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Abstract

Today, because of TCP dynamics, Internet backbone routers hold large packet
buffers, which significantly increase their power consumption and design time. Re-
cent models of large-buffer networks have suggested that these large buffers could
be replaced with much smaller ones. Unfortunately, it turns out that these large-
buffer network models are not valid anymore in small-buffer networks, and therefore
cannot predict how these small-buffer networks will behave.

In this paper, we introduce a new model that provides a complete statistical
description of small-buffer Internet networks. We present novel models of the dis-
tributions of several network components, such as the line occupancies of each flow,
the instantaneous arrival rates to the bottleneck queues, and the bottleneck queue
sizes. Later, we combine all these models in a single fixed-point algorithm that forms
the key to a global statistical small-buffer network model. In particular, given some
QoS requirements, we show how this new model can be used to precisely size small
buffers in backbone router designs.
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1 Introduction

Current backbone routers use extremely large buffers. These buffers take about
half of their board space and a third of their power consumption [1]. They
rely on massive amounts of SRAM and DRAM with fast access times, require
complex scheduling algorithms to manage these SRAM and DRAM modules,
and can take a significant amount of time to design [2–4].
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These large buffer sizes typically result from a widely-followed rule of thumb,
stating that router buffer sizes should be equal to the product of the typical
(or worst-case) round-trip-time by the router capacity [5]. This rule of thumb
is derived when considering synchronized TCP flows. For instance, given a
standard linecard with 40 Gbps and a 250-ms round-trip time, the rule of
thumb dictates a large linecard buffer of 10 Gb, which needs several DRAM
modules and cannot be practically implemented in SRAM alone.

Recent studies suggest that this rule of thumb overprovisions buffers by sev-
eral orders of magnitude [6–12]. In fact, given a large number of TCP flows,
the synchronization between any two flows is typically weak, and therefore the
sum of all the flows is less bursty than for synchronized flows, hence incur-
ring smaller buffer needs. More precisely, these papers argue that the many
TCP flows can be modeled as independent, and therefore, by the law of large
numbers, the total number of TCP packets in the network converges to a Gaus-
sian distribution. As a consequence, in this model, also known as the Stanford
model, it is hypothesized that the needed buffer size is smaller by a factor
of about

√
n than the rule of thumb for synchronized flows, where n is the

number of TCP flows going through the buffer. For instance, given a million
flows, the example above yields a buffer size of about 10 Mb in the Stanford
model, which can be implemented in SRAM instead of DRAM. If true, such
a result would obviously incur significant architectural changes in backbone
routers: for the same power budget, it would be possible to pack more lines,
thus increasing the router capacity; the memory architecture would be much
simplified; and the input and output queues might be packed together with
the switch fabric in a single chip, hence increasing its modularity as well.

Unfortunately, because it analyzes networks with large buffers, the Stanford
model assumes that most of the traffic variability is in the buffers, and not
on the lines. However, this assumption does not hold anymore in small-buffer
networks, where the variability in the line occupancy cannot be neglected. In
fact, it would seem only natural that as buffers get smaller and smaller, the
variability in the buffer occupancy progressively reduces as well, until becom-
ing negligible. Thus, in small-buffer networks, most of the network variability
intuitively shifts to the line occupancy — and models of large-buffer networks
with fixed line occupancies do not hold anymore. A new model is needed for
small-buffer networks: this is the objective of this paper.

In this paper, we introduce a new method that provides a complete statistical
description of large Internet small-buffer networks with TCP traffic. To do so,
we consider each bottleneck queue, and successively build models for the dis-
tributions of several network components around this queue. We then connect
all these models together in a closed loop, and derive the final network model
as a result of a fixed-point equation.
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In particular, contributions of this paper include: (a) to our knowledge, the
first-ever model for the traffic distribution on the links entering the bottleneck
queues; (b) a new model for the instantaneous arrival rate to the bottleneck
queues, including a decomposition along the input lines and a Gaussian-based
model for the total rate; (c) a model for the occupancy distribution and packet
loss rate of bottleneck queues that does not make assumptions on the incom-
ing traffic load and does not assume that it is Poisson; and, most importantly,
(d) a closed-loop model of small-buffer networks that enables us to determine
their loss rate, as well as the distributions of the major network components.
We also conclude this paper with a detailed discussion of assumptions and con-
sequences of these results. In particular, these models can be used by router
designers to determine the necessary router buffer size given any loss proba-
bility target in any large network topology.

The rest of the work is organized as follows. The next section provides a
summary of the related work on this topic. Section 3 presents the notations
and the closed-loop model used in this paper. Then, Section 4 contains the
models of the different network components, and these models are applied to
link occupancy distributions in Section 5. Next, Section 6 presents simulation
results that evaluate these models. Finally, Section 7 and Section 8 discuss the
assumptions used and the generality of the presented results.

2 Related Work

Our work is related to several recent publications. First, the Stanford model
is developed in [6–10]. A core idea in this model is that the sum of all con-
gestion windows is distributed as a Gaussian. The Gaussian distribution is
shown by demonstrating the loss of synchronization between the congestion
window sizes of the different flows, as their number grows. This leads to the
statistical independence between the flows. Therefore, given a large number
of homogeneous flows, the buffer size can be divided by the square root of
this number of flows, and still remain nearly fully utilized with an acceptable
packet loss rate. However, as noted above, none of these papers provide any
complete network models for small-buffer networks.

