
Load Balancing with JET:
Just Enough Tracking for Connection Consistency
Gal Mendelson
Stanford University

Shay Vargaftik
VMware Research

Dean H. Lorenz
IBM Research – Haifa

Kathy Barabash
IBM Research – Haifa

Isaac Keslassy
Technion

Ariel Orda
Technion

ABSTRACT
Hash-based stateful load-balancers employ connection tracking to
avoid per-connection-consistency (PCC) violations that lead to bro-
ken connections. In this paper, we propose Just Enough Tracking
(JET), a new algorithmic framework that significantly reduces the
size of the connection tracking tables for hash-based stateful load-
balancers without increasing PCC violations.

Under mild assumptions on how backend servers are added, JET
adapts consistent hash techniques to identify which connections do
not need to be tracked. We provide a model to identify these safe
connections and a pluggable framework with appealing theoretical
guarantees that supports a variety of consistent hash and connection-
tracking modules.

We implement JET in two different environments and with four
different consistent hash techniques. Using a series of evaluations,
we demonstrate that JET requires connection-tracking tables that
are an order of magnitude smaller than those required with full
connection tracking while preserving PCC and balance properties.
In addition, JET often increases the lookup rate due to improved
caching.

CCS CONCEPTS
• Networks→ Network resources allocation; Middle boxes / net-
work appliances; Packet scheduling.

ACM Reference Format:
Gal Mendelson, Shay Vargaftik, Dean H. Lorenz, Kathy Barabash, Isaac
Keslassy, and Ariel Orda. 2021. Load Balancing with JET: Just Enough
Tracking for Connection Consistency. In The 17th International Conference
on emerging Networking EXperiments and Technologies (CoNEXT ’21),
December 7–10, 2021, Virtual Event, Germany. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3485983.3494851

1 INTRODUCTION
Load balancing is a central building block in modern datacenters
and cloud applications. A load balancer (LB) is required to dispatch
millions of connections, or flows, to a multitude of servers, with
servers being added and removed [14, 28]. Therefore, efficient and
simple flow dispatching mechanisms are vital to the manageability,
scalability, and performance of such systems.

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in The 17th International
Conference on emerging Networking EXperiments and Technologies (CoNEXT ’21), De-
cember 7–10, 2021, Virtual Event, Germany, https://doi.org/10.1145/3485983.3494851.

When designing a load balancer, and specifically the mechanisms
that are responsible for assigning flows to destinations, an essen-
tial requirement is to maintain per-connection-consistency (PCC).
Namely, packets of the same flow must arrive at the same destina-
tion. Our interest and the focus of our work lies in hash-based load
balancing that relies on connection tracking (CT) to maintain PCC.
With this predominant approach [14, 18], often referred to as hash-
based stateful load balancing, a flow’s destination is determined by
applying a hash function on the connection’s identifier (e.g., the TCP
5-tuple) of its first packet. The CT keeps for every flow its chosen
destination, and a CT table lookup is performed on each packet to
make sure PCC is not violated.

Despite its appealing attributes, the main limitation of CT is that
large CT tables have a large memory footprint which often leads
to slower lookups. Moreover, in systems with high processing rate
requirements and memory limitation, tracking all connections may
not be feasible, leading to PCC violation [7, 27].

Our goal is to address this limitation by significantly reducing the
CT requirements of existing hash-based stateful load balancers and
do so with a negligible computational overhead while preserving
PCC. To achieve our goal, we first reexamine the fundamental ques-
tion: which connections should a hash-based LB track to maintain
PCC? Generally, due to the dynamic nature of changes to the back-
end servers, the answer is all connections, leading to full connection
tracking (full CT) solutions. Taking a deeper look reveals that this
property is not inherent. Ultimately, the specific LB decision mech-
anisms and backend server changes determine which connections
should be tracked.

With mild assumptions on how backend servers are added, we
are able to identify connections that do not need to be tracked to
maintain their PCC. These are precisely the connections for which
the destination choice made by the LB is not affected by a backend
change. By not tracking these connections, we can significantly
reduce the CT tables’ size without sacrificing PCC.

In this work, we propose JET, an algorithmic framework to reduce
the size of connection tracking tables by identifying connections
that do not require tracking. JET can be integrated with existing
hash-based stateful load balancing schemes, utilizing the existing
decision processes to choose the destination for each new connection
and identifying if it can forgo tracking.

Particularly, we show that for decision processes based on con-
sistent hashing (CH) [19, 23, 31], most connections do not need
tracking, and often the size of connection tracking tables can be
significantly reduced. Moreover, we are able to identify such con-
nections with minimal computational overhead. We show how JET

https://doi.org/10.1145/3485983.3494851
https://doi.org/10.1145/3485983.3494851

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany G. Mendelson, S. Vargaftik, D. H. Lorenz, K. Barabash, I. Keslassy and A. Orda

operates with several consistent hash techniques and derive strong
theoretical guarantees on its expected performance.

We implement JET in two different environments (C++ and
Python) and with multiple CH algorithms. Using a series of evalua-
tions, including event-driven simulations and evaluations over real
and synthetic traces, we demonstrate that JET requires CT tables
that are an order of magnitude smaller than those required with full
CT. In addition, JET often increases the lookup rate due to improved
caching while maintaining the same balance properties.

To summarize, our contributions are: (1) A model to identify
connections that do not require tracking; (2) The JET algorithmic
framework that can be integrated with different connection dispatch-
ing methods; (3) Efficient implementations of JET for four different
consistent hash techniques; (4) Theoretical guarantees, including the
expected reduction in connections that require tracking; (5) Evalu-
ation through event-driven simulation and over real and synthetic
traces. The code for JET is available at [34].

1.1 Related Work
The decision-making techniques employed by some LB designs are
related to JET. Particularly, we are interested in related mechanisms
that preserve PCC. These are generally divided into two categories:
stateful and stateless, which we overview next.

Stateful LB. Stateful LBs, e.g., Ananta [28], Duet [15], Maglev
[14] and Katran, [18], rely on full connection tracking to maintain
PCC. As mentioned, large CT tables introduce a significant memory
footprint which may also lead to a slow-down of the lookup rate.
The software (SW)-based LBs cope with this problem by deploying
more LB instances and implementing specific optimizations. Several
LBs use programmable hardware (HW) to speed up the CT lookup
process, e.g., Duet [15] uses forwarding and ECMP table-based
virtual-to-physical mappings. SilkRoad [24] and SHELL [29] pro-
pose to use state-of-the-art programmable switches and tackle the
memory limitation challenges of HW-based LBs. Lastly, Prism [11]
is a recent hybrid LB design that combines full SW-level CT with
partial programmable HW-level CT, copying flow states from SW
to HW when needed.

Stateless LB. Stateless load balancers avoid using CT altogether.
Instead, they rely on other network elements to maintain PCC. One
approach is to encode the tracking information into the data plane
(e.g., packet headers), e.g., Cheetah [7], QUIC-LB [12]. Another
approach is to utilize the backend servers to track PCC, as they track
their active connections in any case. The backend servers identify
PCC violations and reroute (“daisy-chain”) packets to the correct
backend, e.g., Beamer [27], Faild [6].

The goal of our work is to reduce the CT table sizes of hash-based
stateful LBs while maintaining PCC. A comparison between the
stateful and the stateless approaches is out of the scope of our work.
We refer the reader to [7] for an in-depth comparison and discussion.

Consistent Hashing. Several stateful and stateless LBs, e.g., [6,
14], use consistent hashing (CH) to make dispatching choices. This
lowers the overhead of maintaining PCC. For stateless LBs, this
reduces the number of connections that need rerouting; for stateful
LBs, fewer PCC violations occur for untracked connections. There

are many CH choices, e.g., HRW [31, 36], Ring [19, 20], Fast Ro-
bust Hashing [32], Jump [22], and recently, MaglevHash [14] and
AnchorHash [23]. CH techniques are a key component in JET, and
we later show how to efficiently adapt them to achieve our goal.

2 PRELIMINARIES
We focus on hash-based stateful load balancers that employ con-
nection tracking to preserve per-connection-consistency; for each
connection, the destination of its first packet is recorded and subse-
quently used for handling the rest of its packets.

Full CT is not always needed to maintain PCC. For example, in a
static setting, where the backend servers do not change, the LB can
apply a simple hash function on the connection identifier (e.g., TCP’s
5-tuple) to deterministically derive the destination. This maintains
PCC and uniformly (at random) distributes the connections across
the backend servers. However, in a dynamic setting, the hash-based
destination of any connection may change as servers are being added
or removed, violating PCC. We term an event in which a server is
added or removed as a backend change event.

2.1 Connection Safety
An LB employs some decision rule (e.g., a hash function on the con-
nection identifier) to choose a destination for each new or untracked
connection. For any connection, we refer to the destination assigned
to its first packet by that rule as its true destination. To reason about
the PCC implications of that rule, we examine how in a dynamic
setting, that rule may change each connection’s chosen destination
with respect to the connection’s true destination.

Observe that if the true destination of a connection points to a
server that is removed, the connection breaks regardless of the LB
state and decision rule. Otherwise, if a different server is removed,
or a new server is added, the connection breaks only if it is untracked
in the CT table and the LB’s decision rule in the new state disagrees
with the connection’s true destination. This observation motivates
us to make the following definitions. For a backend server change
event, we divide the active connections into three categories:

• Inevitably broken connections: A connection is inevitably bro-
ken if the event is the removal of its true destination.

• Safe connections: A connection is safe if it is not inevitably
broken and the LB’s decision rule for that connection after the
event agrees with the connection’s true destination.

