
Composite-Path Switching

Shay Vargaftik1,2, Katherine Barabash1, Yaniv Ben-Itzhak1, Ofer Biran1,
Isaac Keslassy2,3, Dean Lorenz1, Ariel Orda2

1 IBM Research 2 Technion 3 VMware Research

ABSTRACT
Hybrid switching combines a high-bandwidth optical
circuit switch in parallel with a low-bandwidth elec-
tronic packet switch. It presents an appealing solution
for scaling datacenter architectures. Unfortunately, it
does not fit many traffic patterns produced by typical
datacenter applications, and in particular the skewed
traffic patterns that involve highly intensive one-to-
many and many-to-one communications.

In this paper, we introduce composite-path switch-
ing by allowing for composite circuit/packet paths be-
tween the two switches. We show how this enables
the datacenter network to deal with skewed traffic pat-
terns, and offer a practical scheduling algorithm that
can directly extend any hybrid-switching scheduling al-
gorithm. Through extensive evaluations using modern
datacenter workloads, we show how our solution outper-
forms two recently proposed state-of-the-art scheduling
techniques, both in completion time and in circuit uti-
lization.

CCS Concepts
•Networks → Bridges and switches; Data center
networks; Packet scheduling; Hybrid networks;

Keywords
hybrid networks; composite-path switching; OCS; EPS

1. INTRODUCTION
Hybrid switching has emerged in recent work as

an appealing solution for scaling datacenter architec-
tures [1–11]. As illustrated in Figure 1(a), a hybrid
switch typically combines a low-bandwidth electronic

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CoNEXT ’16, December 12-15, 2016, Irvine, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4292-6/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2999572.2999610

packet switch (EPS) and a high-bandwidth optical cir-
cuit switch (OCS). The EPS system can send traffic
from any port to any port simultaneously at a relatively
low speed, and can therefore handle low-bandwidth
densely-connected traffic. The OCS system can cre-
ate arbitrary low-latency high-capacity circuits, using
a relatively slow-to-reconfigure cross-board. It handles
high-bandwidth flows that require sparse connections.

The hybrid switch has n senders and n receivers, cor-
responding to either ToR (Top of Rack) switches or in-
dividual servers. While the EPS and the OCS systems
are modeled as single switches, they could be general-
ized to multi-layer networks of switches.

Unfortunately, these hybrid switches are not suited
to many modern data-parallel datacenter applications,
because they cannot efficiently switch their communi-
cation patterns. To simplify, these applications can be
modeled using the coflow abstraction, as a collection
of flows with a shared completion time [12–15]. The
coflows consist of four main types: (a) Many-to-many,
including a large number of low-bandwidth point-to-
point communications, e.g., data-parallel applications
and dataflow pipelines [16, 17]; (b) One-to-one, involv-
ing a few high-bandwidth point-to-point flows, e.g., dis-
tributed file systems [18,19]; (c) One-to-many, e.g., dis-
tributed data storage and backup, query traffic, etc.
[16, 20, 21]; and (d) Many-to-one, e.g., aggregation
of data (i.e., MapReduce, Partition-Aggregate, etc.)
[16, 22–24]. The last two kinds (i.e., (c) and (d)) are
often more delay-sensitive [21].

The hybrid switch can deal well with the first
two types of coflows: the EPS system with (a) low-
bandwidth many-to-many, and the OCS system with
(b) high-bandwidth one-to-one. However, (c) one-to-
many and (d) many-to-one coflows achieve poor perfor-
mance in hybrid switches. They are constrained by the
low bandwidth of EPS switches and the high reconfig-
uration times of OCS switches. For instance, the black
line in Figure 1(a) shows how a one-to-many coflow
that exceeds the EPS capacity would need to use time-
division multiplexing over the OCS system, and there-
fore would achieve a poor performance.

In practice, this poor performance with skewed one-
to-many and many-to-one traffic is further compounded

http://dx.doi.org/10.1145/2999572.2999610

Figure 1: (a) The hybrid switch model vs. (b) the composite-path switch model. The black line
shows one-to-many communication from the first sender to all the other receivers. In (a) the flows
are serialized with Time Division Multiplexing (TDM), while in (b) the flows are sent through the
OCS over the OCS/EPS composite-path, and then are efficiently demultiplexed by the Packet Switch.

by the fact that modern workloads are increasingly de-
composed into micro-services, often implemented using
a large number of identical containers, and intercon-
nected using message brokers as barriers that receive
messages from many service endpoints and deliver mes-
sages to many other service endpoints. As a result,
this multi-component datacenter traffic is even more
skewed than each of its components, and its perfor-
mance acutely depends on the last flow to complete in
each coflow [25,26].

In this paper, we introduce the composite-path switch
(cp-Switch) to deal with skewed one-to-many and many-
to-one coflows. As Figure 1(b) illustrates, we propose
a small extension to the hybrid switch by interconnect-
ing the EPS and OCS systems using composite paths.
For instance, to schedule the same black one-to-many
coflow, the scheduler can first forward the aggregate
traffic though the OCS system, then through the one-
to-many composite path to the EPS system. Finally, at
the EPS system, the different flows of this coflow are
switched to their respective destinations. Thus, this
one-to-many coflow can be switched without a need for
many costly OCS reconfigurations.

The goal of this paper is to extend hybrid Cir-
cuit/Packet switches and allow them to efficiently sup-
port modern datacenter workloads that include a large
variety of traffic patterns and applications.

First, we introduce the composite-path switch archi-
tecture and explain how it can better serve skewed one-
to-many and many-to-one datacenter traffic.

Next, we tackle the challenge of simplifying cp-Switch
scheduling so as to leverage state-of-the-art hybrid
switch scheduling techniques. We show how it is pos-
sible to build a reduced cp-Switch demand matrix us-
ing an additional column and row that would represent
the composite paths. We also introduce intuition about
traffic that would fit such composite paths, and deduce
constraints on how to filter the demand matrix.

We are then able to apply hybrid-switch scheduling
to our problem. However, we still need to process re-

sults in order to be able to schedule our cp-Switch. In
particular, we explain how to schedule flows within a
composite path and why we want to reserve EPS slots.

Finally, using extensive evaluation, we demonstrate
that the composite-path switch is capable of accom-
modating more traffic patterns while significantly im-
proving both the flow completion time and the circuit
utilization metrics.

The rest of this paper is structured as follows: In Sec-
tion 2 we present our composite path Circuit/Packet
switching model, and formalize the translation of the
known scheduling techniques to our new Circuit/Packet
switching model. We follow up by describing our evalua-
tion methodology and presenting the evaluation results
in Section 3. In Section 4 we discuss possible exten-
sions and present future research directions for the cp-
Switch. Section 5 describes related work, and Section 6
concludes the paper.

2. COMPOSITE-PATH SWITCH
Our goal in this section is to provide a scheduling

algorithm for our proposed composite-path switch.

2.1 Composite-Path Switch Model
We start by defining and modeling our composite-

path switch, denoted cp-Switch. We largely follow the
model for the hybrid switch, denoted h-Switch [1, 2].

We already saw in Figure 1(b) how cp-Switch com-
bines an EPS system and an OCS system to connect n
input ports to n output ports. Both the EPS and OCS
systems implement a matching between their respective
input and output ports. While EPS can be reconfigured
instantaneously, the circuits of the OCS can be recon-
figured with a reconfiguration time penalty δ. Following
[1, 2], we assume that during the reconfiguration time
no data can pass through the circuit switch.

In addition, EPS has a much lower capacity than OCS
(e.g., if the EPS link rate is Ce = 10 Gbps and the
OCS link rate is Co = 100 Gbps, there is a 1-to-10 ra-

tio). Each sender implements per-receiver Virtual Out-
put Queues (VOQs) [27, 28]. The occupancy of these
VOQs can be used to build the demand matrix. EPS
also implements input and output queues. We further
classically assume that time is slotted and propagation
times are negligible.
Composite OCS/EPS paths: The main addition
in cp-Switch compared to h-Switch are the composite
paths, i.e., two high-bandwidth links connecting the
output of each fabric to the input of the other fabric.
As mentioned, these composite paths help us deal with
skewed datacenter traffic, and especially with one-to-
many and many-to-one traffic. These new composite
paths require two main architectural abilities.