Reference [9] relies on a “paced” pattern of TCP transmissions to consider
buffers that are even smaller than those in the Stanford model. The pacing
phenomenon is said to correctly model networks with slow access lines or al-
tered TCP. On the contrary, we consider a more general network, without
assumption on the access lines, and without modification in the TCP dy-
namics. We also attempt to provide a more complete characterization of the
network properties, including the occupancy distributions of the lines and the
queues.
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In contrast, [11–14] do provide more complete network models, but they all
assume Poisson arrivals to the bottleneck queues. We will later see that these
assumptions do not match simulations in small-buffer networks. Moreover, [14]
also assumes a level of synchronization between the flows that we did not notice
in our simulations of small-buffer networks.

An alternative model, developed in [15], allows to find the buffer size as a
function of two alternative targets: the desired load and the desired loss rate.
This model shows that for a limited number of flows, the number of lost
packets in a congestion event is a near-linear function of the number of flows.
However, the linear dependency does not scale beyond a few hundred flows,
and therefore does not apply to larger networks.

Recent studies [16–18] also revisit the Stanford model by focusing on differ-
ent parameters, such as the input/output capacity ratio, the percentage of
persistent flows, and the percentage of flows in congestion avoidance mode.
Their results complement the Stanford model, by fine-tuning it to these diverse
topology parameters, and could complement our model as well.

Finally, other models also consider non-droptail queueing policies, such as
RED [19], while we only study the droptail policy, which seems to be the most
commonly applied policy in Internet routers.

3 Notations and Closed-Loop Model

3.1 Notations

Our objective is to model a large network with small buffers. We will first
formally reduce the problem to a simpler dumbbell topology problem, and
then introduce the different notations used.

Assumption 1 (Dumbbell Topology) The large modeled network can be
decomposed into subnetworks with a single bottleneck buffer in each subnet-
work, each subnetwork being modeled using a dumbbell topology around its
bottleneck buffer.

This is a classical assumption (see for instance [6, 9, 13, 20, 21]), which we
further discuss in Section 7. The intuition behind it is that the behavior of the
TCP flows mainly derives from the congestion of the buffers on their path,
and that in practice, a single buffer on their path typically causes most of the
congestion.
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Fig. 1. Dumbbell topology.

As shown in Fig. 1, the dumbbell topology includes N persistent TCP flows
sharing the same bottleneck buffer of capacity C and buffer size B. For each
flow i, with 1 ≤ i ≤ N, we will denote the congestion window size as Wi, the
forward access link occupancy as Li, the access link propagation time as Ti,
and the total round-trip propagation time, not including the queueing time,
as RTTi. We will also denote the bottleneck queue size as Q, and its loss rate
as p.

We assume here that most of the flows are persistent TCP flows, as formerly
described in the Stanford model [6]. Other network scenarios are further dis-
cussed in Section 8.

The latencies of the forward and backward access links are assumed to follow
some given bounded positive distribution, and their capacities are assumed to
be so high that the bottleneck link is the only one experiencing congestion.
Further, the TCP window sizes are assumed to be integer and have positive
lower and upper bounds. The queueing policy is assumed to be drop-tail.

Note that the simulations in Section 6 relax some of these assumptions, e.g. by
allowing for short TCP flows. Also, Section 7 further discusses the influence
of these assumptions on the general results.

3.2 Closed-Loop Model

Our goal is to provide a closed-loop model for the dumbbell network. First,
we will establish a general set of inter-related models. Then, by solving a
fixed-point problem involving all these inter-related models, we will converge
towards a final network model.
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Fig. 2. Closed-loop schematic model.

As illustrated in Fig. 2, the inter-related models will successively provide equa-
tions for the distributions of: (1) the access link occupancies {Li}, (2) the in-
stantaneous arrival rates {∆Ai}, (3) the total instantaneous arrival rate ∆A,
(4) the bottleneck queue size Q, (5) the value of the loss rate p, and (6) the
congestion window sizes {Wi}. The first five models are presented in this pa-
per. The last model for the congestion window distribution can be taken from
the many literature references (see for instance [22,23]).

Once the inter-related models are obtained, we can arrange them together in
a loop using the following schematic chain:

p⇒ {Wi} ⇒ {Li} ⇒ {∆Ai} ⇒ ∆A⇒ Q⇒ p, (1)

which can be rewritten as:

p = f(p). (2)

We can then simply find p by solving this fixed-point equation, and the solu-
tion provides us as well with the distributions of all the network components
mentioned above. To solve for p, it is possible to use the gradient descent
algorithm for a few iterations, until |p− f(p)| < ε for a desired ε.

In other words, we now have the ability to provide a model for all the main
characteristics of this small-buffer network when given only the link latencies,
bottleneck link capacity, and buffer size.
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4 Closed Loop for the Packet Loss Rate Derivation

In this section we will successively go through the inter-related models pre-
sented above. We start with a model of the forward access link occupancies
Li.