• Unsafe connections: A connection is unsafe if it is not inevitably
broken and the LB’s decision rule for that connection after the
event disagrees with the connection’s true destination.

We emphasize that safety is a state of the connection that depends
on the LB’s decision rule (that may change its decision over time de-
pending on the backend state) and the connection’s true destination.
Safe connections do not require any connection tracking to maintain
PCC. Inevitably broken connections break regardless of tracking and
can be ignored. Only unsafe connections require tracking to maintain
PCC, as otherwise, they might break after the backend change event.

We aim to reduce the number of tracked connections yet still
maintain PCC by identifying and tracking only unsafe connections.
As defined above, the set of unsafe connections depends on the

Load Balancing with JET CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

decision rule and on the backend change events. Tracking an unsafe
connection does not have to start with its first packet; however, it
must start before any change event that makes it unsafe.

Generally, we must consider any possible change event, which
leads to full CT. However, as we describe below, it is often possible
to anticipate backend changes that affect connection safety, thus
efficiently identify the unsafe connections with respect to those
changes.

2.2 Anticipating Backend Changes
We consider the two types of backend change events, namely, server
removal and server addition.

Server Removal. Often, the removal of a server is planned. For
example, removal may happen due to maintenance, down-scaling,
and migration operations. However, unplanned removals may also
occur due to unpredictable reasons such as permanent or temporary
server failure or a network failure resulting in a connectivity loss.
Obviously, due to the unplanned removals, we cannot always know
in advance or even estimate which servers would be removed and
when. Beyond the inevitably broken connection (which do not affect
PCC), we must track all unsafe connections with respect to any
server removal; that is, connections for which the decision changes
due to a removal of a server that is not their destination.

Server Addition. Similarly to server removals, we must track all
unsafe connections with respect to server additions. However, unlike
server removals, server additions can be made predictable, allowing
us to determine which connections are unsafe. We list below several
ways in which this can be achieved.

• Standby servers: Servers may be pre-allocated and maintained in
a standby mode. Additions of new servers to the backend are then
made from this standby pool. The identifiers (e.g., IP addresses)
of standby servers can be announced to the LBs and taken into
consideration by their destination assigning mechanism. That is,
any unsafe connections with respect to a standby server addition
should be tracked.

• Warm-up: Servers may require a “warm-up” period before being
added to the backend. Namely, new servers are first announced to
the LBs, and only after a predefined warm-up period (e.g., TCP
timeout) the LBs may forward new connections to these servers.
The connection tracking for unsafe connections due to each added
server can start during the server’s warm-up period.

• Name allocation: This case is similar to the “standby server” case,
but instead of having standby servers we only have standby server
identities. For example, if each added server obtains a new IP
address from a controlled DNS service, we can configure the DNS
to use a pool of addresses and announce them as standby server
addresses in advance.

• Transient failures: Servers that are removed due to transient fail-
ures, such as reboots, temporary disconnects, migrations, or short
maintenance, can be expected to have a short downtime period
after which they rejoin the backend. While such a server is down,
new connections that are unsafe with respect to the event of its
recovery should be tracked.

2.3 The Horizon And Its Size
Leveraging the observations in Section 2.2, from this point on, we
assume that the next possible server identifiers that may be imme-
diately added to the backend are known. We call these servers the
Horizon set and denote it byH . Also, when clear from context, we
slightly abuse notation and use servers instead of server identifiers.
Note thatH may change over time. New servers must first be added
to H before they become eligible to join the backend. Moreover,
a server must spend some minimal amout of time inH , which we
term as the warmup period, to make sure that the system has enough
time to prepare for a possible addition of this server. Upon removal
of a working server from the backend, it is added toH . If the server
is permanently removed, it is removed fromH .

2.3.1 Warmup Period. When adding a server from the horizon,
to preserve PCC, the unsafe connections with respect to this addi-
tion must be already tracked. Thus, the warmup period should be
sufficiently long such that at least one packet from each such unsafe
connection will pass through the LB from the moment this server
was added toH and until its possible addition to the backend. For
example, a TCP timeout [13, 21] is sufficient.

2.3.2 The Horizon Size. The size ofH is a hyperparameter in
our design that also indirectly controls the warmup period. Intuitively,
a smallH results in a small connection tracking table but may limit
the dynamicity of server additions, as only servers from H can
be immediately added to the backend. A larger H means more
flexibility, but potentially more unsafe connections and thus a larger
connection tracking table. Thus, the size ofH allows one to tradeoff
memory with flexibility. We formalize this intuition in Section 4.

To conclude, a proper horizon should support the dynamic prop-
erties of the system, encapsulating knowledge about the expected
change events and connection packet inter-arrival times. In the ab-
sence of such knowledge, the horizon may need to be large enough
to accommodate the uncertainty. On the other hand, deriving such
knowledge may lead to tiny connection tracking tables. For example,
if consecutive server additions are slower than the maximal allowed
inter-packet interval (e.g., TCP timeout), it may be sufficient to have
a horizon of only a single server.

2.4 Connection Safety via Consistent Hashing
The decision rule by which an LB chooses the destination for each
packet influences the number of unsafe connections. Often, a natural
decision rule can result in most of the connections being unsafe,
e.g., [16, 26, 35]. For example, in a system with 𝑁 servers, the deci-
sion rule may assign a connection 𝑘 to a server 𝑠 = hash(𝑘) mod 𝑁 .
However, this results in an expected fraction of ≈ 1 − 1/𝑁 unsafe
connections for each backend change. To reduce connection track-
ing, we seek to minimize the number of unsafe connections and
do so in a way that allows us to identify unsafe connections in a
computationally light manner. We would like to obtain the following
properties upon backend changes:

(1) No connections are unsafe due to server removal events.

(2) Only a small fraction of connections are unsafe due to server
addition events and only for the purpose of ensuring connection
balance.

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany G. Mendelson, S. Vargaftik, D. H. Lorenz, K. Barabash, I. Keslassy and A. Orda

Roughly speaking, property (1) means that we do not need to track
any connections to handle server removal events (which we cannot
anticipate). Property (2) implies that, on average, only a fraction
of the connections must be tracked to maintain PCC upon adding
servers from the horizon.

We utilize consistent hashing techniques to achieve these prop-
erties.1 Accordingly, from this point on, we will assume that the
destination choice function employed by the LBs is a consistent
hash with the above properties. Moreover, as we describe next in
Section 3, we can precisely identify the unsafe connections with
several consistent hashing implementations in a computationally
light manner.

3 JET
In this section, we introduce the JET framework and discuss its
implementation details.

In a nutshell, JET leverages the fact that using a consistent hash
and knowing which servers are going to be added in the near future
is sufficient to efficiently identify the connections that are going to
be mapped to a different destination by the consistent hash as a result
of these server additions and any server removals. This allows JET
to track only those (unsafe) connections.

JET utilizes two pluggable modules: (1) CT for connection track-
ing; (2) CH for computing connection destination using a consis-
tent hash. CT[𝑘] is the saved destination for a tracked connection
𝑘, where 𝑘 ∈ K is the connection identifier (e.g., TCP 5-tuple).
CT[𝑘] is NIL if 𝑘 is untracked, evicted, or its destination is removed.
CH(W, 𝑘) is the calculated destination for a connection 𝑘 over a
working server setW; that is, CH(W, 𝑘) ∈ W.

As described in the previous section, we assume that servers can
be added only from a known horizon set, H . That is, each server
addition event moves a server fromH toW. Likewise, each server
removal event moves a server fromW toH .2 Additionally, servers
can be permanently removed by removing them fromH , and new
servers can be introduced to the system by adding them toH .

To maintain PCC, JET has to identify connections that are unsafe
with respect to server additions fromH . At first glance, this appears
to be computationally exhaustive since for each connection 𝑘, we
need to check all possible sequences of server additions fromH to
W and see if there is a sequence in which 𝑘’s destination changes.
However, the consistent hashes we consider in this work, as we
prove in Section 4, have an appealing property that it is sufficient
to check only a single condition: whether CH(W, 𝑘) differs from
CH(W ∪H , 𝑘), where CH(W ∪H , 𝑘) ∈ W ∪H is the result of
the consistent hash after adding all the servers from the horizon
to the working set, in some arbitrary order. That is, to maintain
PCC, we do not need to start tracking any connection 𝑘 for which
CH(W, 𝑘) = CH(W ∪H , 𝑘).

Note that the decision of whether to start tracking a connection
should be reexamined for each packet asW andW∪H may change
during the connection’s lifetime. Indeed, this may be the case for
a long-lasting connection that experiences many backend changes
during its lifetime. In particular, it may be the case that CH(W, 𝑘) =

1Properties (1) and (2) are implied by the minimal disruption and balance properties of
consistent hashing. For example, see [23] for formal definitions.
2This is not mandatory but typical for transient failures and maintenance operations.

Algorithm 1 JET
CT ⊲ Connection tracking
CH ⊲ Consistent hash

1: function GETDESTINATION(𝑘)
2: 𝑠 ← CT[𝑘]
3: if not 𝑠 then
4: 𝑠 ← CH(W, 𝑘)
5: if 𝑠 ≠ CH(W ∪ H, 𝑘) then ⊲ Should track?
6: CT[𝑘] ← 𝑠

7: return 𝑠
8: function ADDWORKINGSERVER(𝑠)
9: H ← H \ {𝑠 } ⊲ 𝑠 must be in H

10: W ←W ∪ {𝑠 }
11: function REMOVEWORKINGSERVER(𝑠)
12: W ←W \ {𝑠 }
13: H ← H ∪ {𝑠 }
14: function ADDHORIZONSERVER(𝑠) : H ← H ∪ {𝑠 }
15: function REMOVEHORIZONSERVER(𝑠) : H ← H \ {𝑠 }

CH(W ∪H , 𝑘) where both are not the true destination of 𝑘. But,
this means that the condition for that connection failed after some
older server addition event and thus it is already tracked.