First, the dedicated use of an additional input/output
port pair at each switch to inter-connect the EPS
and the OCS systems. In particular, the cp-Switch
needs the ability for the EPS fabric to deal with a
higher-bandwidth input/output port of capacity Co.
Current switches are already offering heterogeneous
port bandwidth, with many low-bandwidth and a few
high-bandwidth ports. For instance, the Mellanox
SN2410 switch [29] offers 48x25GbE and 8x100GbE
ports; Arista 7280TR-48C6 [30] offers 48x10GbE and
6x100GbE ports; and Cisco 93180YC-EX [31] offers
flexible 48x10/25-Gbps ports and 6x40/100-Gbps ports.

This is also generally related to the well-known issue
of what to do with switches when upgrading the link
speed.

Second, the ability to synchronize the transmission of
subsets of hosts through the EPS upon the creation of
a many-to-one composite path. To that end, Precision
Time Protocol (PTP) [32] is commonly used in order
to achieve sub-microsecond network-wide time synchro-
nization. For instance, Fastpass [33] presents an imple-
mentation for fine-grain timing between endpoints and
switches by using commodity NICs, which achieves a
time accuracy of a few hundred nanoseconds across a
multi-hop network. White Rabbit [34], which is used
by CERN, provides a sub-nanosecond accuracy, by us-
ing a state-of-the-art FPGA-based implementation.

2.2 cp-Switch Demand Reduction
We would like to introduce a simple scheduling al-

gorithm for cp-Switch that essentially follows the h-
Switch scheduling algorithm approach. Unfortunately,
cp-Switch scheduling is not so simple. In the h-Switch,
the OCS and EPS configurations can be scheduled in
a simple, pipeline-like manner. First, given an n × n
demand matrix D, the scheduler decides on the OCS
configurations and their respective duration. Next,
it selects all unscheduled packets and schedules them
through the EPS.

On the other hand, since cp-Switch has composite
cross-platform paths, they induce a strong dependency
between the two fabrics, such that the above pipelined
scheme with separate decisions for OCS and EPS can-
not be directly applied. As a result, a joint schedule

for the EPS, the OCS and the composite paths seems
significantly more complex to design.

To deal with this challenge, we pursue the ability to
translate h-Switch scheduling to cp-Switch scheduling.
In addition to making the approach more tractable, this
would also enable us to leverage the existing body of
research on h-Switch scheduling.
Demand Reduction: Our approach is to reduce the
n×n input demand matrix D into a new (n+1)×(n+1)
demand matrix DI , such that DI could be directly fed
to a h-Switch scheduling algorithm, and the resulting
schedule could be modified into a viable schedule for
the cp-Switch.

To construct the new (n + 1) × (n + 1) matrix DI ,
we augment the demand matrix D by adding a column
that represents the one-to-many composite path and an
additional row over D that represents the many-to-one
composite path. Our scheduler then selects entries in
D that it aggregates and puts in the new composite
entries, while removing them from the non-composite
entries. The new non-zero entries will be served by the
composite paths, whereas the rest of the demand ma-
trix is served by the regular EPS-EPS and OCS-OCS
paths. Now, when DI is fed to an h-Switch scheduling
algorithm, the resulting permutation matrices can indi-
cate both the creation of regular OCS-OCS circuits and
the creation of composite paths (i.e., when the last row
or column has an entry of 1, it means that the corre-
sponding sender or receiver has a composite path within
the duration of this permutation matrix).

The above reduction helps us use h-Switch schedul-
ing as a sub-routine in cp-Switch scheduling. How-
ever, it also introduces a new challenge: the scheduler
now needs to decide which demand-matrix entries in
D should be aggregated into composite-path entries in
DI . Of course, exhaustively considering all possibilities
leads to an exponential complexity.
Demand Filtering: We adopt a heuristic approach
motivated by the following intuition:
(a) The traffic along the composite paths should pro-
vide high utilization for the OCS while not overwhelm-
ing the EPS—i.e., it should serve one-to-many or many-
to-one patterns.
(b) The time to serve each individual entry by the OCS
should not exceed too much the reconfiguration time
penalty of the OCS.

The intuition for (a) is relatively straightforward. A
demand-matrix row with 1-2 entries would not gain in
being aggregated into a composite entry. It would be
more efficient to simply service these entries one by one
using either OCS or EPS. (b) was more surprising at
first. It would seem that a row with several large entries
would be a perfect candidate for composite aggregation.
However, consider a demand-matrix row with 5 entries
of 100 packets each. Scheduling it using a one-to-many
composite path would take 100 slots, where at each slot
5 packets transfer first through the OCS, then through
the composite path, and finally through the EPS (as in

Algorithm 1: cp-SwitchDemandReduction

Data: D, Rt, Bt.
1 DI = 0 ;
2 Df = 0 ;
3 Dlow = ZerosAboveBt(D) ;
4 rows = RowSums(Sign(Dlow)) ≥ Rt ;
5 cols = ColSums(Sign(Dlow)) ≥ Rt ;
6 for each (i, j) ∈ rows, (i, j) /∈ cols do
7 Df [i, j] = D[i, j] ;
8 DI [i, n+ 1] + = D[i, j] ;

9 for each (i, j) /∈ rows, (i, j) ∈ cols do
10 Df [i, j] = D[i, j] ;
11 DI [n+ 1, j] + = D[i, j] ;

12 for each (i, j) ∈ rows, (i, j) ∈ cols do
13 (x, y) = argmin(DI [n+ 1, j], DI [i, n+ 1]) ;
14 Df [i, j] = D[i, j] ;
15 DI [x, y] + = D[i, j] ;

16 DI [1 : n, 1 : n] = D −Df ;
17 return (DI , Df)

Figure 1(b)). On the other hand, assuming a 1-to-10
link rate ratio, it would take 100/10 = 10 slots for each
of the 5 entries to go through the OCS, together with
a reconfiguration time of 5δ, i.e., 50 + 5δ. As long as
δ ≤ 10, there is no point using the composite path.

Following (a) and (b), to find these specific patterns,
we filter the input demand matrix D and obtain the
filtered demand matrix Df .

Specifically, we define two threshold parameters, Bt
and Rt. First, following intuition (b), we filter the de-
mand D by removing large entries, and assign zeros to
each entry that is bigger than threshold Bt. Then, fol-
lowing intuition (a), we look for rows and columns that
contain at least Rt non-zero entries. All entries that do
not belong to such row or column are also set to zero.

We are left with a last challenge. Some entries could
be assigned to either their row composite path or their
column composite path. Intuitively, we try to load-
balance such entries so that the sums of the composite
paths will tend to equalize, and one composite path sum
will not grow too large compared to the other.

Specifically, we greedily assign such entries to the less
loaded composite path, and consider such entries in an
arbitrary order.

Finally, Algorithm 1 (cp-SwitchDemandReduction)
combines the demand reduction and filtering processes.
Demand Reduction and Filtering Example: Fig-
ure 2 illustrates a demand reduction and filtering ex-
ample with n = 6, Bt = 10 and Rt = 4. The input
matrix is D. First, we set to zero each entry in D that
is greater than Bt=10. Then, we count the number of
non-zero entries in each row and column. Each entry
that does not belong to a row or column with a total
of at least Rt=4 non-zero entries is set to zero as well.
Thus, we receive the filtered matrix Df , containing the

entries we want to schedule using composite paths. Fi-
nally, the reduced demand DI is equal to D − Df in
the first n × n entries, representing traffic that is des-
tined to be served by regular EPS-EPS and OCS-OCS
paths. The last row and column of DI represent the
composite-path traffic.

Note that the orange entry Df [5, 2] = 3 belongs to
both a row and a column with at least 4 non-zero en-
tries. Therefore, Df [5, 2] can be assigned to a compos-
ite path in either direction (i.e., Df [5, 2] can be added
to DI [5, n + 1] and served by a one-to-many compos-
ite path given to input port 4. Alternatively, DI [5, 2]
can be added to DI [n + 1, 2] and served by the many-
to-one composite path given to output port 1). After
handling all other entries of Df , DI [5, n + 1] = 15 and
DI [n + 1, 2] = 14. Thus, we greedily add Df [5, 2] = 3
to the smallest sum, i.e., DI [n+ 1, 2].