4.1 Model of the Access Link Occupancies

The distribution of the TCP congestion windows Wi is dictated by the packet
loss rate p, and for a fixed p this distribution is fixed. We will now assume that
we are given the distributions of the Wi, and want to provide a model for the
distribution of Li. To do so, we will first make two simplifying assumptions.

Assumption 2 (Independence) The {Wi}i=1,...,N are independent and iden-
tically distributed.

In the remainder, we will denote their common positive distribution function as
fW . Intuitively, this simplifying assumption relies on the fact that as the num-
ber of flows increases, their mutual synchronization decreases, and therefore
the congestion windows can increasingly be modeled as independent. Further,
we will consider a network growth in which the common loss rate p stays con-
stant, and therefore the distribution fW stays constant as well. In other words,
to have an apple-to-apple comparison between networks of different sizes, we
will assume that the network maintains a similar QoS level while increasing
the number of flows and the link capacities. This assumption, as well as the
next one, are further discussed in Section 7 and 8.

TCP flows typically send packets and ACKs (acknowledgements) in a highly
bursty manner. Moreover, we can use their congestion window size to ap-
proximate the size of this burst. The following assumption models this high
burstiness.

Assumption 3 (Burstiness) Flow i has a total of Wi packets (or ACKs on
the reverse path), all present as a single burst on a given link.

Note that this simplifying assumption directly contradicts the common fluid
models of TCP, which assume that the window is spread out, and assumes
instead that the window is concentrated at a single point. This assumption
also uses the fact that we consider small-buffer networks: since the probability
of having packets in the buffer is small enough, it can be neglected in this
model. We can now derive the distribution of the access link occupancies Li:

Theorem 1 (Access Link Distribution) The number of packets on for-
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ward access link i is distributed as:

Pr(Li = k) =

 1− Ti

RTTi
if k = 0,

Ti

RTTi
· fW (k) otherwise.

(3)

Proof. Using Assumption 3, the probability that the burst is not present on
the access line is 1− Ti/RTTi. The burst presence probability is independent
of its size, since the propagation times are the same no matter what the burst
size is. Therefore, the probability that k > 0 packets are present on the access
line is the product of the probability that the burst size is k (fW (k)) by the
probability that the burst is present on the access line (Ti/RTTi).

The simulation results regarding this model are presented in Section 6.

4.2 Arrival Rates of Single Flows and Total Arrival Rate

Denote the number of packets of flow i arrived to the bottleneck queue in ∆t
seconds as ∆Ai. Intuitively, ∆Ai

∆t
represents the (instantaneous) arrival rate on

line i to the bottleneck queue. We are interested in studying the distribution
of ∆Ai for some small ∆t < Ti, and obtain the following model:

Theorem 2 (Flow Arrival Rate Distribution) The number of packets ∆Ai

of flow i arrived during time ∆t is distributed as:

Pr(∆Ai = k) =

 1− ∆t
Ti

+ Pr(Li = 0) · ∆t
Ti

if k = 0,

Pr(Li = k) · ∆t
Ti

otherwise.
(4)

Proof. By Assumption 3, packets of flow i move on each line in a single
burst of size Wi and at a constant speed. Therefore, the probability that on
some link i, k > 0 packets arrive within ∆t, is Pr(Li = k) · ∆t

Ti
. This gives

us the probability for the packet arrival of any size larger then zero. The
complementary probability, therefore, stands for the no-arrival event.

Incidentally, note that Equation (4) can be rewritten as in Equation (3):

Pr(∆Ai = k) =

 1− ∆t
RTTi

if k = 0,

∆t
RTTi

· fW (k) otherwise.
(5)
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This is Equation (3), replacing the access link propagation time Ti with the
propagation time ∆t.

We now want to find the total instantaneous arrival rate ∆A =
∑

i (∆Ai), and
show that it will converge to a Gaussian distribution given a large number of
flows. Since the {Wi} and the {Li} are statistically independent by Assump-
tion 3, the {∆Ai} are statistically independent as well. It now seems natural
to use the classic Central Limit Theorem, which applies to the sum of in-
dependent and identically-distributed random variables. However, the {∆Ai}
are not identically distributed, because the round-trip times of all flows are
not equal. Therefore, we will use Lindeberg’s Central Limit Theorem [24] in-
stead. We will show that the share of each flow is bounded, and therefore that
the conclusions of the classic Central Limit Theorem still apply, i.e. the total
arrival rate ∆A will be Gaussian for a large number of flows.

In order to characterize how the network behaves as the number of flows
increases, we need to define how we scale the other parameters. We will keep
the same round-trip time distribution, and assume that it is possible to scale
the bottleneck link capacity C (and the buffer size B) so that the loss rate is
kept constant. This will rely on the fact that smoothly increasing the capacity
C will smoothly decrease the packet loss rate, as formulated in the following
assumption.

Assumption 4 (Loss Rate Continuity) The packet loss rate p is a con-
tinuous function of the capacity C.

We will now rely on two lemmas to prove the normality of the limiting arrival
rate distribution. In the first lemma, we demonstrate that it is indeed possible
to scale the network by keeping a constant loss rate, as long as we can scale
C.

Lemma 1 The packet loss rate p is adjustable by changing the bottleneck link
capacity C, i.e. when scaling the number of flows in the network, there exists
C ′ ≥ C, such that providing a link capacity of C ′ will maintain the previous
packet loss rate p.