Moreover, we further prove in Section 4 that the expected fraction
of tracked connections is roughly |H |

|W∪H | . For example, if the size
of H is no more than 10% of the size ofW, then the connection
tracking space requirements of JET are expected to be 11× smaller
than those of full CT.

3.1 The JET Framework
JET is given in Algorithm 1. The core function is GETDESTINATION

(Line 1) which takes as an input a unique connection identifier 𝑘 and
returns the destination server 𝑠 ∈ W for that connection. First, we
check whether the CT module tracks 𝑘. If so, the saved destination
is returned and no further action is required. Otherwise, we turn to
the CH module to compute the destination 𝑠 = CH(W, 𝑘).

We now check whether 𝑘 is unsafe and should be tracked by the
CT module. We do so by comparing 𝑠 to CH(W∪H , 𝑘). 𝑘 is unsafe
if 𝑠 differs from CH(W ∪ H , 𝑘) (Lines 5-6). If 𝑘 is unsafe, it is
tracked by the CT module (Line 6).

When adding a new server (ADDWORKINGSERVER), the server
must be added from the horizon (Lines 9-10). When a working server
is removed (REMOVEWORKINGSERVER),3 we admit it immediately
to the horizon (Lines 12-13).

For completeness, we introduce two additional functions to man-
age the horizon: ADDHORIZONSERVER, REMOVEHORIZONSERVER

(Lines 14-15). These functions control the size of the horizon. If
desired, a server 𝑠 can be removed permanently by calling REMOVE-
HORIZONSERVER(𝑠) after REMOVEWORKINGSERVER(𝑠).

3.2 JET with HRW
Algorithm 2 provides a presudo-code of JET’s GETDESTINATION

function using the HRW consistent hashing technique [31]. For a

3Note that all connections to the removed server are inevitably broken. At this point,
the connection tracking table can be cleaned from such connections (in an active or a
lazy manner) to prevent broken CT lookups.

Load Balancing with JET CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

Algorithm 2 JET-HRW

1: function GETDESTINATION(𝑘)
2: 𝑠 ← CT[𝑘]
3: if not 𝑠 then
4: 𝑠 ← arg max𝑤∈W hash(𝑤,𝑘)
5: if hash(𝑠, 𝑘) < maxℎ∈H hash(ℎ, 𝑘) then
6: CT[𝑘] ← 𝑠

7: return 𝑠

given connection with an identifier 𝑘 that is not tracked, we compute
its random weight Hash(𝑤,𝑘) with each server 𝑤 ∈ W; the desti-
nation, CH(W, 𝑘), is the server 𝑠 with the highest weight (Line 4).
To determine whether 𝑘 should be tracked, we check whether 𝑠 is
different from CH(W∪H , 𝑘). However, we do not need to compute
the random weight for every server inW ∪H to do so. Rather, it is
sufficient to check whether any ℎ ∈ H has a higher random weight
than 𝑠 (Line 5).

Example. Figure 1 illustrates JET with HRW and H= {ℎ1}. It ex-
emplifies the three possible scenarios for an arriving packet: (Fig-
ure 1a) connection 𝐾12 is already tracked and thus the destination
server 𝑤2 = CT[𝐾12] is returned by the CT module (no further ac-
tion is required); (Figure 1b) connection 𝐾32 is not tracked. We turn
to the CH module to compute its destination.𝑤3 = CH(W, 𝐾32) is
returned since it has the highest random weight with 𝐾32. 𝐾32 does
not require tracking, since its random weight with the horizon ℎ1 is
smaller than with 𝑤3, i.e., it is safe. This means that even if ℎ1 is
added, we would still forward the packet to𝑤3; (Figure 1c) connec-
tion 𝐾2 is not tracked.𝑤1 is returned by CH, since it has the highest
random weight with 𝐾2. 𝐾2 requires tracking because its random
weight with the horizon ℎ1 is larger than with𝑤1. This means that
𝐾2 is unsafe due to ℎ1; that is, if ℎ1 is added, and without tracking
this connection, we would forward 𝐾2 to ℎ1 instead of𝑤3 and violate
the per-connection-consistency.

Implementation notes. Usually, HRW is unfeasible for a large back-
end. However, for a small number of servers (e.g., 8), and a SIMD
implementation (e.g., [4]) of the hash calculations, HRW can offer
appealing balance properties while maintaining a high processing
rate.

3.3 JET with Ring
Algorithm 3 provides a pseudo-code of JET’s GETDESTINATION

function using Ring consistent hashing [19, 20].
For a given connection with an identifier 𝑘 that is not tracked,

we first compute CH(W ∪ H , 𝑘) using the Ring technique; that
is, we map 𝑘 to a point on the ring using hash(𝑘),4 then find the
position 𝑝 of the first entry on the ring going clockwise. We term 𝑝

the successor of 𝑘 on the ring (Line 4). We extend the ring entries to
return both the destination server 𝑠 and whether to track 𝑘 (Line 5).
We track 𝑘 if needed and return 𝑠 (Lines 6-8).

For given W and H , the function POPULATERING populates
the ring in two steps. The first step (Lines 10-11) is similar to the
standard ring population; each working server 𝑤 is mapped to a
position on a ring (RingW) using a hash of its name. We initiate each

4Here, the hash maps onto the unit circle (i.e., hash(𝑥) ∈ [0, 1)) and distance is
measured along the circle (i.e., (𝑥1 − 𝑥2) mod 1 ∈ [0, 1)) .

CH

𝑯𝒂𝒔𝒉(𝒘𝟏, _)

𝑯𝒂𝒔𝒉(𝒉𝟏, _)CT

Hit

Miss
𝑖

𝑲𝟐𝟑 𝒘𝟏

𝑲𝟏𝟐 𝒘𝟐

---- ----
𝑲𝟑 𝒘𝟑

---- ----

𝑤2

𝑲𝟏𝟐 𝑯𝒂𝒔𝒉(𝒘𝟐, _)

𝑯𝒂𝒔𝒉(𝒘𝟑, _)

(a) Connection 𝐾12 is already tracked; its destination is 𝑤2.

Hit

Miss 𝑤3

𝑖 𝑖𝑖

24𝑯𝒂𝒔𝒉(𝒘𝟏,𝑲𝟑𝟐)

9𝑯𝒂𝒔𝒉(𝒉𝟏,𝑲𝟑𝟐)

13𝑯𝒂𝒔𝒉(𝒘𝟐,𝑲𝟑𝟐)

58𝑯𝒂𝒔𝒉(𝒘𝟑,𝑲𝟑𝟐)

𝑲𝟐𝟑 𝒘𝟏

𝑲𝟏𝟐 𝒘𝟐

---- ----
𝑲𝟑 𝒘𝟑

---- ----

𝑲𝟑𝟐

(b) Connection𝐾32 is not tracked. CH returns𝑤3 since it has the highest
random weight with 𝐾32. This connection is safe.

33

3

14

49

Hit

Miss

Track 𝐾2

𝑤1

𝑖

𝑖𝑖

𝑖𝑖𝑖

𝑲𝟐𝟑 𝒘𝟏

𝑲𝟏𝟐 𝒘𝟐

---- ----
𝑲𝟑 𝒘𝟑

---- ----

𝑯𝒂𝒔𝒉(𝒘𝟏,𝑲𝟐)

𝑯𝒂𝒔𝒉(𝒉𝟏,𝑲𝟐)

𝑯𝒂𝒔𝒉(𝒘𝟐,𝑲𝟐)

𝑯𝒂𝒔𝒉(𝒘𝟑,𝑲𝟐)

𝑲𝟐

𝑲𝟐 𝒘𝟏

(c) Connection 𝐾2 is not tracked. CH returns 𝑤1 since it has the highest
random weight with 𝐾2. Additionally, 𝐾2 requires tracking, since its
random weight with the horizon ℎ1 is higher than with 𝑤1; namely, it
is unsafe due to ℎ1.

Figure 1: Illustrating JET with HRW. Showing the three pos-
sible scenarios for an arriving packet: (a) The connection is
tracked; (b) The connection is not tracked but is safe; (c) The
connection is not tracked currently but is unsafe and therefore
requires tracking.

entry with (𝑤, False), indicating no tracking is needed. In the second
step (Lines 12-14), we map each horizon server ℎ to a position on
a second ring (RingH) using a hash of its name. We initiate the
entry with (𝑤, True) where 𝑤 is the successor of ℎ on the ring of
the working servers (RingW). This indicates that keys mapped to
ℎ should be tracked and mapped to𝑤 rather than to ℎ (i.e., keys for
which CH(W, 𝑘) = 𝑤 and CH(W ∪ H) = ℎ). Finally, we merge
the two rings into a single one.

Example. Figure 2 illustrates JET with Ring and H= {ℎ1}. It ex-
emplifies the two possible scenarios for an arriving packet whose
connection is currently not tracked: (Figure 2a) connection 𝐾37 is not
in CT, so we turn to the CH ring module to compute its destination.
We find the position of hash(𝐾37)’s successor on the ring; namely
hash(𝑤3). The ring entry returns (𝑤3, False), indicating no tracking
is needed since the connection is safe. (Figure 2b) connection 𝐾6 is
not in CT. We find the position of hash(𝐾6)’s successor on the ring;
namely hash(ℎ1). The ring entry returns (𝑤1, True), indicating the
connection should be tracked since ℎ1 makes it unsafe. The desti-
nation is 𝑤1 because hash(𝑤1) is the successor of hash(ℎ1), when
considering only working servers.