2.3 cp-Switch Scheduling
Scheduling Interpretation: The scheduler can fi-
nally use the h-Switch scheduling algorithm as a sub-
routine. It feeds it with the new (n+1)×(n+1) demand
matrix DI , and receives a scheduling output, i.e., a set
of OCS permutation matrices with their respective du-
ration.

Permutation matrices are treated as usual for entries
that are not at the last row or column. When a per-
mutation matrix contains an entry at the last row or
column, it represents a port that receives a composite
one-to-many or many-to-one path.
Scheduling Within a Composite Path: Upon the
creation of a composite path with its respective dura-
tion, we still need to decide on the scheduling within
this path. Specifically, we need to choose among the
different sources or destinations to serve, and to decide
on the duration of this service. In addition, the rate
at which data can be transferred along such a path is
restricted asymmetrically. On one hand, each particu-
lar source or destination is connected to the EPS and
thus restricted by Ce. On the other hand, the path is
connected to the OCS, and therefore the total rate is
restricted by Co. This reflects an inherent tradeoff in
the cp-Switch between the benefits of data parallelism
and of optical speedup. We choose to send data to all
available sources or destinations simultaneously with a
rate that respects both constraints.

The scheduler relies on Algorithm 2, denoted
CPSched, to schedule within a composite path.
CPSched receives an input or an output port p with
a set of demands S and the path time duration t. The
output is the remaining set R of demands after the du-
ration of this path. Namely, examining S − R reveals
how much traffic is sent to or from each specific port
along this path.
EPS Reservation: Since composite paths are asym-
metric, their scheduling indirectly assumes that the EPS
links involved in every particular one-to-many or many-
to-one composite-path are reserved for its use when

Figure 2: Demand reduction and filtering example with Bt = 10 and Rt = 4. In steps 1) and 2), the
scheduler first filters demand matrix D to obtain the filtered demand matrix Df , representing the
entries that should be scheduled using composite paths. Then, in step 3), it assigns these entries
to specific composite paths (i.e., in the last row or column of DI). The remaining entries of DI in
the other rows and columns will simply be scheduled in the OCS and EPS systems without using
composite paths. Next, Figure 3 illustrates the final schedule computation using Df and DI .

Algorithm 2: CPSched

Data: S, t, Co, Ce
1 τ = t ;
2 R = S ;
3 while τ > 0 do
4 Rm = min{non-zero{R}} ;
5 Rc = |non-zero{R}| ;

6 tmax = max{Rm

Ce
, Rm·Rc

Co
} ;

7 tcurr = min{tmax, τ} ;
8 for each d ∈ R do
9 d = max{d− tcurr ·min{Ce, Co

Rc
}, 0} ;

10 τ = τ − tcurr ;

11 return R

needed. This assumption may adversely impact short
and delay-sensitive flows that want to concurrently use
these EPS links.

To resolve this issue, we adopt a simple approach.
The scheduler assigns a bandwidth budget C∗

e ≤ Ce
to the composite paths on each individual EPS link
when they are used. Then, the scheduler feeds Algo-
rithm 2 with C∗

e instead of Ce to respect this budget.
Such bandwidth management on the EPS links can be
enforced by well-established traffic-shaping techniques,
e.g., [35–38], and bandwidth and resource-reservation
techniques, e.g., [39,40].

DivideByType is the last sub-function in our sched-
uler, as presented in Algorithm 3. It receives an out-
putted permutation matrix for cp-Switch, and returns
its decomposition into regular paths and composite
paths with their respective port numbers.

Finally, as illustrated in Figure 4 and formally de-
fined in Algorithm 4, CPSwitchSched forms the entire
scheduling algorithm for cp-Switch. CPSwitchSched re-
ceives as an input the demand and the switch parame-
ters. Its output is a full schedule for cp-Switch.

Figure 3: Example for CPSched. Assume that
the scheduler needs to schedule the second one-
to-many entry, illustrated in gray, for 3 time-
slots. It can service up to 3 packets from each
of the non-zero entries in the gray row. Only
the first and third entries are left with packets
at the end, i.e., 5 − 3 = 2 and 6 − 3 = 3 packets
respectively.

Algorithm 3: DivideByType

Data: P
1 Ph = P [1 : n, 1 : n] ;
2 row = argmax(P [:, n+ 1] > 0) ;
3 if row 6= NULL then
4 Srow = P [row, :] ;

5 col = argmax(P [n+ 1, :] > 0) ;
6 if col 6= NULL then
7 Scol = P [col, :] ;

8 return Ph, Srow, row, Scol, col

Complexity: We want to evaluate the complexity of
the entire scheduling procedure. We begin by analyz-
ing Algorithm 1 (cp-SwitchDemandReduction). Since
this algorithm requires to go over the demand matrix

Figure 4: Diagram block for the cp-Switch scheduler CPSwitchSched. The initial demand matrix D
is first reduced and filtered to obtain demand matrix DI of size (n + 1) × (n + 1). DI is then sent to
an h-Switch scheduler, which outputs permutation matrices and their respective duration. But these
permutations fit an OCS in the h-Switch, not in the cp-Switch. They need to be sent to DivideByType
in order to obtain a decomposition into regular paths and composite paths with their respective port
numbers. Finally, CPSched provides the specific scheduling time of each sender or receiver using a
composite path.

Algorithm 4: CPSwitchSched

Data: D, Co, Ce, C
∗
e , δ, Rt, Bt.

1 (DI , Df)=cp-SwitchDemandReduction(D,Rt,Bt) ;
2 sched=h-Switch-Scheduling(DI , Co, Ce, δ) ;
3 cpssched = {} ;
4 for each (Pi, ti) ∈ sched do
5 Df,prev = Df ;
6 (Ph, Sr, r, Sc, c) = DivideByType(Pi) ;
7 if r 6= NULL then
8 Df [r, :] = CPSched(Sr, ti, Co, C

∗
e) ;

9 if c 6= NULL then
10 Df [:, c] = CPSched(Sc, ti, Co, C

∗
e) ;

11 cpssched = cpssched
⋃
{Ph, ti, Df,prev −Df} ;

12 return cpssched

a constant number of times (i.e., 3 at most), we ob-
tain a complexity of O(n2). Algorithm 2 (CPSched)
can do no more than n − 1 iterations (i.e., the while
loop) where in each such iteration it needs to update
the remaining demand. Each such update is done
efficiently in O(log n) by using a priority queue and
two counters. Thus, the complexity of Algorithm 2 is
O(n log n). Clearly, since Algorithm 3 requires exam-
ining the permutation matrix only once, its complexity
is O(n2). Finally, putting it all together, the complex-
ity of the interpretation process part of Algorithm 4
(CPSwitchSched) is O(n2) for each permutation ma-
trix in the schedule. Thus the complexity of the en-
tire algorithm is O(max{m · n2,h-Switch-Scheduling})
where m is the number of OCS reconfigurations in the
schedule (i.e., the number of permutation matrices)
and O(h-Switch-Scheduling) is the complexity of the h-
Switch scheduler.

3. EVALUATION
In this section, we evaluate and compare h-Switch

and cp-Switch with Ce = 10 Gbps and Co = 100 Gbps
(i.e., 1/10 ratio), for radix (i.e., number of ports) 32,
64 and 128. Two OCS types are considered throughout

our evaluation: Fast OCS with δ = 20µs (2D MEMS
wavelength selective switches, such as [4, 6, 41]), and
Slow OCS with δ = 20ms (3D MEMS optical circuit
switches, such as [3, 5, 42,43]).

We evaluate different demands, which include a DCN
traffic workload [44], one-to-many, and many-to-one
traffic demands. For each evaluation, we define the de-
mand model and produce 100 random demand matrices
accordingly. Then, each such demand is evaluated for
both h-Switch and cp-Switch, by the same order of the
permutation matrices produced by the scheduling algo-
rithms (termed online execution). Finally, the results of
all the 100 random demands are averaged and compared
between h-Switch and cp-Switch.

The demand reduction process for cp-Switch is con-
figured with Rt = 0.7 ·n, and Bt = 2Mb (Bt = 200Mb)
for the Fast OCS (Slow OCS). Further discussion about
Rt and Bt settings can be found in Section 4.