Proof. For C = 0, the packet loss rate is 100%, because once the buffer is
full, all packets are dropped. On the contrary, for C → ∞, p goes to zero,
because the service rate is always higher than the arrival rate (the maximum
congestion window size is limited in TCP), and no packets are lost. Since
p is a continuous function of C (Assumption 4), the result follows from the
Intermediate Value Theorem.
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In the next lemma, we prove that there is a common lower bound to the
standard deviations of the arrival rates, a technical result that will be used
for the Lindeberg condition in the Central Limit Theorem.

Lemma 2 The standard deviations of the flow arrival rates have a common
positive lower bound.

Proof. We use the law of total variance

V ar(∆Ai) = E[V ar(∆Ai|Wi)] + V ar(E[∆Ai|Wi]), (6)

where the last term is always positive and we omit it to get the following
inequality:

V ar(∆Ai) ≥ E[V ar(∆Ai|Wi)]. (7)

As expressed in the proof of Equation (5), when we fix Wi = k (with k > 0),
we get ∆Ai = k with probability ∆t

RTT i
, and ∆Ai = 0 otherwise. Therefore,

using the variance of a scaled Bernoulli random variable, we get

V ar(∆Ai|Wi = k) =
∆t

RTT i

(
1− ∆t

RTT i

)
k2. (8)

Taking the expectation over Wi,

E[V ar(∆Ai|Wi)] =
∆t

RTT i

(
1− ∆t

RTT i

)
E[Wi

2]. (9)

Finally, using Equation (7),

V ar(∆Ai) ≥
∆t

RTT i

(
1− ∆t

RTT i

)
E[Wi

2]. (10)

In the above expression, E[Wi
2] ≥ 1, because by Assumption 2, the distri-

bution of Wi follows the positive integral distribution function fW , which is
predetermined for a given loss rate p. Further, we assumed that each RTTi

is given within a predetermined positive range, say [RTTmin, RTTmax], there-

fore the above expression is lower-bounded by ∆t
RTT max

(
1− ∆t

RTT min

)
, which is

positive and independent of the flow number i.

We are now ready to prove the normality of the limiting arrival rate distribu-
tion.
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Theorem 3 (Total Arrival Rate Distribution) When the number of flows
N →∞, while keeping the packet loss rate constant, the normalized total ar-

rival rate
∆A−

∑
i
E(∆Ai)√∑

i
V ar(∆Ai)

converges in distribution to the normalized Gaussian

distribution N (0, 1).

Proof. The proof relies on Lindeberg’s theorem, which we remind below.
Using the statistical independence of the rates,

E[∆A] =
N∑

i=1

E[∆Ai] (11)

and

V ar(∆A) =
N∑

i=1

V ar(∆Ai) (12)

The distributions of the ∆Ai are independent but not identical. In order to
prove the limiting Gaussian nature of the total arrival rate, we will use the
Lindeberg Central Limit Theorem, showing that the Lindeberg condition is
true. We quote, next, the Lindeberg Central Limit statement:
Lindeberg Theorem: Let {Xi} ∈ RN be independent random variables.
Assume the expected values E[Xi] = µi and variances V ar(Xi) = σ2

i exist
and are finite. Also let s2

N =
∑N

i=1 σ
2
i . If the sequence of independent random

variables Xi satisfies the Lindeberg condition (formulation according to the
terminology of Zabell [24]):

lim
N→∞

N∑
i=1

E

[(
Xi

sN

)2

:
|Xi|
sN

≥ ε

]
= 0 (13)

Then, the following term:

ZN =

∑N
i=1(Xi − µi)

sN

(14)

converges in distribution to a standard normal random variable as N →∞.

We substitute Xi by ∆Ai, other notations staying the same. Then, for every
ε > 0, we want to prove the Lindeberg condition as follows:

lim
N→∞

N∑
i=1

E

[
(∆Ai − µi)

2

s2
N

: |∆Ai − µi| > ε · sN

]
= 0 (15)
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The meaning of this condition is that there is no capture phenomenon, in
which a unique flow or a small number of flows seize a major part of the link
capacity. We will use the lemmas above to prove that as we scale the number
of flows, s2

N grows as well, and no flow will be able to satisfy the condition
|∆Ai − µi| > ε · sN .

As shown in Theorems 1 and 2, the distribution of ∆Ai depends solely on the
window distribution, which is derived from the constant packet loss [23].
Therefore this distribution of ∆Ai does not depend on N . According to
Lemma 1, the number of flows N can be scaled while preserving the same
packet loss rate. Further, the arrival rates of the new flows will obey the same
lower bounds on the variance as the arrival rates of the existing flows, as
found in Lemma 2, because their propagation times have the same bounds.
Consequently, s2

N will be lower-bounded by a linear function of N , which goes
to infinity with N . Let Wmax be the maximum window size. Then for every
ε > 0, we can find some N0 ≥ 1, such that for any number of flows N ≥ N0,
sN will satisfy the condition sN ≥ Wmax/ε. Thus, for N ≥ N0,

Pr(|∆Ai − µi| > ε · sN) ≤ Pr
(
|∆Ai − µi| > ε · Wmax

ε

)
= 0, (16)

where the equality in the second term of this inequality relies on Equation (5),
that is, the distribution of the arrival rate ∆Ai of each flow i, is bounded by
the maximum value of the congestion window, namely Wmax. Therefore, as
we scale N , the Lindeberg condition is satisfied, and we can apply the Central
Limit Theorem to the total arrival rate.

