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Abstract

TCP-split proxies have been previously studied as an efficient mechanism to improve the rate of connections with
large round trip times. These works focused on improving a single flow. In this paper, we investigate how strategi-
cally deploying TCP-split proxies in the cloud can improve the performance of geo-distributed applications entailing
multiple flows interconnecting globally-distributed sources and destinations using different communication patterns,
and being subject to budget limitations.

We present CloudPilot, a Kubernetes-based system that measures communication parameters across different cloud
regions, and uses these measurements to deploy cloud proxies in optimized locations on multiple cloud providers. To
this end, we model cloud proxy acceleration and define a novel cloud-proxy placement problem. Since this problem
is NP-Hard, we suggest a few efficient heuristics to solve it. Finally, we find that our cloud-proxy optimization can

improve flow completion time by an average of 3.6 x in four different use cases.

1. Introduction

Motivation. Over the last few years, the fierce com-
petition among cloud providers has led them to spend
billions on expanding their global presence by building
data-centers worldwide and laying out high-speed lines
to interconnect them [45, 6, 33]. Clients can now build
on-demand cloud overlay networks comprising cloud
nodes in different regions to route application traffic
through the cloud rather than through the public inter-
net [24, 2,17, 34,27, 3, 1, 31].

Several studies [34, 27, 3, 1, 31] show how we can in-
crease the rate of a flow by using cloud-based TCP-split
proxies. As Fig. 1 shows, this method splits a single
TCP flow into several connections with shorter round
trip time (RTT). By reducing the RTT for each connec-
tion, the overall transmission rate is improved.

While the above works focus on accelerating single
flows, it is unclear how to strategically deploy a limited
set of cloud-based TCP-split proxies to improve the per-
formance of global geo-distributed applications, with
sources and destinations that need to exchange large
amounts of data. Such applications include distributed
databases, batch file exchanges, VM migrations, and
CDNs [42, 46, 35] (§3). The goal of this paper is to
introduce CloudPilot, a Kubernetes-based system that
is designed to optimize proxy placement and deploy the
proxies to serve these applications.

Contributions. We make the following contributions.

e Use cases. We start by showing how geo-
distributed applications can be modeled using four
topological use-cases (§3).

* CloudPilot. We develop and deploy CloudPilot,
a Kubernetes-based system that helps accelerate
geo-distributed application traffic. Using com-
munication parameters measured across different
cloud regions, CloudPilot deploys TCP-split cloud
proxies across multiple cloud providers to optimize
the application transfer performance. We later
present our proxy acceleration model for a single
flow, and validate it using real-world CloudPilot-
based measurement experiments (§4). The open-
source CloudPilot code is available online [43].

* Proxy placement optimization. We explain how a
natural metric of performance in geo-distributed
applications is the fotal Flow Completion Time
(FCT), which we define to be the total time re-
quired to complete all necessary data transfers of
the flow. We formally define a cloud-proxy place-
ment problem to optimize this total FCT and prove
that it is NP-hard (§5). Hence, we propose two
families of heuristic algorithms to solve the prob-
lem: the flow-greedy algorithms, which greedily
consider first the flows whose performance can
most improve; and the proxy-greedy algorithms,



(a) Direct connection (b) One-proxy acceler. (c¢) Two-proxy acceler.

Figure 1: Connection types between host and destination: (a) direct
connection, (b) one-proxy acceleration, and (c) two-proxy accelera-
tion.

which greedily establish first the proxies that can
most improve performance (§6).

* Evaluations. We evaluate our proposed heuristics
both through extensive simulations with parame-
ters measured from actual cloud providers, and
through real-world CloudPilot-based cloud-proxy
deployments. We find that our heuristic algo-
rithms achieve significant FCT acceleration. For
example, spending 50¢-per-flow to transfer 2GB-
flows on Google cloud decreases the total FCT
by factors of 2.7, 3.6, 3.9 and 4.3 for four dif-
ferent application use-cases. We also find that
counter-intuitively, FCT acceleration significantly
improves as last-mile bandwidth increases, espe-
cially beyond 100Mbps, heralding an increased
impact for CloudPilot with the last-mile fiber-
optics deployment (§7).

2. Related Work

TCP splitting. Many previous studies show the ben-
efits of using TCP splitting over regular TCP [23, 30,
8, 21, 5, 38]. These works show how using TCP split-
ting proxies can improve the throughput in different en-
vironments such as mobile, web transfer over an HTTP
connection, satellite connection with long distances, etc.
We extend related work by focusing on placing the TCP
proxies by demand in the cloud environment, exploiting
the cloud infrastructure. Using the cloud environment,
we can choose the proxy location, and our goal is to
optimize the proxy location under cost limits.