In the following we present the evaluation criteria in
Section 3.1. Then, in Section 3.2 we evaluate a given
one-to-many/many-to-one DCN demand example. We
extend the demand model by adding typical background
DCN demand in Section 3.3. In Section 3.4 we stress
the schedulers with intensive background demand along
with one-to-many and many-to-one demand. Finally, in
Section 3.5 we stress the composite paths by increasing
the one-to-many/many-to-one demands along with typ-
ical DCN traffic.

3.1 Evaluation Criteria
For our evaluation, we adopt two recent state-of-

the-art scheduling algorithms optimized for h-Switch,
Eclipse [1] and Solstice [2], which attempt to optimize
two different metrics: fraction of demand over the OCS,
and demand completion time, respectively.
Eclipse (Fraction of Demand over the OCS1):
Eclipse identifies a submodularity structure [45] and
leverages it to guarantee an efficiency of at least half
of the optimal solution according to the associated op-

1 Notice that for a similar demand and switch parame-
ters (i.e., n,Ce, Co), increase of this metric corresponds
to increase of the OCS utilization.

timization criterion, which is to maximize the fraction
of demand over the OCS in a given time window. In our
evaluation, Eclipse is used with a window period input
of 1ms for the Fast OCS, and 100ms for the Slow OCS.
Solstice (Completion Time): Solstice takes advan-
tage of the sparsity and skewness observed in real DCN
traffic. The basic idea of Solstice is to stuff the demand
into a bistochastic matrix and then efficiently decom-
pose the demand by slicing it into permutation matrices
with long duration. The guiding optimization criterion
of Solstice is the completion run-time.

Each given demand matrix D is scheduled by Eclipse
and Solstice, for both h-Switch and cp-Switch2. Then,
we measure the corresponding metrics for the total de-
mand. Notice that for cp-Switch the metrics include the
demand that is assigned to the composite paths, which
we also measure separately. Furthermore, for compar-
ison purpose, we measure the metrics of the same de-
mand (i.e., assigned to the composite paths in the cp-
Switch) for the h-Switch.
OCS Reconfigurations: We count the number of
OCS configurations required by Solstice and Eclipse.
This measurement has a strong correlation with the re-
sults. Namely, a large number of reconfigurations leads
to both longer completion times and diminished OCS
utilization, because of the idle time periods during the
OCS reconfigurations.

3.2 One-to-Many/Many-to-One Demand
Example

Our one-to-many and many-to-one demand model is
based on previous work that presents DCN measure-
ments, e.g., DCTCP [23] and TCP Outcast [24].
One-to-Many/Many-to-One Demand Model: In
this section, we start with a simple example in order to
provide insight about the benefit of cp-Switch composite
paths. We randomly choose a single sender for which we
create one-to-many traffic and a single receiver for which
we create many-to-one traffic. All other demands are
zero. The number of destinations for the sender and the
number of sources for the receiver are chosen randomly
and uniformly in the range of [0.7·n, n]. The demand
towards each destination of the sender and each source
of the receiver is chosen randomly and uniformly in the
range of [1, 1.3] Mb for Fast OCS and [100, 130] Mb for
Slow OCS.
Evaluation Results: Figure 5(a) and Figure 5(b)
present the completion time of the total demand, and
the demand that is assigned to the one-to-many and
many-to-one composite paths (noted by o2m and m2o,
respectively). Compared to h-Switch, cp-Switch results
in a better completion time for the total, one-to-many,
and many-to-one demands, for both the Fast and Slow

2For cp-Switch, we employ the demand reduction and
filtering, then we employ Eclipse or Solstice, respec-
tively, for the new demand DI , and finally produce cp-
Switch scheduling (i.e., we employ Algorithm 4).

OCSs. Furthermore, the relative completion time im-
provement of cp-Switch increases as the switch radix
increases.

There are several reasons for the h-Switch completion
time degradation: First, the total demand of the sender
and the receiver exceeds the EPS port bandwidth due
to the high number of destinations and sources, respec-
tively. Second, Figure 5(c) presents the required num-
ber of OCS configurations. h-Switch serves the demand
by many costly OCS reconfigurations, which increase
with the switch radix. On the other hand, cp-Switch
employs its one-to-many and many-to-one composite
paths to serve the demand, without any OCS reconfig-
urations. Moreover, the completion time improvement
of cp-Switch as compared to h-Switch is more signifi-
cant for the Slow OCS, due to its higher reconfiguration
penalty as compared to the time it takes to serve the
demand.

Figure 6(a) presents the fraction of the demand that
is served by the OCS, which corresponds to the OCS
utilization. The objective of Eclipse is to maximize
the OCS utilization, and therefore it prefers to schedule
large entries over the OCS. Therefore, one-to-many and
many-to-one demands are scheduled over the OCS with
lower priority.

For switch radix 32, the one-to-many and many-to-
one demands do not incur a severe bottleneck over the
sender and the receiver, respectively; hence, Eclipse
achieves the demand fraction over the OCS for both
h-Switch and cp-Switch. However, as the switch radix
increases, the sender and the receiver are overloaded
by the one-to-many and many-to-one demand as it in-
creases as well. Therefore, the cp-Switch results im-
prove with the switch radix as compared to h-Switch.

Eclipse achieves a lower OCS utilization as the OCS
reconfiguration penalty increases. Therefore, for the
Slow OCS case, cp-Switch achieves much higher results
as compared to h-Switch (Figure 6(b)). Figure 6(c)
presents the required OCS configurations for h-Switch
and cp-Switch with both Fast and Slow OCSs. Eclipse
produces approximately the same number of OCS con-
figurations independently of the switch radix. h-Switch
with Fast OCS requires approximately 31-35 OCS con-
figurations by Eclipse, where each re-configuration takes
20µs. Therefore, the total reconfiguration penalty of
the fast OCS equals 620µs-700µs, out of its 1ms period
window.

3.3 Typical DCN with One-to-
Many/Many-to-One Demand Ex-
ample

Our demand model consists of both typical data cen-
ter demand as background traffic, and one-to-many and
many-to-one traffic patterns. The typical DCN demand
is based on the aforementioned works on data center
traffic; and the one-to-many and many-to-one demand
is based on our demand model described in Section 3.2.

(a) Completion time with Fast OCS. (b) Completion time with Slow OCS. (c) OCS configurations.

Figure 5: One-to-Many/Many-to-One Demand Example - Completion Time (Based on Solstice).
The cp-Switch advantage over h-Switch increases with the switch radix. This is due to the increased
number of reconfigurations required by h-Switch as the switch radix increases; while cp-Switch does
not require any reconfiguration. The number of reconfigurations for h-Switch is proportional to the
increased number of sources and destinations in the many-to-one and one-to-many traffic, respectively.

(a) Fast OCS. Window of 1 ms. (b) Slow OCS. Window of 100 ms. (c) OCS configurations.

Figure 6: One-to-Many/Many-to-One Demand Example - Fraction of Demand Served by the OCS
(Based on Eclipse). There is a significant degradation of the OCS utilization for h-Switch that is
proportional to the switch radix. On the contrary, cp-Switch demonstrates high utilization for 32
and 64 ports, and only a slight degradation for 128 ports. This is because h-Switch with fast OCS
spends more than half of the time window on reconfigurations, and with slow OCS more than 80%.
On the other hand, cp-Switch requires at most 1-2 reconfigurations on average.

Our Typical Background Demand Modeling:
Our typical background demand modeling is based on
the DCN measurements presented in [44], and is con-
structed similarly to the demand used in Eclipse [1] and
Solstice [2]. Some of the input ports have four big flows
(a.k.a. elephant flows, 30Mb and 3Gb for Fast OCS
and Slow OCS, respectively) and 12 small flows (a.k.a.
mice flows, 3Mb and 300Mb for Fast OCS and Slow
OCS, respectively), where the big flows carry 70% of
the demand. The destination of the flows is chosen ran-
domly and uniformly. We refer to this demand as typical
background traffic.
Evaluation Results: Figures 7(a) and 7(b) present
the completion time of the total demand, and the de-
mand that is assigned to the one-to-many and many-to-
one composite paths (noted by o2m and m2o, respec-
tively). The cp-Switch with Fast OCS results in com-
pletion time reduction of 15%-70% for the one-to-many

and many-to-one demands, and of 9%-37% for the total
demand; and the cp-Switch with Slow OCS results in
completion time reduction of 11%-75%, and 4%-49%,
respectively. The results fit with the number of OCS
configurations presented in Figure 7(c); i.e., more OCS
configurations result in higher completion time.