Note that the distribution of ∆Ai is derived from the distribution of Wi, which
defines a distribution of the TCP congestion window, and therefore holds for
the closed-loop model. Thus, the Gaussian distribution in the theorem proved
above holds in the closed-loop model. The simulation results comparing this
Gaussian model with a typical Poisson model are presented in Section 6.

4.3 Queue Size Distribution and Packet Loss Rate

Our next objective in the fixed-point model is to find the distribution of the
queue size Q and the packet loss rate p given the above model for ∆A. We
will decompose time into frames of size ∆t, and assume that packets arrive
as bursts of size ∆A every ∆t seconds. Thus, we clearly get the following
queueing model:

Theorem 4 (Queue Size and Loss Rate) The queue size distribution and

the packet loss rate are obtained by using a G
[∆A]
∆t /D/1/B queueing model, in
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which every ∆t seconds, packets arrive in batches of size ∆A and immediately
obtain service for up to C∆t packets.

We implemented this queueing model using both the algorithm developed
in [25] and a simple Markov chain. The first method uses an iterative algo-
rithm, which makes the steady state probabilities of the queue converge. The
second method involves running a long simulation of the total arriving rate as
the arrival process to the queue. Both methods yielded similar results.

We are now done with our set of network models, which can all be combined
to form a fixed-point solution. In the next sections, we first apply these models
to demonstrate the asymptotic normality of several network components, and
then analyze their correctness using simulation results.

5 Application: Gaussian Models of Line Occupancies

After building the small-buffer network model, we would like to demonstrate
its use, by proving the asymptotic normality of the distributions of several line
occupancies. In fact, in the Stanford model of large-buffer networks [6–10], the
total window size is modeled as asymptotically Gaussian, but the line occu-
pancies are modeled as constant. In small-buffer networks, we will similarly
demonstrate that the total window size can be modeled as asymptotically
Gaussian. Then, we will use our closed-loop model to prove that the total
access line occupancy is asymptotically Gaussian as well, and not constant,
contrarily to the Stanford model. Intuitively, this is because with small queues,
the variations in the queue occupancy cannot justify alone the variations in
the total network occupancy.

5.1 Gaussian Model of the Total Congestion Window W

Our objective is to prove that the total window size W =
∑N

i=1Wi is asymp-
totically Gaussian (as already assumed in [6]). To do so, we will rely on the
statistical independence of the congestion window sizes {Wi}.

Theorem 5 (Gaussian Model of W ) When the number of flows N →∞,
while keeping the packet loss rate constant, the normalized total congestion

window size
W−
∑

i
E(Wi)√∑

i
V ar(Wi)

converges in distribution to the normalized Gaussian

distribution N (0, 1).
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Proof. Using the statistical independence of the window sizes (Assump-
tion 2),

E[W ] =
N∑

i=1

E[Wi], and V ar(W ) =
N∑

i=1

V ar(Wi). (17)

The distributions of the {Wi} are independent and identically distributed
according to fW (Assumption 2 and Lemma 1), therefore we can apply the
Central Limit Theorem and obtain the resulting convergence of the normalized
sum to a normalized Gaussian distribution.

5.2 Gaussian Model of the Total Access Line Occupancy L

We will now demonstrate that the total occupancy on the forward access links
L =

∑N
i=1 Li is asymptotically Gaussian. This is contrary to the Stanford

large-buffer model, in which they are assumed to be constant.

In the proof, we will rely on the independence of the line occupancies {Li}.
However, since they are independent but not identically distributed, the proof
will use Lindeberg’s Central Limit Theorem [24].

Theorem 6 (Gaussian Model of L) When the number of flows N → ∞,
while keeping the packet loss rate constant, the normalized total forward ac-

cess link occupancy
L−
∑

i
E(Li)√∑

i
V ar(Li)

converges in distribution to the normalized

Gaussian distribution N (0, 1).

Proof. Using the statistical independence of the link occupancies,

E[L] =
N∑

i=1

E[Li], and V ar(L) =
N∑

i=1

V ar(Li). (18)

The random variables {Li}1≤i≤N are independent but not identical. In order
to prove the limiting Gaussian nature of the total link occupancy, we will
use the Lindeberg Central Limit Theorem, as in the proof of Theorem 3.
Then, the proof can follow the proof of Theorem 3, with the individual link
occupancy distributions now satisfying Theorem 1, thus leading directly to
the convergence result.

In the theorem above, the total access link occupancy is modeled as asymptot-
ically Gaussian. In the simulations below, we will evaluate whether simulations
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Fig. 3. Distribution of the access link occupancy Li (logarithmic scale).

actually confirm such a model, and analyze other link distributions as well.
In fact, the forward access links are the only links in the dumbbell network
before the bottleneck, i.e. in which no packets have been lost yet. Therefore,
it is expected that the independence-based Gaussian model will fare best on
these links, since packet drops would not influence these as much and therefore
would cause less inter-flow correlation. This will indeed be confirmed in the
simulations section.