Implementation notes. A standard implementation of Ring usually
implements the Ring.Successor operation efficiently, using either a
sorted dictionary or a search tree. Note that we add only a single

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany G. Mendelson, S. Vargaftik, D. H. Lorenz, K. Barabash, I. Keslassy and A. Orda

Algorithm 3 JET-RING

1: function GETDESTINATION(𝑘)
2: 𝑠 ← CT[𝑘]
3: if not 𝑠 then
4: 𝑝 ← Ring.Successor (hash(𝑘))
5: 𝑠, track ← Ring[𝑝]
6: if track then
7: CT[𝑘] ← 𝑠

8: return 𝑠
9: function POPULATERING(W,H)

10: for 𝑤 ∈ W do
11: RingW [hash(𝑤)] ← (𝑤, False)
12: for ℎ ∈ H do
13: 𝑝 ← RingW .Successor (hash(ℎ))
14: RingH [hash(ℎ)] ← (Ring[𝑝] .first, True)
15: return RingW ∪ RingH

F

)

T

F

Return (,False)
Safe, no tracking

()

F

(a) 𝐾37 is safe.

F

F

)

T

F

Return (,True)
Unsafe, must track

()

(b) 𝐾6 is not safe.

Figure 2: Illustrating JET with Ring. Showing the two possi-
ble scenarios for a packet whose connection is not currently
tracked: (a) CH returns (𝑤3, False), since hash(𝑤3) is the suc-
cessor of hash(𝐾37) on the ring. The connection is safe and thus
no tracking is needed; (b) CH returns (𝑤1, True), since hash(ℎ1)
is the successor of hash(𝐾6) and hash(𝑤1) is the successor of
hash(ℎ1). 𝐾6 requires tracking, since it is unsafe due to ℎ1.

Boolean flag per Ring entry to indicate if tracking is needed. As for
backend changes, POPULATERING can be called after each backend
addition/removal; alternatively, it can be modified to update only the
successors/predecessors that are affected by the backend change.

3.4 JET with Table-based Consistent Hashing
Algorithm 4 provides a pseudo-code of JET using a table-based con-
sistent hashing. In table-based consistent hashing, each connection
is mapped to a table row, where each row is mapped to a server.
The mapping between rows and servers is computed using a con-
sistent hash. This method requires only single memory access for
each lookup; it is typically faster than even CT lookup, as its ta-
ble is smaller and has better caching properties. The downside of
table-based lookups is some degradation in balance, as it is often the
case that each backend is associated with a different number of table
rows. The balance can be improved by holding several/lots copies of
each backend, using a larger table with a bigger memory footprint,
possibly causing an increase in cache misses.

Algorithm 4 JET- Table Based (HRW)
CT ⊲ Connection tracking
CH ⊲ Consistent hash table

TR ⊲ Boolean table indicating CH(W, 𝑘)
?
≠ CH(W ∪ H, 𝑘)

1: function GETDESTINATION(𝑘)
2: 𝑠 ← CT[𝑘]
3: if not 𝑠 then
4: 𝑟 ← hash(𝑘) mod size (CH) ⊲ Get table row
5: 𝑠 ← CH[𝑟]
6: if TR[𝑟] then
7: CT[𝑘] ← 𝑠

8: return 𝑠
9: function ADDWORKINGSERVER(𝑠)

10: H ← H \ {𝑠 } ⊲ 𝑠 must be in H
11: W ←W ∪ {𝑠 }
12: for row 𝑟 such that TR[𝑟] is True do
13: if hash(𝑠, 𝑟) > hash(CH[𝑟], 𝑟) then
14: CH[𝑟] ← 𝑠

15: TR[𝑟] ← hash(𝑠, 𝑟) < maxℎ∈H hash(ℎ, 𝑟)
16: function REMOVEWORKINGSERVER(𝑠)
17: W ←W \ {𝑠 }
18: H ← H ∪ {𝑠 }
19: for row 𝑟 such that CH[𝑟] = 𝑠 do
20: CH[𝑟] ← arg max𝑤∈W hash(𝑤, 𝑟)
21: TR[𝑟] ← True

22: function ADDHORIZONSERVER(𝑠)
23: H ← H ∪ {𝑠 }
24: for row 𝑟 such that TR[𝑟] is False do
25: TR[𝑟] ← hash(𝑠, 𝑟) > hash(CH[𝑟], 𝑟)

26: function REMOVEHORIZONSERVER(𝑠)
27: H ← H \ {𝑠 }
28: for row 𝑟 such that TR[𝑟] is True do
29: TR[𝑟] ← hash(CH[𝑟], 𝑟) < maxℎ∈H hash(ℎ, 𝑟)

In this algorithm, we use the HRW consistent hash function to
precompute the row mappings. The main idea is to maintain two ta-
bles; table CH for computing CH(W, 𝑘) and table TR for indicating
whether 𝑘 is safe or unsafe; namely whether CH(W ∪H , 𝑘) differs
from CH(W, 𝑘).

The GETDESTINATION function first checks if a connection 𝑘
is in CT; if so, the tracked destination is returned. Otherwise, it
uses hash(𝑘) to find the row 𝑟 corresponding to 𝑘 (Line 4), looks
up the destination in the CH table (Line 5), and finds if 𝑘 is unsafe
according to the TR table (Line 6). If 𝑘 is unsafe, then it is tracked
in CT (Line 7).

The rest of Algorithm 4 depicts how to efficiently update the
tables’ content when changes are introduced toW orH . We employ
two key insights: (1) there is no need to update every row; (2) when
updating a row, we do not need to recompute the random weight for
each server.

For example, when adding a new working server (function AD-
DWORKINGSERVER), only rows that indicate tracking (i.e., TR[𝑟]
is True) may need to be updated. CH[𝑟] needs to be updated only
if the random weight of the added server is larger than the random
weight of the current cached destination server. TR[𝑟] may become

Load Balancing with JET CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

Algorithm 5 JET-ANCHORHASH

CT ⊲ Connection tracking
hashS (𝑘) ⊲ Hash mapping of 𝑘 into a backend set S
A ⊲ Anchor set,W ∪ H ⊂ A
W𝑠 ⊲ Worker set at the time of 𝑠’s removal fromW

1: function GETDESTIONATION(𝑘)
2: 𝑠 ← CT[𝑘]
3: if not 𝑠 then
4: 𝑠 ← hashA (𝑘)
5: while 𝑠 ∉W do
6: ℎ ← 𝑠

7: 𝑠 ← hashW𝑠
(𝑘)

8: if ℎ ∈ H then
9: CT[𝑘] ← 𝑠

10: return 𝑠

False if no horizon server has a larger random weight than that of
the added server.

Note that in comparison to a standard table-based consistent hash
implementation, JET requires a memory overhead of only a single
Boolean flag per row.

3.5 JET with AnchorHash
Algorithm 5 provides a pseudo-code of JET using AnchorHash con-
sistent hashing. AnchorHash [23] is a consistent hash with appealing
properties of small memory footprint, fast lookup and update times,
and good balance. The main limitation of AnchorHash is that is
requires some lightweight synchronization in a distributed setting
among the LBs that must agree on the sequence of server addi-
tion/removal order.

AnchorHash naturally integrates with JET. Our GETDESTINA-
TION function for JET with AnchorHash is based on the GETRE-
SOURCE function of AnchorHash.

The GETDESTINATION function first checks if a connection 𝑘 is
in CT; if so, the tracked destination is returned. Otherwise, it uses
hash(𝑘) to map the connection to a server 𝑠 from the superset A
of all backend servers (called the Anchor set). If 𝑠 is a working
backend, the loop ends. Otherwise (the crux of the function, Lines
5-7) it tries to map 𝑘 onto the subsetW𝑠 ⊂ A, which capturesW
at the time 𝑠 was removed.5 The loop continues until a working
server 𝑠 ∈ W is found. Checking whether 𝑘 is safe requires a single
additional operation: the connection is unsafe if the penultimate
backend examined by the loop is inH (Lines 8-9).
Implementation notes. The key to efficient implementation of JET
with AnchorHash is the implementation of hashW𝑠

(𝑘) (Line 7).
[23] provides a linear space algorithm with proven bounds on the
expected lookup time – about 1-2 hash calculations per lookup, in
our evaluation scenario (see Section 5).

3.6 JET with MaglevHash?
MaglevHash [14] is an improved table-based consistent hashing that
provides the same fast lookup rates but with improved balance in
comparison to hash-based tables. The limitation of MaglevHash
is that upon a backend change, it may remap connections that are
5In AnchorHash, when a server 𝑠 is removed, the setW𝑠 of servers that are working
just after its removal is recorded (see [23] for details).

not associated with the added/removed server. This phenomenon
(termed “flips”) has minimal impact on PCC when using full connec-
tion tracking. However, MaglevHash cannot be directly integrated
with JET since these flips may add unsafe connections that should be
identified and tracked by JET to avoid PCC violations. Specifically,
for random backend removals, it is not clear how to efficiently iden-
tify the possible flips, the resulting unsafe connections and their total
expected number. It is a challenging open question how to integrate
JET with MaglevHash.

4 THEORETICAL GUARANTEES
We now provide a brief theoretical analysis of the JET framework.
As before, K,W andH denote the key, working and horizon sets,
respectively. In the interest of space, the proofs of the claims in this
section are deferred to Appendix A.

4.1 Balance
The first result is concerned with the connection balance achieved
by JET compared to a hash-based full CT LB.

PROPOSITION 4.1. Assume JET and full CT use the same CH
and have the same backend change events and packet arrivals. Then
the two systems make identical packet dispatching decisions, ex-
cept for broken connections. Specifically, they identically balance
connections over the backend servers.