Figure 8(a) indicates that the fraction of the demand
that is served by the Fast OCS within the 1ms pe-
riod window is 2-3 times higher for cp-Switch, as com-
pared to h-Switch. Figure 8(b) shows that cp-Switch
with Slow OCS results in improvements that are 5.4-10
times higher, within the 100ms period window. Sim-
ilarly to the results in Section 3.2, Figure 8(c) shows
that Ecplise results in approximately the same num-
ber of OCS configurations, independently of the switch
radix. Again, the h-Switch with the Fast OCS incurs
significant penalty by the OCS reconfigurations, which
consumes 62%-72% of its 1ms period.

(a) Completion time with Fast OCS. (b) Completion time with Slow OCS. (c) OCS configurations.

Figure 7: Typical DCN with One-to-Many/Many-to-One Demand Example - Completion Time (Sol-
stice Based). In addition to the significantly faster completion time for one-to-many and many-to-one
traffic, the completion time of the entire demand decreases by up to 37% and 49% for fast and slow
OCS, respectively.

(a) Fast OCS. Window of 1 ms. (b) Slow OCS. Window of 100 ms. (c) OCS configurations.

Figure 8: Typical DCN with One-to-Many/Many-to-One Demand Example - OCS Utilization (Eclipse
Based). The OCS utilization of both h-Switch and cp-Switch for the total demand is similar for each
switch radix. The cp-Switch improves the OCS utilization by up to 800%, as compared to h-Switch.

The completion time (by Solstice) and fraction of
demand over the OCS (by Eclipse) are improved by
cp-Switch over h-Switch for both the total and one-to-
many and many-to-one demands. The improvements
of the one-to-many and many-to-one demands by cp-
Switch clearly result from the use of the composite
paths. On the other hand, the improvements of the to-
tal demand stem from the following reasons: First, the
lower number of OCS reconfigurations as indicated by
Figures 7(c) and 8(c). Second, both Solstice and Eclipse
perform better when the demand matrix is more sparse
and contains similar traffic patterns (i.e., our empirical
results that correspond to [1] and [2] show that such
matrices are more efficiently decomposed into a smaller
set of permutation matrices with a longer duration). It
allows both algorithms to use less configurations with
a larger duration; hence providing better utilization of
the OCS and reducing the completion time of the total
demand. Specifically, in these experiments the mean
number of non-zero entries in the reduced demand ma-
trix for cp-Switch is lower by 1.63·n. Hence, it results
in a better scheduling.

3.4 Intensive Typical DCN and One-to-
Many/Many-to-One Demand

In this section, in order to stress the cp-Switch sched-
uler, we create a one-to-many/many-to-one demand (as
defined in Section 3.2) together with an intensive typical
background demand. To that end, similarly to Solstice
scheduler stressing tests, we increase the density of the
demand matrix (i.e., non-zero entries) by a factor of
four.

Figures 9(a) and 9(b) present the completion time
of the total demand, and the demand that is assigned
to the one-to-many and many-to-one composite paths
(noted by o2m and m2o, respectively). It can be seen
that for switch radix 32, the differences of the comple-
tion times between h-Switch and cp-Switch are within
5%. This result stems from the heavy background
demand, which dictates the completion time for both
switches. In addition, the number of OCS reconfigura-
tions is almost identical, as indicated by Figure 9(c)—
causing the completion time of the one-to-many and
many-to-one demand to increase as well due to the ex-
pensive OCS idle periods. As the switch radix increases

(a) Completion time with Fast OCS. (b) Completion time with Slow OCS. (c) OCS configurations.

Figure 9: Intensive Typical DCN and One-to-Many/Many-to-One Demand - Completion Time (Sol-
stice Based). For 32 and 64 ports, the completion time is similar since it is dominated by the intensive
background traffic. However, for 128 ports the completion time of the total demand for cp-Switch
decreases by up to 7% and 27% for the fast and slow OCS, respectively.

(a) Fast OCS. Window of 1 ms. (b) Slow OCS. Window of 100 ms. (c) OCS configurations.

Figure 10: Intensive Typical DCN and One-to-Many/Many-to-One Demand - OCS Utilization
(Eclipse Based). cp-Switch improves the OCS utilization by up to 400%, as compared to h-Switch.

to 64 and 128, cp-Switch improves the completion time
of the total demand, as compared to h-Switch, by 6%
and 27%, respectively. The improvement stems from
the increased number of OCS reconfigurations of h-
Switch, as shown in Figure 9(c). On the other hand,
cp-Switch significantly improves the completion time of
the one-to-many and many-to-one demand by 46%-80%.

Figure 10 demonstrates the same OCS utilization im-
provement trend as shown in Figure 8. Therefore, we
demonstrate the stability of our scheduler, which results
in the same improvements also when it is stressed by a
higher density demand matrix.

3.5 Typical DCN Traffic and Intensive
One-to-Many/Many-to-One Demand

In this section, we create a typical background de-
mand (as defined in Section 3.2) together with a vary-
ing one-to-many/many-to-one demand. Specifically, we
increase the number of senders and receivers with one-
to-many and many-to-one demand from one to six, re-
spectively. These demands are generated such that they
are chosen to be served by the composite paths, accord-
ing to the filtering parameters employed by algorithm

1 for the demand reduction process. We seek the point
at which the composite paths are overloaded; i.e., how
many one-to-many/many-to-one demand ports can cp-
Switch bear?

Figure 11 presents the completion time of the total
demand, and the demands that are assigned to the one-
to-many and many-to-one composite paths, for switch
radix 32, 64, and 128.

For switch radix 128 and more than four ports with
one-to-many/many-to-one demand, cp-Switch results in
a higher completion time as compared to h-Switch. In
such scenarios, enforcing too many one-to-many/many-
to-one demand ports over the composite paths results
in performance degradation for cp-Switch.

There are several solutions to mitigate the following
performance degradation of cp-Switch: First, tuning the
filter parameters to select a lower number of ports with
one-to-many/many-to-one demand (i.e., increasing Rt
and/or decreasing Bt). Second, we can revise the cp-
Switch scheduler to limit the number of served one-to-
many/many-to-one demand ports over the composite
paths. Third, we can increase the number of composite
paths in cp-Switch (Further discussed in Section 4).

(a) Fast OCS. One-to-many
and many-to-one ports.

(b) Fast OCS. Total
demand completion time.

(c) Slow OCS. One-to-many
and many-to-one ports.

(d) Slow OCS. Total
demand completion time.

Figure 11: Typical DCN Traffic and Increasing One-to-Many/Many-to-One Demand. The advantage
in favor of cp-Switch decreases as the composite one-to-many and many-to-one paths are overloaded.

4. DISCUSSION AND FUTURE WORK
In this section we discuss possible extensions and fu-

ture directions for composite-path switching.
Binding the cp-Switch and h-Switch Scheduling
Run Times: We want to provide an efficient way to
extend a given h-Switch algorithm to cp-Switch schedul-
ing, and thus to bind the scheduling feasibility of both
systems. Accordingly, in our evaluation, we found that
the complexity of CPSwitchSched is dominated by the
used h-Switch scheduling algorithm, i.e., Eclipse or Sol-
stice3. Specifically, for all switch sizes we test (i.e., 32,
64, 128), the h-Switch scheduling sub-routine takes at
least 88% of the cp-Switch algorithm run time. More-
over, as the switch radix grows, this percentage in-
creases and reaches more than 99% for 128 ports under
moderate load.

We summarize the comparison between h-Switch and
cp-Switch scheduling algorithms run-time in Tables 1
and 2. Since our absolute running times are not op-
timized (we use a high-level Python implementation
for our controller), we emphasize the ratio between h-
Switch and cp-Switch algorithms run-time which also
corresponds to the theoretical analysis.