Incidentally, note that the parameters of the Gaussian distribution of L are
related to those of the Gaussian distribution of W . For instance, using Theo-
rem 1, we get

E[L] =
N∑

i=1

E[Li] =
N∑

i=1

Ti

RTTi

· E[W ]

N
= E[W ]Ei

[
Ti

RTTi

]
(19)

6 Simulation Results

We will now present the simulation results for the different parts of the closed-
loop model. The simulations were done in NS2 [26]. In all the simulations
below, we ran 2,000 simultaneous persistent TCP NewReno flows, unless noted
otherwise. The packet size was set to 1,000 bytes. The maximum allowed
window size was set to Wmax = 64 packets. The propagation time of the
bottleneck link was fixed to 20 milliseconds, and the propagation times for all
the other links were chosen randomly according to a uniform distribution.
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6.1 Access Link Occupancy Model vs. Fluid Model (Theorem 1)

We want to evaluate our bursty model for {Li}, as presented in Theorem 1.
We compare it against a fluid model, in which the packets belonging to a flow
are distributed uniformly on all the links (the queueing time is neglected).

According to this fluid model, the number of packets present on access link i
at time t is thus equal to Li(t) = Ti

RTTi
·Wi(t), because flow i has a total of

Wi(t) packets, and the share in the propagation time of access link i is Ti

RTTi
.

Therefore, the maximum number of packets on the access link is bounded by
Ti

RTTi
·Wmax.

Fig. 3 represents the pdf (probability distribution function) of the access link
occupancy Li of some random flow i using a logarithmic scale. It was obtained
using a simulation involving 500 simultaneous TCP flows. It can be seen that
our bursty model is fairly close to the measured results throughout the whole
scale. It behaves especially better than the fluid model, for which the pdf
is equal to 0 for any occupancy above Ti

RTTi
· Wmax ≈ 10, and thus cannot

even be represented on the logarithmic scale. This observation strengthens
the intuition that Assumption 3 was reliable. Note that we obtained similar
results on many simulations with different parameters.

6.2 Arrival Rate Model vs. Poisson Model (Theorems 2 and 3)

We now want to evaluate our Gaussian-based model for the distribution of
the total instantaneous arrival rate ∆A, as presented Theorems 2 and 3. We
will compare this model with a typical Poisson arrival model [11–14].

Fig. 4 plots the pdf of ∆A, using ∆t = 10 ms, and compares it with simulated
data obtained artificially using the two models. Our Gaussian-based model
relies on the expectation and variance computed above. Of course, over this
amount of time, the Poisson model yields an approximately Gaussian distri-
bution as well, but not with the same parameters: we force its expectation to
equal the measured value, and obviously the variance equals the expectation
for a Poisson random variable.

As shown in the figure, our model approximately yields the correct variance
and is close to the simulated results. On the contrary, the Poisson model
yields too small a variance. This can be intuitively explained by the burstiness
properties of the TCP flows which are not reflected in the Poisson model.
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Fig. 4. Distribution of the total arrival rate ∆A in time ∆t.

Fig. 5. Queue size distribution.

6.3 Queue Size Distribution (Theorem 4)

We now want to compare our model of the queue size distribution, with its
measured value from a simulation. Fig. 5 illustrates such a comparison. In the
simulation, we use a buffer size of 580 packets. Our Markov-chain-based queue
model is obtained after the convergence of the entire closed-loop model, and
therefore uses our modeled arrivals as well.

It can be seen that our queue model is fairly close on most of the simulated
range of Q, but cannot exactly reproduce the smooth continuous behavior of
the queue at the edges (Q = 0 and Q = B) because of its discrete bursty
nature. In fact, in this example, the simulated loss rate is 0.55%, while our
model gives 0.76%.
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Case Flow throughput
Queueing delay Loss rate p

Measured Modeled Measured Modeled

Case 1 52 pkts/sec 1.79 msec 1.9 msec 0.79 % 0.90 %

Case 2 29 pkts/sec 18.27 msec 19.87 msec 1.81 % 2.10 %

Case 3 11 pkts/sec 7.84 msec 8.54 msec 1.30 % 1.30 %

Case 4 18 pkts/sec 22.16 msec 26.15 msec 3.30 % 3.50 %

Fig. 6. Measured versus modeled results.

6.4 Fixed-Point Model

Let’s now evaluate the solutions of our fixed-point model, which combines all
the other models. In our simulations, the fixed-point solution of our network
model was found using the gradient descent algorithm, in typically less than
50 iterations. The exact number of needed iterations depended of course on
the desired precision and on the network parameters.

The table presented in Fig. 6 illustrates the average flow throughput, the
average queueing delay (measured and modeled) and the average loss rate
(measured and modeled) using the simulation results in four settings with
quite different parameters:
- Case 1: 500 long-provisioned TCP flows with RTTi distributed between 80
and 440 msec, B = 232 packets and C = 232.5 Mbps.
- Case 2: 500 long-provisioned TCP flows with RTTi distributed between 80
and 440 msec, B = 450 packets and C = 116.25 Mbps.
- Case 3: 750 long-provisioned TCP flows and a constant number of 25 short
TCP flows, with RTTi distributed between 70 and 2,040 msec, B = 244 pack-
ets and C = 69.75 Mbps. (The short flows were omitted in the model.)
- Case 4: 1500 long-provisioned TCP flows and a constant number of 5 short
TCP flows, with RTTi distributed between 220 and 240 msec, B = 828 packets
and C = 209.25 Mbps. (The short flows were omitted in the model.)