4.2 Just Enough Tracking
Our next results provide the theoretical justification for the signif-
icant reduction in the size of the connection tracking tables JET
offers. We begin by calculating the probability of tracking a new
connection.

THEOREM 4.2. When a new connection arrives, the probability
of it being tracked by JET is 𝛼

𝛼+1 , where 𝛼 = |H |/|W|.

Knowing the tracking probability of a new connection allows us
to provide guarantees on the expected number of tracked connections
at any point in time.

THEOREM 4.3. Assume that there exists 𝛾 ∈ R+ such that at
every point in time |H | ≤ 𝛾 |W|. Let K∗ ⊆ K be the currently
active connections. Then:

(1) The expected number of tracked connections is upper-bounded
by |K∗ | 𝛾1+𝛾 .

(2) The probability that the number of tracked connections is
larger than |K∗ | 𝛾1+𝛾 decays exponentially.

The implication of Theorem 4.3 is that to roughly get the same
performance with JET as with full CT, one can use a CT table smaller
by a factor of at least 1+𝛾

𝛾 .
Moreover, Theorems 4.2 and 4.3 imply that the number of tracked

connections does not directly depend on the size of the backend; it
only depends on the number of distinct connections and the ratio
|H |/|W|. For example, given the same number of connections, a
system with 50 servers and a horizon size of 5 requires, on average,
the same CT table size as a system with 500 servers and a horizon
size of 50 servers. Smaller |H |/|W| ratios correspond to smaller
CT tables.

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany G. Mendelson, S. Vargaftik, D. H. Lorenz, K. Barabash, I. Keslassy and A. Orda

4.3 Efficient Detection of Unsafe Connections
Finally, we prove our claim from Section 3 that for an horizonH , the
connections for which CH(W, 𝑘) = CH(W ∪H , 𝑘) do not require
tracking to maintain PCC.

Property 1. Let𝐻 be an arbitrary orderings of the horizon setH and
let CH(W ∪ 𝐻,𝑘) be the result of the consistent hash after adding
𝐻 . Then, for any two arbitrary orderings 𝐻1, 𝐻2 ofH and any key
𝑘 ∈ K: CH(W, 𝑘) = CH(W ∪ 𝐻1, 𝑘) if and only if CH(W, 𝑘) =
CH(W ∪ 𝐻2, 𝑘) .

THEOREM 4.4. Assume that the CH module satisfies Property 1.
Fix an arbitrary ordering 𝐻 of H . Then, connections that satisfy
CH(W, 𝑘) = CH(W ∪ 𝐻,𝑘) do not need tracking.

Any CH that satisfies Property 1 can be efficiently plugged into
JET. In Appendix A.5 we show that Property 1 holds for all consis-
tent hashing techniques considered in Section 3.

5 EVALUATION
In this section, we evaluate JET using several scenarios, metrics and
system parameters. JET’s performance depends on the CH and CT
modules and can be designed to adhere to different performance
requirements.

For a CT module, two main points to consider when choosing a
specific implementation are the lookup rate and the eviction policy.
Our C++ simulations use a robin_hood map [5] to support fast
lookup; however, since JET tracks only a fraction of all connections,
it may be beneficial to consider implementations that provide faster
negative answers. In an ideal eviction policy, inactive connections
should be removed from the CT. However, one cannot rely on every
connection to terminate properly for numerous reasons, including
broken, stalled, and idled connections. The eviction policy attempts
to limit the CT table size by heuristically evicting such connec-
tions; however, if these connections are still alive, it may cause PCC
violations (especially if the table is not sufficiently large). In our
evaluation, we employ the effective least-recently-used (LRU) policy
in which the oldest entries in the table are removed.

The choice of CH, on average, does not affect the number of
tracked connections. The main tradeoffs to consider for different
CH implementations are memory footprint, lookup speed (rate), and
the quality of connection balance. For example, HRW (Section 3.2)
offers a good connection balance quality and requires a small mem-
ory footprint. However, for each key, it requires a hash calculation
with each server. Therefore, for a large system, it has a slow lookup
speed. Table-based consistent hashing (Section 3.4) requires only
a single hash calculation for each key, resulting in a fast lookup
speed. However, to achieve a good balance, it requires a large mem-
ory footprint. In particular, in several consistent hashing techniques,
including Ring and table-based solutions, “virtual” copies for each
server are introduced to achieve better balance. A typical choice
for the number of virtual copies is 100-300. The number of copies
increases the memory footprint and possibly slows down the lookup
rate due to increased search complexity (e.g., Ring), or increased
cache misses. Some of these effects are evident in our evaluation.

5.1 Event Driven Simulation
To allow simulations on a larger scale, rather than simulating each
packet arrival, we employ a Python-based event-driven simulation,
inspired by [1, 7]. We consider four different events: (1) the be-
ginning of a new connection; (2) the termination of an existing
connection; (3) the removal of a server from the backend; (4) the
addition of a server to the backend. Each simulation is governed by
six parameters.
• New connection rate, connection size distribution, and connection

duration distribution: these parameters determine the connection
dynamics of the system. New connections are initiated following
a Poisson arrival process parameterized by the connection rate.
Unless stated otherwise, each simulation maintains a constant
connection rate; namely, the Poisson parameter is constant. For
each new connection, we draw its size (i.e., number of packets)
and duration from the size distribution and duration distribution,
respectively. We assume that flow packets in a time interval follow
a binomial distribution, with a probability that reflects the propor-
tion of the interval size to the remaining flow duration. For flows
with a large number of packets, this approximates Poisson packet
arrivals.

• Backend update rate and down-time distribution: these parameters
control the dynamics of backend server changes. All simulations
start with the same number of backend servers (468). Backend
servers are removed following a Poisson removal process parame-
terized by the update rate (expected removals per minute). The
downtime of each removed server is drawn from the down-time
distribution.

• CT table size: this parameter determines how many connections
can be tracked; once full, some tracked connections must be
evicted to accommodate tracking of new connections.
All parameters and distributions are available in, and taken from

[1], and represent real-world datacenter clusters [7, 24]. In particular,
for the server down-time, connection size and connection duration
distributions, we adopt the distributions used by [7, 24], which aim at
capturing a large web service provider running over a Hadoop cluster.
Each simulation is run for 1𝐾 seconds; with the connection duration
distribution, this translates to about 5𝑀 connections for a connection
rate of 100𝐾 . For simplicity, we use an LRU eviction policy in the CT.
Our focus is on the number of broken unsafe connections (i.e., PCC
violations). Recall that we can ignore inevitably broken connections,
i.e., those that were served by a removed server. The results shown
in this subsection utilize the recently proposed AnchorHash [23, 33]
as the CH module. We have repeated these experiments with Ring
and table-based HRW and observed similar gains.

PCC violations vs. CT table size. In these experiments, we mea-
sure the number of PCC violations as a function of the CT table size.
We repeat these experiments for different backend removal rates. For
JET, we set the horizon to 10%, i.e., 47 servers. The connection rate
is fixed at 100𝐾 .

As shown in Fig. 3, to achieve zero PCC violation, the CT table
size must be larger than the number of active flows in the system. In
our case, this translates to 150𝐾 , i.e., about 50% larger than the con-
nection rate. This is expected as the connection rate represents only
an average around which the number of flows fluctuates. Moreover,

Load Balancing with JET CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

10000 25000 50000 75000 100000 125000 150000
CT table size

0

5000

10000

15000

20000

PC
C

vi
ol

at
io

ns

25
33

23
50

88
6

62
1

12 0 0

38
01

34
35

26
44

17
54

33 0 0

56
40

47
04

37
26

15
66

46 0 0

73
74

76
22

59
19

15
23

96 0 0

13
37

0

13
93

7

82
07

24
06

23
7

0 0

21
89

1

22
35

8

10
05

6

41
04

58
8

14 0

Full CT (Update rate 1)
Full CT (Update rate 2)
Full CT (Update rate 5)
Full CT (Update rate 10)
Full CT (Update rate 20)
Full CT (Update rate 40)
JET (Horizon 10%)

Figure 3: PCC violations vs. CT table size for different backend update rates. Each bar represents an experiment with 1𝐾 seconds
and 468 servers. The results for JET with horizon sizeH=47 (i.e., 10%) are overlaid with black color.

0 50,000 100,000 150,000
CT table size

0

2,000

4,000

6,000

8,000

PC
C

vi
ol

at
io

ns

Full CT
JET (5)
JET (12)
JET (24)
JET (47)

(a) Sweeping over CT table sizes.

2,500 5,000 7,500 10,000 12,500 15,000
CT table size

0

2,000

4,000

6,000

8,000

PC
C

vi
ol

at
io

ns Full CT
JET (5)
JET (12)
JET (24)
JET (47)

(b) Zooming in on small CT table sizes.

Figure 4: PCC violations vs. CT table size with different JET
horizon sizes.

since we use a heuristic eviction policy (LRU), it is often the case
that some memory slots are occupied by inactive flows.

When the CT table size is not large enough, some unsafe flows
break. As expected, the number of PCC violations increases with the
removal rate. As the CT table size grows, the number of PCC viola-
tions decreases. At small CT table sizes, the number of contending
flows is so high that there is no perceivable difference in the number
of PCC violations.

JET has zero PCC violations for almost all configurations (shown
in black in Fig. 3). There are PCC violations only for a small CT
table size of 10𝐾 (10% of the connection rate) and high removal rates
(at least 10 removals per minute). Even in these violation instances,

50,000 100,000 150,000 200,000
Connection rate

1.2

1.3

1.4

1.5

1.6

M
ax

im
um

ov

er
-s

ub
sc

rip
tio

n

Update rate 1
Update rate 10
Update rate 20
Update rate 40

Figure 5: Oversubscription for different connection rates and
server removal rates.

the number of violations by JET is much smaller (by an order of
magnitude) compared to the corresponding full connection tracking
experiments. These results indicate that, with limited memory, JET
offers better PCC than full CT.