3 In our implementation, the complexity of Eclipse is
(O(n3log(n) · Wδ)) where W is the time window for the
schedule and there are at least n non-zero entries in D.
The complexity of Solstice is O(n3log2(n)).

n/Ev.
Typical (Figure 7) Intensive (Figure 9)

h-Switch cp-Switch Ratio h-Switch cp-Switch Ratio

32 7.1, 16.5 8.2, 11.1 0.86, 1.49 8.3, 14.6 9.2, 14.2 0.9, 1.03
64 35.7, 97 31.1, 41.3 1.48, 2.35 35.4, 75.5 32.2, 56 1.1, 1.35
128 222, 453 111, 154 2, 2.94 244, 456 132, 243 1.85, 1.87

Table 1: Comparing h-Switch and cp-Switch
scheduling run-times using Solstice. Each entry
presents the run-time in milliseconds for slow
and fast OCS pair, i.e., (slow, fast).

n/Ev.
Typical (Figure 8) Intensive (Figure 10)

h-Switch cp-Switch Ratio h-Switch cp-Switch Ratio

32 15.1, 97.2 9.4, 102 1.6, 0.95 146, 1070 86, 480 1.7, 2.38
64 55.3, 330 25, 40.2 2.22, 8.2 310, 3310 341, 2643 0.91, 1.25
128 210, 1350 70, 133 3, 10.15 1370, 9340 1020, 6782 1.35, 1.38

Table 2: Comparing h-Switch and cp-Switch
scheduling run-times using Eclipse. Each entry
presents the run-time in milliseconds for slow
and fast OCS pair, i.e., (slow, fast).

As can be seen in Tables 1 and 2, in all our experi-
ments, the run time of the scheduling algorithm for cp-
Switch was at most 14% slower than for h-Switch when
both scheduling algorithms produce similar number of
permutation matrices, and mostly much faster, up to an
order of magnitude, when the produced number of per-
mutation matrices for cp-Switch is significantly lower.
The reason for this is the strong dependence of the
scheduling run time in the number of produced per-

mutation matrices, which is consistently lower for cp-
Switch, especially as the switch radix grows.
Tuning Heuristic: In our evaluation we set the fil-
tering parameters Bt and Rt according to the intuition
provided in Section 2.2. Specifically, Bt and Rt are set
to: (1.) capture traffic that utilizes the OCS links of
composite paths without overwhelming the correspond-
ing EPS links of each particular source or destination
port within these paths; and (2.) make sure that the
time to serve each individual entry does not exceed to
much the reconfiguration penalty of the OCS—namely,
by aggregating such entries to the composite entries,
we want to avoid multiple OCS reconfigurations with
potentially low utilization.
(1.) Rt is set to filter one-to-many and many-to-one
demands with large fan-out relative to the switch radix
(i.e., large number of destination/sources, respectively).
Hence, we set Rt to be β ·n, where n is the switch radix
and β is a factor variable (0 < β ≤ 1). Specifically, in
our evaluations we use β = 0.7, such that the fan-out is
high enough to guarantee that the OCS is fully utilized
when serving the demand over the composite paths.
(2.) Bt is set to filter demand entries which are suit-
able for the composite paths, which aggregation avoids
the OCS configurations penalty by utilizing the EPS
through the composite paths. To that end, such de-
mand entries should be below certain value, in order to
sustain the EPS ports bandwidth, and to avoid frequent
OCS reconfigurations. Since Rt is already set to utilize
the OCS, Bt is set to be proportional to the OCS config-
uration penalty. Specifically, any demand below a cer-
tain value over the OCS results in inefficient utilization
and expensive OCS reconfiguration penalty. Therefore,
we set Bt to α · (δ · Co), where α is a proportion fac-
tor. In our evaluations we use α = 1 (Bt = 2Mb) and
α = 0.1 (Bt = 200Mb) for the Fast OCS and Slow OCS,
respectively.
Optimal Tuning: In this work, we did not exhaus-
tively search for the best Bt and Rt. We chose the
specific (α, β) pair heuristically according to the pro-
vided intuition and by examining the workload. Gener-
ally, we have found that providing the best (α, β) pairs
to an arbitrary demand is challenging since there is a
strong coupling between the algebraic structure of the
demand matrix, the switch parameters (i.e., n,Ce, Co)
and the performance of the scheduling algorithms (i.e.,
some matrices are more easily decomposed to a smaller
set of permutation matrices as previously indicated by
[1, 2]). Thus, we leave a further study of (α, β) tuning
to future work.
Offline Execution: During our work, we have also
examined possible reorderings of the permutation ma-
trices execution. Clearly, nor the total completion time
neither the average OCS utilization in a given time win-
dow are affected by such reordering. In addition, we
have found that such a reordering also has a negligible
impact on the average completion time of one-to-many
and many-to-one traffic in h-Switch (such traffic pat-

terns require multiple OCS reconfigurations to be served
via the OCS. Thus, even such a change in the order of
execution is limited by the total high penalty of constant
reconfigurations and lack of bandwidth of the EPS links
to serve such demand). On the contrary, such reorder-
ing can reduce the completion time of one-to-many and
many-to-one demand in cp-Switch. Specifically, con-
sider a single input port with a demand of a single big
flow and many small flows, each sent to a different des-
tination. Then, the scheduler can schedule the big flow
over the OCS repeatedly, before the one-to-many traffic
has been satisfied. Therefore, in such a case of mixed
big single flow demand and one-to-many/many-to-one
demand, reordering of the permutation matrices can re-
duce the completion time (termed offline execution).
Additional Composite Paths: The tradeoff of hav-
ing more or less composite paths in cp-Switch is between
having the ability to handle more one-to-many and
many-to-one traffic on one hand, and under-utilizing
high bandwidth EPS ports in the absence of such traf-
fic on the other. Thus the choice of how many composite
paths lead to the best performance/price tradeoff is de-
pendent both on the switch radix and on the workload.
We examined the benefit of having a single composite
path in each direction. However, for high-radix switches
it may be beneficial to have more than a single compos-
ite path in each direction. In Section 3.5 we demon-
strate that for intensive one-to-many/many-to-one de-
mand, cp-Switch might underperform, due to lack of
composite paths. To that end, the demand reduction
(Algorithm 1) and cp-Switch scheduler (Algorithm 4)
should be extended.

Specifically, the desired extension to handle k com-
posite paths in each direction should preserve the ability
of using h-Switch scheduling technique as a subroutine
in order to make cp-Switch scheduling more tractable
and leverage state-of-the-art evolving h-Switch schedul-
ing techniques to cp-Switch scheduling.

To that end, the reduced demand matrix DI has ad-
ditional k rows and k columns to represent the compos-
ite paths (i.e., a row for each many-to-one composite-
path and a column for each many-to-one composite-
path). Then, we need to decide during the demand
filtering process (Algorithm 1) how to balance the traf-
fic among the k composite paths. This is achieved
by extending lines 7, 10 and 13 in Algorithm 1 to
consider the minimal composite entry so far. This
can be done efficiently by using priority queues to
hold the minimal composite entries among the different
paths. Thus, the resulting complexity of Algorithm 1 is
O(log(k) · (n+ k)2). The extensions to Algorithms 2, 3
and 4 are straightforward resulting in a total complexity
of O(max{m · (n+ k)2,h-Switch-Scheduling}) for Algo-
rithm 4.
Scaling: As depicted in Figure 1, cp-Switch is com-
posed of both EPS and OCS planes; therefore, one
should scale both of the planes in order to scale the
cp-Switch. First, scaling the EPS plane can be done us-

ing different multi-layer topologies (e.g., , Folded-Clos
or Fat-Tree). Furthermore, current electronic packet
switches already offer for example 128 ports of 25 Gbps
[46], and their radix is regularly increased. Second, OCS
systems also offer a higher radix either using switches
with a high radix (e.g., of about 1,000 ports [47]), or
using Folded-Clos optical cross-connect fabrics that can
scale incrementally to tens of thousands of ports [48].
Augmenting Hybrid Architectures: Current hy-
brid architectures present topologies with a hard sepa-
ration between the OCS and the EPS switching planes.
As we showed in this work, integrating between the two
fabrics using composite paths has the potential to bet-
ter support modern data center traffic and provide bet-
ter flow completion times and better link utilization.
For example: (a) a leaf-spine hybrid solution such as
[3] can be extended by connecting among the OCS and
the EPS spines. Clearly, the exact number of the sug-
gested connections is highly dependent on the number
of OCS and EPS spines as well as on the typical work-
load. (b) Three tier hybrid solutions such as [5] can
be extended by connecting the OCS to the aggregation
layer switches on top of the ToR switches, thus allowing
composite-paths among them.
Additional Use Cases: As mentioned, cp-Switches
can be used to connect among servers and/or among
ToR switches. As such, they can handle more traffic
patterns. In addition, cp-switches can be used for spe-
cial uses such as ToRs in specific racks that require one-
to-many and many-to-one traffic support that nowadays
cannot be served efficiently by a hybrid switch, e.g.,
storage racks and especially object storage [49].