In all these cases, the modeled queueing delay and packet loss rate were close
to, but slightly above, the measured results. Incidentally, using the same sim-
ulations without short flows, we also verified that the influence of the short
flows on the simulation results was negligible. Note also that all these cases
use small buffers, with the last case following the Stanford model, and the first
three cases having even smaller buffers.

6.5 Gaussian Model of Congestion Window (Theorem 5)

We now want to check whether our Gaussian model of the total TCP conges-
tion window is indeed confirmed in simulations. Fig. 7 illustrates this model
as measured from an NS2 simulation (using 2, 000 flows, and with a measured
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Fig. 7. Distribution of the total congestion window size W

Fig. 8. Link numbers in the dumbbell topology

packet loss of 0.96%). The average and variance of the simulation were taken
from the closed-loop network model, and not from the measured results.

As the figure shows, both the modeled mean and variance seem close to the
measured values, and therefore the closed-loop model was accurate enough in
this case. Indeed, the total congestion window seems approximately Gaussian,
although with a slightly heavier left tail (probably mostly due to the non-
Gaussian distribution of the bottleneck component).

6.6 Gaussian Model of Forward Access Links (Theorem 6)

Our next objective is to check whether the Gaussian model of the total forward
access link occupancy is confirmed in simulations. In the simulations below,
we will actually want to examine all the links, and not only the forward access
links. Therefore, for simplicity, we will number the different link types in the
dumbbell topology. As illustrated in Fig. 8, we will respectively denote L1 (L2)
the forward (backward) source access links, L3 (L4) the forward (backward)
bottleneck links, and L5 (L6) the forward (backward) destination links. For
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Fig. 9. Distribution of the total forward access link occupancy L1

simplicity, we will use the same symbols {Lj}j=1,...,6 for the links and for their
occupancies. Also, note that in particular L1 , L was analyzed in Section 5,
and that the backward links actually carry acknowledgments, not data packets.

In Theorem 6, we found that the total forward access link occupancy L1 could
be asymptotically modeled using a Gaussian distribution. Fig. 9 illustrates
this model, by comparing it to the measured results from an NS2 simulation
(using 500 flows, with a measured packet loss of 0.62%).

As the figure illustrates, the model is a good fit. The modeled Gaussian pa-
rameters were taken from the closed-loop model, and not from the measured
results. Still, the Gaussian model seems very close to the measured distribu-
tion. (As before, this was observed across a wide range of flow numbers, loss
rates, and topology settings.)

6.7 Distribution of Link Occupancies

We found above that the inter-flow correlation on L1 is small enough that the
total link occupancy can be accurately modeled by a Gaussian distribution.
We will now see that this is not necessarily the case for the other links.

In particular, we do not expect the link occupancy on the bottleneck link L3

to have a Gaussian distribution. Link L3 contains the packets leaving the bot-
tleneck buffer, so its link capacity will limit its total occupancy, thus incurring
a high inter-flow correlation.

Further, because of the buffer impact, the flows are not completely indepen-
dent on L2, L4, L5 and L6. However, their correlation is still relatively small,
and due to their different round-trip times, the correlating influence of the
buffer declines, bringing their overall occupancy to be quite close to a Gaus-
sian distribution.
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Fig. 10. Distributions of total link occupancies and window size

Fig. 10 illustrates the distributions of these links and of the total window.
As can be seen, the five links and the total window size all seem to follow a
Gaussian distribution. (Note that bottleneck link L3 is not represented, as it
consists of a sharp peak that extends well above the plot.)

However, figures can be deceptive. That’s why we also represented the link
occupancies using the Q-Q (Quantile-Quantile) plot method [27]. Q-Q plots
illustrate the differences between the probability distribution of a measured
sample and a Gaussian distribution. A linear Q-Q plot, especially near the
center, is a sign that the sample can be modeled as Gaussian.

Fig. 11 presents the results for all link occupancies {Lj}j=1,...,6. As can be seen,
these plots confirm our analysis. Link L1 is highly Gaussian, as suggested in
Theorem 6. Links L2, L4, L5 and L6 are nearly Gaussian, to varying degrees
(arguably less so for L5, which follows the bottleneck link in the network).
Finally, the bottleneck link L3 is clearly not Gaussian.

7 Discussion of Assumptions

Let’s now discuss the correctness and generality of the assumptions.

Dumbbell Topology — We assumed in Assumption 1 that any large net-
work can be subdivided into dumbbell topologies. This assumption relies on
the observation that in the Internet, few flows practically have more than one
bottleneck, and that flows having more than one bottleneck actually mainly
depend on the most congested one [6]. Thus, the assumption of a single point of
congestion seems realistic enough. However, we also assumed that the conges-
tion only affects packets, not ACKs. This assumption might be too restrictive
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Fig. 11. Normal Q-Q plots of measured link occupancies.

– even though we found that our Gaussian-based models still held in various
simulations using reverse-path ACK congestion.