To better understand the behavior of JET, we repeat the above
experiment for different horizon sizes, as shown in Fig. 4 for a fixed
removal rate of 10. For most horizon sizes, we observe the same
results in PCC violation compared to full CT. For a horizon size of
5, which is half of the removal rate, JET has some PCC violations,
even when the CT table size is large (Fig. 4a). In this case, JET does
not track enough connections to anticipate all the unsafe connections
due to the fast rate of server additions. Namely, some added servers
are placed in H only for a short time, during which some unsafe
connections do not receive new packets and thus are not tracked.
Figure 4b zooms in on the smaller CT table sizes. It is evident that the
smaller the horizon, the less CT size is needed to achieve zero PCC
violations. This is expected, as the number of tracked connections
by JET is proportional to the ratio of the horizon size to the backend
size. Furthermore, JET outperforms full CT for every horizon setting
except for a horizon of 5, which is too low for the backend update
rate of 10. This implies there is no need to fine-tune the horizon size.
It is sufficient to make sure it is not too small.

Load balance. Our measure of load is the number of active con-
nections that are currently mapped to each server. In particular, our

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany G. Mendelson, S. Vargaftik, D. H. Lorenz, K. Barabash, I. Keslassy and A. Orda

Table 1: Evaluation over trace from IMC University Data Center 1 (UNI1), 2010.

14.7M Packets n=50 n=500
334K flows Table-based HRW AnchorHash MaglevHash Table-based HRW AnchorHash MaglevHash

Full CT JET Full CT JET Full CT Full CT JET Full CT JET Full CT
Maximum

oversubscription
1.088
±0.011

1.088
±0.011

1.028
±0.005

1.028
±0.005

1.028
±0.006

1.182
±0.021

1.182
±0.021

1.124
±0.014

1.124
±0.014

1.119
±0.010

Tracked
connections

334, 399
±0

30, 300
±541.182

334, 399
±0

30, 442
±121.682

334, 399
±0

334, 399
±0

30, 275
±234.571

334, 399
±0

30, 366
±135.559

334, 399
±0

Rate
pkt/sec [millions]

54.040
±0.498

61.811
±2.504

45.900
±0.245

33.097
±2.183

54.383
±0.828

52.770
±0.126

60.153
±3.288

45.849
±0.320

34.282
±0.971

53.599
±1.885

Table 2: Evaluation over trace from CAIDA Equinix New-York (NY18), 2018.

34.1M Packets n=50 n=500
1.6M flows Table-based HRW AnchorHash MaglevHash Table-based HRW AnchorHash MaglevHash

Full CT JET Full CT JET Full CT Full CT JET Full CT JET Full CT
Maximum

oversubscription
1.085
±0.016

1.085
±0.016

1.014
±0.003

1.014
±0.003

1.016
±0.004

1.139
±0.017

1.139
±0.017

1.052
±0.004

1.052
±0.004

1.054
±0.005

Tracked
connections

1, 602, 007
±0

144, 940
±2889.821

1, 602, 007
±0

145, 541
±296.824

1, 602, 007
±0

1, 602, 007
±0

145, 378
±895.286

1, 602, 007
±0

145, 543
±230.205

1, 602, 007
±0

Rate
pkt/sec [millions]

24.410
±1.998

49.493
±2.641

22.772
±0.072

30.998
±0.187

25.564
±0.446

22.883
±2.573

45.567
±4.113

22.702
±0.134

30.856
±0.187

23.446
±2.839

metric for balance is maximum oversubscription, defined as the num-
ber of connections at the most loaded server divided by the average
number of flows (i.e., the total number of active flows divided by the
number of active servers). A ratio of 1.0 represents a perfect balance
in the number of connections.6 As shown in Fig. 5, the maximum
oversubscription is less than 1.6 and the balance improves with a
higher connection rate.7 The imbalance increases with the update
rate. However, the effect of server additions is more prominent than
that of server removals. In both cases, the number of active servers
immediately changes. Upon server removal, its connections are bro-
ken. Thus the number of active connections drops immediately as
well. In contrast, upon server addition, it takes time for the added
server to shoulder some of the load.

As stated by Proposition 4.1, the maximal oversubscription is the
same for JET and full CT. Specifically, in Fig.5, there is a single line
per update rate (as JET and full CT use the same seeds).

5.2 Evaluation over real traces
In this section, we evaluate the behavior of JET over real traces.
We use two traces: (1) a trace from IMC University Data Center 1
(UNI1), 2010 [2, 8]; and (2) a trace from CAIDA Equinix New-York
(NY18), 2018 [3]. The UNI1 trace has about 334𝐾 connection flows
and 14.7𝑀 packets. The newer NY18 trace has 34.1𝑀 packets and
1.6𝑀 flows.

We run both traces with 50 and with 500 backend servers and
with two hash functions: a table-based HRW (with 300 copies per
server) and AnchorHash. We also compare against a full CT with
MaglevHash to position the potential gains of JET in comparison
to a full CT LB that utilizes a recent state-of-the-art CH technique
that is used by Google’s Maglev [14]. In these runs, we eliminate
all PCC violations by allowing the CT table to grow as needed (i.e.,
no flows are evicted from CT). We evaluate three metrics: maximum
oversubscription, the number of tracked connections, and the 𝑟𝑎𝑡𝑒.
All these simulations are implemented in C++, and executed over

6Note that a ratio of 1.0 does not mean perfect load balancing, as each connection may
have a different number of packets.
7This is in line with the theoretical imbalance analysis for 25𝐾 balls in 468 bins [30].

100 101 102 103 104 105 106

Flow size

100
101
102
103
104
105
106

Nu
m

be
r o

f f
lo

ws UNI1
NY18

(a) Real traces.

100101102103104105106107

Flow size

101
102
103
104
105
106
107

Nu
m

be
r o

f f
lo

ws 0.6
0.8
1.0
1.2
1.4

(b) Synthetic (Zipf) traces.

Figure 6: Histogram of flow sizes in a log-log scale: (a) UNI1 is
considerably more skewed than NY18; there are less flows and
the heavy hitters are larger. (b) Displaying the effect of the skew
parameter of the Zipf distribution on the resulting traces.

a single core on a PC with an Intel Core i7-7700 CPU @3.60GHz
(256KB L1 cache, 1MB L2 cache, and 8MB L3 cache) and 32GB
DDR3 2133MHz RAM. We execute each simulation ten times and
report the mean and standard deviation.

UNI1. The results are shown in Table 1.

• Maximum oversubscription: Two trends are evident. First, the
maximum oversubscription for 𝑛 = 50 backend servers is better
than for 𝑛 = 500. This is expected since we randomly distribute
the same number of connections among a larger set, leading to a
higher deviation from the mean.
Second, the balance for AnchorHash and MaglevHash is better
than for the table-based HRW. AnchorHash and MaglevHash
distribute very closely to random, so their imbalance worsens
when the number of servers increases or when the number of
connections decreases. Table-based HRW suffers from the same
imbalance as AnchorHash and MaglevHash but has an additional
imbalance factor due to the mapping between table entries and
servers. A random mapping may allocate more rows to some
servers; the balance improves for larger tables, i.e., more copies
per server. Note that for most runs, the balance of AnchorHash

Load Balancing with JET CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

(a)
Table-based
HRW

0.75 1.00 1.25
Skew

1.00

1.05

1.10

1.15

M
ax

im
um

 o

ve
rs

ub
sc

rip
tio

n
0.75 1.00 1.25

Skew

105

106

107

Tr
ac

ke
d

 c
on

ne
ct

io
ns

0.75 1.00 1.25
Skew

0

20

40

Ra
te

 p
kt

/s
ec

 [m
illi

on
s]

Full CT (n=50)
JET (n=50)
Full CT (n=500)
JET (n=500)

(b)
AnchorHash

0.75 1.00 1.25
Skew

1.00

1.05

1.10

1.15

M
ax

im
um

 o

ve
rs

ub
sc

rip
tio

n

0.75 1.00 1.25
Skew

105

106

107

Tr
ac

ke
d

 c
on

ne
ct

io
ns

0.75 1.00 1.25
Skew

0

20

40

Ra
te

 p
kt

/s
ec

 [m
illi

on
s]

Full CT (n=50)
JET (n=50)
Full CT (n=500)
JET (n=500)

(c)
MaglevHash

0.75 1.00 1.25
Skew

1.00

1.05

1.10

1.15

M
ax

im
um

 o

ve
rs

ub
sc

rip
tio

n

0.75 1.00 1.25
Skew

105

106

107

Tr
ac

ke
d

 c
on

ne
ct

io
ns

0.75 1.00 1.25
Skew

0

20

40

Ra
te

 p
kt

/s
ec

 [m
illi

on
s]

Full CT (n=50)
Full CT (n=500)

Figure 7: JET vs. Full CT — maximal oversubscription, number of tracked connections, and rate for different hash implementations.

is slightly better than that of MaglevHash. We refer the reader to
[23] for an in-depth comparison of these two techniques.

• Tracked connections: The number of tracked connections for full
CT, including the variant with MaglevHash, is the number of
flows in the trace. For JET, this number is determined by the
ratio between the size of the backend and the horizon. In these
experiments, guided by the results of the event-driven simulations,
we set the size of the horizon to be 10% of the backend, namely
5 and 50 for 𝑛 = 50 and 𝑛 = 500, respectively. As a result, the
number of tracked connections for JET is approximately 10% of
the full CT. We also find little sensitivity of this parameter with
respect to the hash type.