5. RELATED WORK
Hybrid Switching: One of the very first comprehen-
sive works that advocated OCS for the DCN [50] has
considered HPC workloads with static or semi-static
traffic patterns. Such traffic patterns naturally bene-
fit from offloading the long lived one-to-one data trans-
fers to high capacity optical circuits, while sending the
rest of the traffic over traditional EPS. Follow up works,
e.g., Helios [3] and c-Through [5], have refined the ap-
proach and presented different methods for identifying
big one-to-one flows, heuristics for circuits scheduling,
and control planes for sending the traffic over EPS and
OCS paths. REACToR [6] leveraged a microsecond
scale Mordia [51] optical circuit switch and proposed a
control plane which synchronizes end host transmissions
with end-to-end circuit assignments over a hybrid net-
work. Their control plane is designed to react to rapid,
bursty changes in the traffic from end hosts on a time
scale of 100s of microseconds. XFabric [41] suggested a
rack-scale network that reconfigures the topology and
uplink placement using a circuit-switched physical layer
over which System-on-Chips perform packet switching.
Free Space Optics: FireFly [52] suggested free-space
optics (FSO) as a potential technology to provide flex-

ible wireless interconnect throughout the data center
network. An additional advancement was made by Pro-
jecTor [53] that suggested to use digital micromirror de-
vices (DMDs), instead of the Galvo or switchable mir-
rors used by Firefly, which enable a single transmitter
to reach high fan-out and a microseconds scale recon-
figuration time periods.

In a sense, an FSO system can be logically viewed as
a high radix distributed OCS, thus shares its schedul-
ing disadvantages. Accordingly, we believe that FSO
can also benefit from composite-paths. Consider a rack
producing one-to-many coflows. Then in a pure FSO
system, such traffic, in order to be served quickly can
repeatedly occupy multiple DMDs for short time peri-
ods causing poor circuit utilization due to the recon-
figuration penalties, or alternatively suffer from large
completion times waiting for multiple reconfigurations
of fewer DMDs. Such an FSO system can reach higher
utilization when augmented by low-bandwidth EPS sys-
tem with fewer high-bandwidth EPS ports reachable by
DMDs.

6. CONCLUSIONS
In this work, we introduced the composite path switch

to deal with skewed one-to-many and many-to-one
coflows. We explained how it efficiently extends hybrid
circuit/packet switches and allows them to efficiently
support modern datacenter workloads.

We also tackled the challenge of simplifying cp-Switch
scheduling so as to leverage state-of-the-art hybrid-
switch scheduling techniques, by building a reduced
demand matrix, filtering irrelevant traffic, scheduling
flows within a composite path and reserving specific
packet-switching slots. Finally, using extensive evalu-
ation, we demonstrated that the composite-path switch
is capable of accommodating more traffic patterns while
improving significantly both the flow completion time
and the circuit utilization metrics.

Looking forward, our results open new opportunities
for leveraging the reconfiguration capabilities of con-
temporary optical circuit switches for scaling modern
data center networks and modern application work-
loads.

7. ACKNOWLEDGMENTS
The authors would like to thank Eitan Zahavi, Tal

Mizrahi, our shepherd Paolo Costa and our anonymous
reviewers for their helpful comments. The research lead-
ing to results published in this paper was partially sup-
ported by the European Community’s Seventh Frame-
work Programme (FP7/2001-2013) under grant agree-
ment number 619572, in the context of the COSIGN
Project, as well as by the Hasso Plattner Institute Re-
search School, the Technion Fund for Security Research,
the Gordon Fund for Systems Engineering, and the Is-
rael Ministry of Science and Technology.

8. REFERENCES
[1] Shaileshh Bojja, Mohammad Alizadeh, and

Pramod Viswanath. Costly circuits, submodular
schedules and approximate Carathéodory
theorems. ACM Sigmetrics, 2015.

[2] He Liu, Matthew K Mukerjee, Conglong Li, et al.
Scheduling techniques for hybrid circuit/packet
networks. ACM CoNEXT, 2015.

[3] Nathan Farrington et al. Helios: a hybrid
electrical/optical switch architecture for modular
data centers. ACM SIGCOMM Computer
Communication Review, 2011.

[4] George Porter, Richard Strong, Nathan
Farrington, et al. Integrating microsecond circuit
switching into the data center. ACM SIGCOMM,
2013.

[5] Guohui Wang, David G Andersen, Michael
Kaminsky, et al. c-Through: Part-time optics in
data centers. ACM SIGCOMM Computer
Communication Review, 2011.

[6] He Liu, Feng Lu, Alex Forencich, Rishi Kapoor,
et al. Circuit switching under the radar with
reactor. In ACM/USENIX NSDI, 2014.

[7] Christoforos Kachris, Konstantinos Kanonakis,
and Ioannis Tomkos. Optical interconnection
networks in data centers: recent trends and future
challenges. Communications Magazine, IEEE,
2013.

[8] Nathan Farrington, George Porter, Yeshaiahu
Fainman, George Papen, and Amin Vahdat.
Hunting mice with microsecond circuit switches.
In Proc. ACM Workshop on Hot Topics in
Networks, 2012.

[9] Bin Wu and Kwan L Yeung. Nxg05-6: Minimum
delay scheduling in scalable hybrid
electronic/optical packet switches. In Global
Telecommunications Conference, 2006.
GLOBECOM’06. IEEE, pages 1–5. IEEE, 2006.

[10] Shoaib Kamil, Ali Pinar, Daniel Gunter, et al.
Reconfigurable hybrid interconnection for static
and dynamic scientific applications. In
Proceedings of the 4th international conference on
Computing frontiers, 2007.

[11] Howard Wang, Yiting Xia, Keren Bergman,
TS Ng, Sambit Sahu, and Kunwadee
Sripanidkulchai. Rethinking the physical layer of
data center networks of the next decade: Using
optics to enable efficient*-cast connectivity. ACM
SIGCOMM Computer Communication Review,
2013.

[12] Mosharaf Chowdhury, Yuan Zhong, and Ion
Stoica. Efficient coflow scheduling with varys. In
ACM SIGCOMM Computer Communication
Review, 2014.

[13] Yangming Zhao, Kai Chen, Wei Bai, et al. Rapier:
Integrating routing and scheduling for
coflow-aware data center networks. In Computer

Communications (INFOCOM), 2015 IEEE
Conference on, 2015.

[14] Zhen Qiu, Cliff Stein, and Yuan Zhong.
Minimizing the total weighted completion time of
coflows in datacenter networks. In Proceedings of
the 27th ACM on Symposium on Parallelism in
Algorithms and Architectures, 2015.

[15] Mosharaf Chowdhury and Ion Stoica. Coflow: A
networking abstraction for cluster applications. In
Proceedings of the 11th ACM Workshop on Hot
Topics in Networks, 2012.

[16] Michael Isard et al. Dryad: distributed
data-parallel programs from sequential building
blocks. In ACM SIGOPS Operating Systems
Review, 2007.

[17] Grzegorz Malewicz, Matthew H Austern, Aart JC
Bik, et al. Pregel: a system for large-scale graph
processing. In ACM SIGMOD, 2010.

[18] Dhruba Borthakur. The hadoop distributed file
system: Architecture and design. Hadoop Project
Website, 2007.

[19] Mosharaf Chowdhury, Srikanth Kandula, and Ion
Stoica. Leveraging endpoint flexibility in
data-intensive clusters. In ACM SIGCOMM
Computer Communication Review, 2013.

[20] Matei Zaharia, Mosharaf Chowdhury, Tathagata
Das, et al. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and
Implementation, 2012.

[21] Christo Wilson, Hitesh Ballani, Thomas
Karagiannis, and Ant Rowtron. Better never than
late: Meeting deadlines in datacenter networks. In
ACM SIGCOMM Computer Communication
Review, 2011.

[22] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
simplified data processing on large clusters.
Communications of the ACM, 2008.