Statistical Independence of {Wi}i=1,...,N — It is obviously not correct
that the congestion windows are completely independent, since they interact
through the shared bottleneck queue. However, in order to study how far from
reality the independence assumption is, we first checked how correlated the
congestion windows are over time. We obtained the following correlation ma-
trix for the congestion windows of five arbitrary flows, using 70,000 consecutive
time samples in a simulation with 500 persistent TCP flows.

C =


1 0.066 0.14 0.058 −0.025

0.066 1 0.054 0.0005 −0.081

0.14 0.054 1 0.063 0.051

0.058 0.0005 0.063 1 0.003

−0.025 −0.081 0.051 0.003 1

 (20)

It can be seen that the correlation coefficients between different flows are
indeed low in front of the maximum absolute value of 1.

Of course, while independent random variables have zero correlation, the re-
verse is not necessarily true. Nevertheless, this low correlation would tend to
indicate that the flows are indeed desynchronized, and therefore that the sim-
plifying assumption of independence is not too far from reality. In fact, as the
number of flows increases, we also found that a heuristic measure of the inde-
pendence of their window sizes was decreasing. We took two arbitrary flows,
and measured the symmetric form of the Kullback-Leibler distance between
the joint distribution of their window sizes and the product of their respec-
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Fig. 12. Comparison of the distributions of 2 congestion windows with their joint
distribution.

tive distributions. We found a measure of 20.03 for a network with 10 flows,
3.37 with 50 flows, and 2.65 with 200 flows, with a lower measure intuitively
reflecting a higher independence between the window size distributions.

Fig. 12 illustrates such a comparison between the joint distribution and the
distribution product of two arbitrary windows, as obtained in a simulation.
The upper chart displays the joint distribution of the two window sizes, while
the lower chart shows the product of the distributions of the two windows. By
definition, the upper and lower charts for exactly independent windows would
be identical.

Identical Distribution of {Wi}i=1,...,N — The distributions of the conges-
tion window sizes mainly depend on the loss rate p in the shared bottleneck
buffer [22, 23]. In simulations, when there was no strong synchronization, the
loss rate was indeed found to be nearly equal for all flows, and the window
size distributions were nearly equal as well.

Burstiness — In Section 6, the comparison of the bursty model with the
fluid model already strengthened the bursty assumption. More generally, this
assumption needs to be used with care in networks without enough space on
the links for a packet burst (extremely small link latencies or link capacities).
In other cases, while not completely reflecting reality, this assumption seems
close enough [6].

RTT Distribution and Queuing Delay — We assumed that the queueing
delay can be neglected in front of the link propagation times. In fact, in the
Stanford model, the worst-case queueing delay is B

C
= RTT√

n
, where RTT is

the average round-trip propagation time. Consequently, the assumption seems
reasonable when n is large, as long as there is no flow with a round-trip
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propagation time significantly small in front of RTT .

Number of Packets — We assumed that the number of packets in the
network is close to the total window size, as reflected by the definition of
the window size. This assumption is especially justified when the loss rate is
reasonably small, as seen in our simulations and in the literature [6].

8 Generality of Results

It is obviously impossible to consider every possible topology and every pos-
sible set of flows. We made hundreds of simulations for this paper, and still
feel that there is much to research. Nevertheless, we can already discuss the
scope of the results and their sensitivity to various topology parameters.

Buffer Size — Our paper is about models that are valid in networks with
small buffers. In a network with large buffers, the flows might become synchro-
nized, and our independence assumptions and the ensuing models might not
be applicable. Likewise, we would not be able to neglect the queueing delay
in our models.

Propagation Times — We chose the link propagation times using a uniform
distribution with different parameters so as to reflect the diversity of real-
life Internet flows. In simulations, our models were fairly insensitive to these
propagation times, as long as there were many flows and there were no flows
with near-zero round-trip-times.

Number of Flows — In simulations, we found that the desynchronization
was already practically correct for several hundred flows, as previously stated
in [6]. We thus believe that with the hundreds of thousands of flows present in
a congested backbone router, the desynchronization will be even more correct.
The same desynchronization effect is expected due to the growth of the Inter-
net resources. The growing router service rates would increase the mean and
variance of the accessing flows. However, we would expect that this increase
would not affect the independence assumption in a significant way.

Protocols — We assumed that most of the traffic consists of persistent TCP
flows, running our model in simulations with only a small fraction of short-
term TCP flows. Considering a large fraction of them is out of scope of this
paper. We also introduced a fraction of UDP flows, and noted that these flows
only had a minimal impact on buffer sizing.
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9 Conclusion

In this paper, we provided a complete statistical model for a large network with
small buffers. We started with a model for the traffic on a single access line.
Then, we modeled the arrival rates to the bottleneck queues. Later, we found
a model for the queue size distribution and the loss rate. Finally, using these
inter-related models, we showed how to solve a single fixed-point equation
to obtain the full network statistical model, and how to use this fixed-point
model to provide Gaussian models of link occupancies.

A router designer might directly use this network model for buffer sizing.
Indeed, the designer might consider a set of possible benchmark parameters
and model the behavior of the resulting network. Then, given target QoS
requirements such as the required maximum packet loss rate or maximum
expected packet delay, the router designer will be able to design the buffer
size that satisfies these constraints.
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