• Rate: For full CT, the rate is mainly determined by the size of
the CT table. Larger table sizes result in more cache misses and
slower processing. In comparison, JET has a significantly smaller
CT table, but it makes consistent hash computations for most
packets. Consistent hash computations are typically faster than
table lookups (unless the specific lookup entry resides in a low-
level cache). The UNI1 trace (see Figure 6a) has heavy hitters,
which results in a high rate of L1/L2 cached CT lookups. With
table-based HRW, both CT lookups and consistent hash calcula-
tions require a single table lookup; JET is consistently faster since
its table is smaller. On the other hand, table lookups are faster
than AnchorHash’s computations with such high skew. Thus JET
with AnchorHash is slower than full CT. Note that the rate of
MaglevHash rate is almost identical to that of table-based HRW
as both require a single table lookup for each consistent hash
calculation.

NY18. The results are shown in Table 2. The trends are similar to
those in Table 1. Nevertheless, the are several differences. NY18 is
longer (i.e., 34.1M packets vs. 14.7M packers) and considerably less
skewed than UNI1 (see Figure 6a); it contains more flows with fewer
packets. In terms of the number of tracked connections, it main-
tains the 1:10 ratio between JET and full CT. Note that the absolute
number has increased since NY18 is both less skewed and longer.

For full CT, the rate of MaglevHash is almost identical to that
of table-based HRW and very similar to that of AnchorHash. The
large CT tables for this trace result in increased cache misses of
full CT, meaning CT lookups become slower than consistent hash
calculations. For JET, the CT table size is considerably smaller,
increasing the chance for L1-L2 cache hits for the unsafe connections.
Thus, the rate of JET is now faster than full CT for both AnchorHash
and table-based HRW (by ≈ 30%-100%). The best rate is achieved
by JET with table-based HRW. Maximal oversubscription is similar
for AnchorHash and MaglevHash and both offer a better balance
than table-based HRW.

5.3 Synthetic Traces
In this section, we repeat the real traces evaluation, but using syn-
thetic Zipf traces [9, 10] with a skew varying from 0.6 (e.g., internet
traffic) and up to 1.4 (highly skewed). Each trace is 100M packets
long. We use the same C++ implementation and the same computa-
tional environments. As before, we run all traces with 50 and with
500 backend servers; with two hash functions (table-based HRW
and AnchorHash); compare against full CT with MaglevHash; and
do not bound the CT table size. We capture the same three metrics:

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany G. Mendelson, S. Vargaftik, D. H. Lorenz, K. Barabash, I. Keslassy and A. Orda

maximum oversubscription, number of tracked connections, and
𝑟𝑎𝑡𝑒. We execute each simulation ten times and report the mean and
standard deviation. The results are shown in Fig. 7.

The trends for maximal oversubscription (left column) are similar
to those of the real traces. As expected, the connection balance is
identical for JET and full CT, whereas JET with AnchorHash and
MaglevHash offer better balance than with table-based HRW (also,
the standard deviation is smaller for AnchorHash and MaglevHash).
Evidently, the imbalance increases with the skew and with the back-
end size. Also, for a low skew, the balance by AnchorHash is slightly
better than that of MaglevHash, as expected [23].

The trends for the number of tracked connections (middle column)
are also similar to those of the real traces. The number of tracked con-
nections has low sensitivity to both the number of backend servers
and to the specific choice of consistent hash. As expected, JET tracks
less connections than full CT and full CT with MaglevHash (about
10%). As the skew grows, the number of distinct flows drops, but the
ratio remains roughly the same.

As before, the rate (right column) is higher for more skewed
traces. For full CT, it is evident that the rate is not affected by the
backend size and is similar for all implementations. The rate increase
as the skew grows is attributed to the higher rate of CT lookup hits.
With JET, the rate is almost always higher than full CT and full
CT with MaglevHash, but the difference drops for higher skews;
full CT and full CT with MaglevHash are even faster than JET with
AnchorHash for a skew of 1.4. For JET with table-based HRW, the
rate is better for 50 servers than for 500; this is due to the smaller
table-based HRW table, which allows more L1-L2 cache hits on
table-based HRW lookups. To summarize, in our evaluation, and
for a wide range of parameters, JET consistently offers a higher
processing rate than full CT and full CT with MaglevHash due to the
smaller CT table sizes that result in better cache locality. We believe
that such a better cache locality may help hash-based software LBs
in reaching a higher LB decision processing rates given the same
hardware resources.

6 DISCUSSION
6.1 Simultaneous Server Additions And Removals
For some systems, it may be the case that simultaneous backend
change events take place. For example, several servers may fail
concurrently or it may be of interest to add several servers at the
same time to increase the cluster’s capacity.

Observe that JET naturally supports any number of simultaneous
server removals due the CH’s appealing minimal disruption property.
JET maintains PCC through simultaneous server additions, provided
that all added servers are admitted from the horizon.

6.2 LB Pool Changes
In a system with multiple hash-based stateful LBs, and without a
state synchronization mechanism, PCC may be violated in the case
of a change in the pool of LBs [14]. Specifically, a connection 𝑘 will
break only if CH(W, 𝑘) is different from 𝑘’s true destination and it
is redirected to an LB for which CT[𝑘] does not exist. This is also
the case for JET. Note that if synchronization is employed, JET’s
smaller CT size means that a smaller state needs to be synchronized.

6.3 Load Awareness
Hash-based load balancing distributes load by choosing a random
server for each request. In some systems, it may not yield satisfactory
balance properties; therefore, a load-aware technique is required [25].
For example, we may want to forward a new connection to the least
loaded server or employ power-of-choice techniques [26] to make
sure no server is oversubscribed above a predefined ratio.

In this work, we do not provide support for such techniques. It is
of interest for future work to explore whether JET can be efficiently
extended to support load-awareness. For example, a naive integration
of the power-of-2-choices technique into JET is still expected to
save up to 50% of CT table sizes. Namely, for a new connection, the
CH result can serve as one of the two choices. The connection is
registered in the CT if it is unsafe or the choice disagrees with the
hash result. We believe that further investigation can indicate better
ways for such integration.

7 CONCLUSIONS
We introduced JET, a pluggable algorithmic framework for reducing
the connection tracking requirements of hash-based stateful LBs.
We derived appealing theoretical guarantees and demonstrated the
effectiveness of JET via a series of evaluations. JET requires an order
of magnitude smaller tracking tables to preserve PCC compared
to full CT, often leading to a higher processing rate due to better
caching properties. Finally, we showed how to efficiently implement
JET with several consistent hashes, including HRW [31], table-based
HRW, Ring [19], and AnchorHash [23].

ACKNOWLEDGMENTS
We would like to thank Ben Pfaff, Soudeh Ghorbani (the paper
shepherd), and the anonymous reviewers for their most valuable
comments and suggestions. This work was partly supported by the
Fulbright Postdoctoral Scholar Program, the Hasso Plattner Institute
Research School, the Israel Science Foundation (grant No. 1119/19),
the Israeli Consortium for Network Programming (Neptune), the
Technion Hiroshi Fujiwara Cyber Security Research Center and the
Israel Cyber Bureau.

Load Balancing with JET CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

REFERENCES
[1] Cheetah authors. Github - cheetah source code, 2020. https://github.com/cheetahlb/

simulations.
[2] Data Set for IMC 2010 Data Center Measurement. http://pages.cs.wisc.edu/

~tbenson/IMC10_Data.html, 2010.
[3] The CAIDA equinix-newyork packet trace, 20181220-130000, 2018.
[4] J. Alakuijala, B. Cox, and J. Wassenberg. Fast Keyed Hash/Pseudo-Random

Function Using Simd Multiply and Permute. arXiv preprint arXiv:1612.06257,
2016.

[5] M. Ankerl (martinus) et al. Fast & Memory Efficient Hashtable Based on Robin
Hood Hashing for C++11/14/17/20. https://github.com/martinus/robin-hood-
hashing, 2021.

[6] J. T. Araujo, L. Saino, L. Buytenhek, and R. Landa. Balancing on the Edge:
Transport Affinity without Network State. In Usenix NSDI, 2018.

[7] T. Barbette, C. Tang, H. Yao, D. Kostić, G. Q. Maguire Jr, P. Papadimitratos,
and M. Chiesa. A High-Speed Load-Balancer Design With Guaranteed per-
Connection-Consistency. In Usenix NSDI, pages 667–683, 2020.

[8] T. Benson, A. Akella, and D. A. Maltz. Network Traffic Characteristics of Data
Centers in the Wild. In Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement, pages 267–280, 2010.

[9] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. On the Implications of
Zipf’s Law for Web Caching. Technical report, University of Wisconsin-Madison
Department of Computer Sciences, 1998.

[10] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like
distributions: Evidence and implications. In IEEE Infocom, volume 1, pages
126–134, 1999.

[11] R. Cohen, M. Kadosh, A. Lo, and Q. Sayah. LB Scalability: Achieving the
Right Balance Between Being Stateful and Stateless. IEEE/ACM Transactions on
Networking, 2021.

[12] M. Duke and N. Banks. QUIC-LB: Generating Routable QUIC Connection IDs.
Internet-Draft draft-ietf-quic-load-balancers-06, Internet Engineering Task Force,
Feb. 2021. Work in Progress.

[13] L. Eggert and F. Gont. Tcp User Timeout Option. Technical report, RFC 5482,
March, 2009.

[14] D. E. Eisenbud, C. Yi, C. Contavalli, et al. Maglev: A Fast and Reliable Software
Network Load Balancer. In Usenix NSDI, 2016.