[23] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, et al. Data center tcp (dctcp). In ACM
SIGCOMM computer communication review,
2010.

[24] Pawan Prakash, Advait Dixit, Y Charlie Hu, and
Ramana Kompella. The tcp outcast problem:
exposing unfairness in data center networks. In
Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation,
2012.

[25] Mosharaf Chowdhury, Matei Zaharia, Justin Ma,
Michael I Jordan, and Ion Stoica. Managing data
transfers in computer clusters with orchestra.
ACM SIGCOMM Computer Communication
Review, 2011.

[26] Fahad R Dogar, Thomas Karagiannis, Hitesh
Ballani, and Antony Rowstron. Decentralized

task-aware scheduling for data center networks. In
ACM SIGCOMM Computer Communication
Review, 2014.

[27] Nick McKeown, Martin Izzard, Adisak
Mekkittikul, William Ellersick, and Mark
Horowitz. Tiny tera: a packet switch core. Micro,
IEEE, 1997.

[28] Balaji Prabhakar and Nick McKeown. On the
speedup required for combined input-and
output-queued switching. Automatica, 1999.

[29] Mellanox SN2410 Switch System.
http://www.mellanox.com/related-docs/prod
eth switches/PB SN2410.pdf.

[30] Arista 7280R Series Data Center Switch Router.
https://www.arista.com/assets/data/pdf/
Datasheets/7280R-DataSheet.pdf.

[31] Cisco Nexus 93180YC-EX Switch.
http://www.cisco.com/c/en/us/products/
collateral/switches/nexus-93108tc-ex-switch/
datasheet-c78-736651.html.

[32] IEEE Standard for a Precision Clock
Synchronization Protocol for Networked
Measurement and Control Systems. IEEE Std
1588-2008 (Revision of IEEE Std 1588-2002),
pages 1–269, July 2008.

[33] Jonathan Perry, Amy Ousterhout, Hari
Balakrishnan, Devavrat Shah, and Hans Fugal.
Fastpass: A centralized zero-queue datacenter
network. In ACM SIGCOMM Computer
Communication Review, volume 44, pages
307–318. ACM, 2014.

[34] Pedro Moreira et al. White rabbit:
Sub-nanosecond timing distribution over ethernet.
In 2009 International Symposium on Precision
Clock Synchronization for Measurement, Control
and Communication, pages 1–5. IEEE, 2009.

[35] Steven Blake, David Black, Mark Carlson, Elwyn
Davies, Zheng Wang, and Walter Weiss. An
architecture for differentiated services. 1998.

[36] CCITT Recommendation. I. 371: Traffic control
and congestion control in b-isdn. Geneva, Study
Group, 13, 1992.

[37] Cisco Tech Notes. Comparing traffic policing and
traffic shaping for bandwidth limiting. Document
ID, 19645:22–42.

[38] ITUT SGI. Traffic control and congestion control
in b-isdn. ITU-T Rec, 1.

[39] John William Evans and Clarence Filsfils.
Deploying IP and MPLS QoS for Multiservice
Networks: Theory & Practice. Morgan Kaufmann,
2010.

[40] Cisco DocWiki. Resource Reservation Protocol.
http://docwiki.cisco.com/wiki/Resource
Reservation Protocol.

[41] Sergey Legtchenko, Nicholas Chen, Daniel
Cletheroe, et al. Xfabric: a reconfigurable in-rack

network for rack-scale computers. In 13th
USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), 2016.

[42] Kai Chen et al. OSA: An Optical Switching
Architecture for Data Center Networks With
Unprecedented Flexibility. Networking,
IEEE/ACM Transactions on, 2014.

[43] Polatis 6000n Protection Services Switch Data
Sheet. http://www.polatis.com/datasheets/
products/Polatis 6000n Protection Services
Switch Data Sheet.pdf.

[44] Theophilus Benson, Aditya Akella, and David A
Maltz. Network traffic characteristics of data
centers in the wild. In Proceedings of the 10th
ACM SIGCOMM conference on Internet
measurement, 2010.

[45] Yossi Azar and Iftah Gamzu. Efficient
submodular function maximization under linear
packing constraints. In Automata, Languages, and
Programming. 2012.

[46] High-Density 25/100 Gigabit Ethernet StrataXGS
Tomahawk Ethernet Switch Series.
https://www.broadcom.com/products/
ethernet-communication-and-switching/
switching/bcm56960-series.

[47] Dan Alistarh, Hitesh Ballani, Paolo Costa, Adam
Funnell, Joshua Benjamin, Philip Watts, and
Benn Thomsen. A high-radix, low-latency optical
switch for data centers. In ACM SIGCOMM
Computer Communication Review, 2015.

[48] SDN-Enabled All-Optical Circuit Switching: An
Answer to Data Center Bandwidth Challenges.
https://www.sdxcentral.com/wp-content/
uploads/2015/02/
Polatis-SDN-Enabled-All-Optical-Circuit-Switching.
pdf.

[49] Mike Mesnier, Gregory R Ganger, and Erik
Riedel. Object-based storage. IEEE
Communications Magazine, 2003.

[50] Kevin J Barker, Alan Benner, Ray Hoare, et al.
On the feasibility of optical circuit switching for
high performance computing systems. In
Proceedings of the 2005 ACM/IEEE conference on
Supercomputing. IEEE Computer Society, 2005.

[51] George Porter, Richard Strong, Nathan
Farrington, Alex Forencich, et al. Integrating
microsecond circuit switching into the data
center. In Proc. ACM SIGCOMM., 2013.

[52] Navid Hamedazimi, Zafar Qazi, Himanshu Gupta,
et al. Firefly: a reconfigurable wireless data center
fabric using free-space optics. ACM SIGCOMM
Computer Communication Review, 2015.

[53] Monia Ghobadi, Ratul Mahajan, Amar
Phanishayee, et al. Projector: Agile reconfigurable
data center interconnect. In ACM SIGCOMM,
2016.

http://www.mellanox.com/related-docs/prod_eth_switches/PB_SN2410.pdf
http://www.mellanox.com/related-docs/prod_eth_switches/PB_SN2410.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7280R-DataSheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7280R-DataSheet.pdf
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-93108tc-ex-switch/datasheet-c78-736651.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-93108tc-ex-switch/datasheet-c78-736651.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-93108tc-ex-switch/datasheet-c78-736651.html
http://docwiki.cisco.com/wiki/Resource_Reservation_Protocol
http://docwiki.cisco.com/wiki/Resource_Reservation_Protocol
http://www.polatis.com/datasheets/products/Polatis_6000n_Protection_Services_Switch_Data_Sheet.pdf
http://www.polatis.com/datasheets/products/Polatis_6000n_Protection_Services_Switch_Data_Sheet.pdf
http://www.polatis.com/datasheets/products/Polatis_6000n_Protection_Services_Switch_Data_Sheet.pdf
https://www.broadcom.com/products/ethernet-communication-and-switching/switching/bcm56960-series
https://www.broadcom.com/products/ethernet-communication-and-switching/switching/bcm56960-series
https://www.broadcom.com/products/ethernet-communication-and-switching/switching/bcm56960-series
https://www.sdxcentral.com/wp-content/uploads/2015/02/Polatis-SDN-Enabled-All-Optical-Circuit-Switching.pdf
https://www.sdxcentral.com/wp-content/uploads/2015/02/Polatis-SDN-Enabled-All-Optical-Circuit-Switching.pdf
https://www.sdxcentral.com/wp-content/uploads/2015/02/Polatis-SDN-Enabled-All-Optical-Circuit-Switching.pdf
https://www.sdxcentral.com/wp-content/uploads/2015/02/Polatis-SDN-Enabled-All-Optical-Circuit-Switching.pdf

	Introduction
	composite-Path switch
	Composite-Path Switch Model
	cp-Switch Demand Reduction
	cp-Switch Scheduling

	Evaluation
	Evaluation Criteria
	One-to-Many/Many-to-One Demand Example
	Typical DCN with One-to-Many/Many-to-One Demand Example
	Intensive Typical DCN and One-to-Many/Many-to-One Demand
	Typical DCN Traffic and Intensive One-to-Many/Many-to-One Demand

	Discussion and Future Work
	Related Work
	Conclusions
	Acknowledgments
	References

