02-HPNG-031001, Stanford, CA, 2002.

[6] S. Iyer, R. R. Kompella, and N. McKeown, “Analysis of a Memory Ar-
chitecture for Fast Packet Buffers,” IEEE HPSR’02, Dallas, Texas, May
2001.

[7] J. García, J. Corbal, L. Cerdà and M. Valero, “Design and Implementa-
tion of High-Performance Memory Systems for Future Packet Buffers,”
Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, p.373, 2003.

[8] G. Shrimali and N. McKeown, “Statistical Guarantees for Packet Buff-
ers: The Monolithic DRAM Case”, Stanford University HPNG Techni-
cal Report - TR04-HPNG-020603, Stanford, CA, 2004.

[9] C.-S. Chang, “Performance Guarantees in Communication Networks,”
London, Springer-Verlag, 2000.

[10] J. Cao and K. Ramanan, “A Poisson Limit for Buffer Overflow Proba-
bilities”, Proceedings of IEEE INFOCOM’02, pp. 994-1003, 2002.

[11] U. Mocci, J. Roberts, and J. Virtamo, “Broadband Network Teletraffic”,
Final Report of Action COST 242, Springer, Berlin, 1996.

APPENDIX

Proof: (Theorem 1) The proof is in two steps. The first part involves
proving the independence of and . The second part then
proves the independence of and .

For the first part, we start by proving that, for all i,j, is inde-
pendent of . For , is a function of , is
a function of , and is independent of . Therefore

 is independent of . In addition, and are
independent of each other for since is stationary and
ergodic. Therefore, due to component-wise independence, the derived
processes and are indepen-
dent of each other. This finishes the first part of the proof.

Now, to prove the second part, we note that and are
functions of the process , and therefore are independent of

. Thus, is also independent of

.�
Proof: (Theorem 2) The proof is in two steps. The first part involves
proving that the workload remainders are IID. The second part
involves the application of the Central Limit Theorem.

For the first part, we note that depends only on . Since
the parent processes are independent of each other, the derived
processes are independent of each other. Also, since the inter-
arrival times of arrival process are stationary and ergodic,

 would stay at each of the states with equal probability, giving
. This is precisely the discrete uniform distribu-

tion, with mean and variance .
Now, is a sum of IID uniformly-distributed random vari-

ables, each with mean and variance . By the
Central Limit Theorem, as , tends towards a Gaussian
random variable with mean and variance

.�
Proof: (Theorem 3) We first show that if are simple and sta-
tionary point processes then are simple and stationary point
processes.

Remember that each is generated by taking every
sample of the corresponding parent process . Therefore, in any
time interval, will have fewer arrivals than . So if

 satisfies properties of a simple point process (Section II.C.2),
then will too.9 Thus is a simple point process.

The stationarity of follows from that fact that is
generated from using a fixed sampling rule. Thus, if the charac-
teristics of the parent process are stationary (i.e., independent
of time) then the characteristics of are stationary.

Thus, all the assumptions stated for are also true for .
This allows us to use Theorem 1 in [10] to get the required result.�

Qb
Q Q

Θ Qb()

b Θ b()
Θ Q() Θ Qb()

Θ Qb()

R t() MA t()
R t() ML t()

R
i

t()
MA

j
t() i j≠ R

i
t() A

i
t() MA

j
t()

A
j

t() A
i

t() A
j

t()
R

i
t() MA

j
t() R

i
t() MA

j
t()

i j= A
i

t()

MA t() MA
i

t()∑= R t() R
i

t()∑=
9. Note that

D t() MD t()
MA t()

R t() ML t() MA t() MD t()–=
R t()

R
i

t()

R
i

t() A
i

t()
A

i
t()

R
i

t()
A

i
t()

R
i

t() b
P R x=() 1 b⁄ x∀,=

b 1–() 2⁄ b
2

1–() 12⁄
R t() Q

b 1–() 2⁄ b
2

1–() 12⁄
Q ∞→ R t()

Q b 1–() 2⁄
Q b

2
1–() 12⁄

A
i

t()
MA

i
t()

MA
i

t() b
th

A
i

t()
MA

i
t() A

i
t()

A
i

t()
MA

i
t() MA

i
t()

E MA
i

t()[] E A
i

t() b⁄[] λ i t b⁄= =

MA
i

t() MA
i

t()
A

i
t()

A
i

t()
MA

i
t()

A
i

t() MA
i

t()