[15] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and M. Zhang. Duet:
Cloud Scale Load Balancing With Hardware and Software. ACM SIGCOMM
Computer Communication Review, 44(4):27–38, 2014.

[16] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella. Presto: Edge-
based load balancing for fast datacenter networks. ACM SIGCOMM Computer
Communication Review, 45(4):465–478, 2015.

[17] W. Hoeffding. Probability Inequalities for Sums of Bounded Random Variables.
In The Collected Works of Wassily Hoeffding, pages 409–426. Springer, 1994.

[18] C. Hopps. Katran: A high performance layer 4 load balancer. https://github.com/
facebookincubator/katran, 2021.

[19] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin.
Consistent hashing and random trees: Distributed caching protocols for relieving
hot spots on the world wide web. In Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, pages 654–663, 1997.

[20] D. Karger, A. Sherman, A. Berkheimer, et al. Web Caching With Consistent
Hashing. Comp. Netw., 1999.

[21] A. Kesselman and Y. Mansour. Optimizing Tcp Retransmission Timeout. In
International Conference on Networking, pages 133–140. Springer, 2005.

[22] J. Lamping and E. Veach. A Fast, Minimal Memory, Consistent Hash Algorithm.
arXiv preprint arXiv:1406.2294, 2014.

[23] G. Mendelson, S. Vargaftik, K. Barabash, D. H. Lorenz, I. Keslassy, and A. Orda.
AnchorHash: A Scalable Consistent Hash. IEEE/ACM Transactions on Network-
ing, 29(2):517–528, 2021.

[24] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. Silkroad: Making Stateful Layer-4
Load Balancing Fast and Cheap Using Switching Asics. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication, pages
15–28, 2017.

[25] V. Mirrokni, M. Thorup, and M. Zadimoghaddam. Consistent hashing with
bounded loads. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 587–604. SIAM, 2018.

[26] M. Mitzenmacher. The Power of Two Choices in Randomized Load Balancing.
IEEE Transactions on Parallel and Distributed Systems, 12(10):1094–1104, 2001.

[27] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu. Stateless Datacenter Load-
balancing with Beamer. In Usenix NSDI, 2018.

[28] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz, R. Kern,
H. Kumar, M. Zikos, H. Wu, et al. Ananta: Cloud Scale Load Balancing. ACM
SIGCOMM Computer Communication Review, 43(4):207–218, 2013.

[29] B. Pit-Claudel, Y. Desmouceaux, P. Pfister, M. Townsley, and T. Clausen. Stateless
Load-Aware Load Balancing in P4. In IEEE ICNP, pages 418–423, 2018.

[30] M. Raab and A. Steger. “Balls into bins”—A simple and tight analysis. In
International Workshop on Randomization and Approximation Techniques in
Computer Science, pages 159–170. Springer, 1998.

[31] D. G. Thaler and C. V. Ravishankar. Using Name-Based Mappings to Increase
Hit Rates. IEEE/ACM Trans. Netw., 1998.

[32] M. Uruena, D. Larrabeiti, and P. Serrano. Fast Robust Hashing. In IEEE Globecom,
2006.

[33] S. Vargaftik and D. H. Lorenz. Implementation of AnchorHash - A Scalable
Consistent Hash. https://github.com/anchorhash/cpp-anchorhash, 2021.

[34] S. Vargaftik and D. H. Lorenz. Implementation of Load Balancing with JET: Just
Enough Tracking for Connection Consistency. https://github.com/anchorhash/
jetlb, 2022.

[35] W. Wang and G. Casale. Evaluating Weighted Round Robin Load Balancing for
Cloud Web Services. In 2014 16th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, pages 393–400. IEEE, 2014.

[36] W. Wang and C. V. Ravishankar. Hash-Based Virtual Hierarchies for Scalable
Location Service in Mobile Ad-Hoc Networks. Mobile Networks and Applications,
2009.

https://github.com/cheetahlb/simulations
https://github.com/cheetahlb/simulations
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
https://github.com/martinus/robin-hood-hashing
https://github.com/martinus/robin-hood-hashing
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran
https://github.com/anchorhash/cpp-anchorhash
https://github.com/anchorhash/jetlb
https://github.com/anchorhash/jetlb

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany G. Mendelson, S. Vargaftik, D. H. Lorenz, K. Barabash, I. Keslassy and A. Orda

A PROOFS
A.1 Proof of Proposition 4.1

PROOF. A new connection 𝑘 would be directed to the same desti-
nation CH(W, 𝑘) in both systems. If 𝑘 is not new and not broken,
then all of its subsequent packets follow the first. Thus, the destina-
tion for all packets of non-broken connections is the same in both
systems. It follows that both systems have the same oversubscription
ratio. □

A.2 Proof of Theorem 4.2
PROOF. The destination returned by GETDESTINATION(𝑘) for a

new connection is CH(W, 𝑘) (Algorithm 1, Line 5). The connection
is tracked if

CH(W, 𝑘) ≠ CH(W ∪H , 𝑘) . (1)
Since CH implements a consistent hash, by its minimum disruption
property,8

CH(W, 𝑘) ≠ CH(W ∪H , 𝑘) → CH(W ∪H , 𝑘) ∈ H . (2)

In other words, if the destination changes due to server additions, the
new destination must be an added server. By CH’s balance property,
CH(W ∪H , 𝑘) divides connections with equal probability over the
setW ∪H . Therefore,

P(CH(W ∪H , 𝑘) ∈ H) = |H |/|H ∪W|. (3)

The results follows by combining Eqs. (1) to (3). □

A.3 Proof of Theorem 4.3
PROOF.
(1) By linearity of expectation, the expected number of tracked

connections is upper-bounded by the sum of the probabili-
ties that each of 𝑘 ∈ K∗ is tracked. By Theorem 4.2, each
such probability is upper-bounded by 𝛾

𝛾+1 . This concludes
the proof.

(2) As argued above, the number of tracked connections is stochas-
tically dominated by the sum of |K∗ | 𝐵𝑒𝑟 (𝛾𝛾+1) random vari-

ables, namely a 𝐵𝑖𝑛(|K∗ |, 𝛾
𝛾+1) random variable. By Hoeffd-

ing’s inequality [17], the probability that the latter is larger
than its expected value of 𝛾

𝛾+1 |K
∗ | decays exponentially. In

particular,

P(𝑋 − 𝛾

𝛾 + 1
|K∗ | ≥ 𝑡) ≤ 𝑒−

2𝑡2
|K∗ | ,

where𝑋 is the number of tracked connections. This concludes
the proof.

□

A.4 Proof of Theorem 4.4
PROOF. We show that if CH(W, 𝑘) = CH(W ∪ 𝐻,𝑘), then

the destination of 𝑘 does not change by the addition of any sub-
set of H that is added to W in any order. This implies that 𝑘
does not require tracking. Assume, by way of contradiction, that
CH(W, 𝑘) = CH(W ∪ 𝐻,𝑘), yet there exists an arbitrary prefix
of servers 𝐻 [𝑝] , from an arbitrary ordering 𝐻 of H , for which
CH(W, 𝑘) ≠ CH(W ∪ 𝐻 [𝑝] , 𝑘).

Recall that by the minimum disruption property of CH, if the
destination changes due to a server addition, the new destination
must be the added server. Therefore, if CH(W, 𝑘) ≠ CH(W ∪
𝐻 [𝑝]) ∉W then also CH(W ∪𝐻,𝑘) ∉W, implying CH(W, 𝑘) ≠
CH(W ∪ 𝐻,𝑘). Finally, by property 1 we must have CH(W, 𝑘) ≠
CH(W ∪𝐻,𝑘). This is a contradiction and concludes the proof. □

A.5 Application of Property 1 to different CH
techniques

HRW. For any connection 𝑘, its random weight is computed inde-
pendently with each server in W ∪ H . In particular, it does not
depend on the order by whichH is examined.

Table-based HRW. The mapping from a connection to a table
row is fixed (it is determined by a hash function on the connection
identifier that is independent of bothW and H). The destination
for each row is computed by HRW, so as explained above, does not
depend on the ordering ofH .

Ring. The mapping from a server to the ring is computed by a hash
that is not affected by the state of the ring. Thus the final result of
mapping all servers inW ∪H is the same, regardless of order.

AnchorHash. AnchorHash maps keys to buckets, which are always
added in the same order (see [23] for more details). AnchorHash
uses indirection to decouple server identities from buckets, allowing
servers to be added in any order without affecting the bucket addition
order. Thus AnchorHash trivially satisfies Property 1.

8Minimum disruption is also called monotonicity [19].

	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Connection Safety
	2.2 Anticipating Backend Changes
	2.3 The Horizon And Its Size
	2.4 Connection Safety via Consistent Hashing

	3 JET
	3.1 The JET Framework
	3.2 JET with HRW
	3.3 JET with Ring
	3.4 JET with Table-based Consistent Hashing
	3.5 JET with AnchorHash
	3.6 JET with MaglevHash?

	4 Theoretical Guarantees
	4.1 Balance
	4.2 Just Enough Tracking
	4.3 Efficient Detection of Unsafe Connections

	5 Evaluation
	5.1 Event Driven Simulation
	5.2 Evaluation over real traces
	5.3 Synthetic Traces

	6 Discussion
	6.1 Simultaneous Server Additions And Removals
	6.2 LB Pool Changes
	6.3 Load Awareness

	7 Conclusions
	References
	A Proofs
	A.1 Proof of prop:balance
	A.2 Proof of thm:trackprob
	A.3 Proof of thm:dynamic
	A.4 Proof of thm:condition
	A.5 Application of Property 1 to different CH techniques