Cloud infra-structure and performance. Companies
like Amazon, Google, IBM, and Microsoft, spend sig-
nificant effort and money into developing their clouds.
They have a high-end infrastructure with optimized net-
work algorithms. Each in-cloud provider can use highly
optimized advanced protocols in its data centers. For
example, Google uses TCP-BBR [4] and QUIC [9],
and AWS uses SRD [40], which improves network traf-
fic. The cloud providers build data centers worldwide
that allow fast connections to users. In addition, cloud

providers make private internet connections [26] be-
tween data centers that will enable them to control the
network routing efficiently and to pass only their own
traffic. Exploiting these advantages, we can build a
cloud overlay network with network acceleration (like
TCP splitting) for geo-distributed applications.

Cloud overlay network. Several works show that for-
warding using cloud proxies without TCP splitting ca-
pability provides little to no improvement [24, 1, 3].
Later research shows the benefit of using TCP splitting
in the cloud overlay network. [3, 27, 34] show that us-
ing a single TCP splitting proxy can achieve up to 3x
improvement over a direct internet connection. [3] also
suggests using Multi Path-TCP (MP-TCP) to increase
performance. However, MP-TCP is not always sup-
ported by communicating parties. [1, 31] show we can
achieve better performance by using two TCP-splitting
proxies with large buffers, one close to the source and
one to the destination. In addition, they implement sev-
eral improvements for the TCP splitting, like TCP turbo
start, which can also be implemented in our system and
further increase its performance. However, they only
consider isolated flows and not a full system. Several re-
cent works also analyze in more detail the performance
of cloud communications [45, 6, 39, 33] and the addi-
tional benefits of cloud overlays [17].

Geo-distributed applications. Most research on the
performance improvement of geo-distributed applica-
tions focuses on load-balancing mechanisms over direct
TCP connections [47, 36, 22, 29, 19]. Our work com-
plements these efforts by introducing TCP splitting, ob-
taining further significant performance gains.

Caching proxy placement. Several papers study
the placement of cache proxies [16, 44] and HTTP-
gathering proxies [2]. The TCP-split proxy placement
problem is different. For example, in the above exam-
ples, it is preferable to place a cache as close to end-
points as possible, while in TCP splitting, the preferred
location of a single proxy is in the middle.

3. Use-cases

We are interested in considering many data-intensive
geo-distributed applications. Since they may vary con-
siderably, to reason about them, we abstract away de-
tails and focus on their characteristic communication
patterns, classifying them into four topological use-
cases.

One-to-many. A single source broadcasts information

to many destinations worldwide. Usually, a Content
Delivery Network (CDN) will be used for most of the



(a) One-to-many (b) Many-to-many (full mesh)

(¢) Many one-to-one (d) Many localized one-to-many (CDN)

Figure 2: The topologies of four different use-cases.

destinations [35]. However, according to the Facebook
statistics [10] some 1.8% of all live streams use di-
rect connections due to cache misses. These remaining
flows can be modeled using a star-like one-to-many pat-
tern. Fig. 2(a) illustrates the one-to-many topology.

Many-to-many. Many nodes in different locations
communicate in a full-mesh pattern, e.g., in a geo-
distributed database that transfers data between nodes
to keep consistency [42]. Fig. 2(b) illustrates the many-
to-many topology.

Many one-to-one. Topology with many unrelated
source-destination pairs. One example is a VM migra-
tion application [46] that entails sending data from one
data-center location to another for many unrelated VMs.
Additional examples include backup between data cen-
ters, and file-sharing systems. Fig. 2(c) illustrates the
many one-to-one topology.

Many localized one-to-many. Several sources that are
geographically distributed and each broadcasts to many
mostly-local destinations. One example is the traffic
between CDN caches and their end-users [35]. An-
other is Twitch, an interactive live-streaming platform
that offers three servers in three different continents [7].
Fig. 2(d) illustrates the many localized one-to-many
topology.

In this paper, we focus on a static setting where ap-
plications have predictable traffic patterns (for instance,
periodic backups), and we use this predictability to opti-
mize the proxy placement by minimizing the total FCT
of future flows. In future work, this could be extended to
a speculative setting that uses various prediction models
to estimate the upcoming future patterns. For example,
an hourly process could consider the flow distribution
in the last hour, then establish proxies for the next hour
based on the expectation that the location distribution
of future requests will be close enough. In addition, for
simplicity, we focus in this paper on applications with
at most dozens of flows per period.

4. Proxy Acceleration System

In this section, we introduce our CloudPilot system
that utilizes TCP-split proxies to reduce FCT. We derive
a model to predict the FCT based on proxy properties
and network measurements and provide empirical evi-
dence for the effectiveness of our approach. In the next
section, we define the cloud-proxy placement problem
that will be solved with our model.

4.1. CloudPilot

CloudPilot system. CloudPilot is a Kubernetes-based
system that measures communication parameters across
different cloud regions, and uses these measurements to
deploy cloud proxies in optimized locations on multiple
cloud providers. It is able to deploy new Kubernetes
clusters on multiple cloud providers, deploy Kubernetes
container instances, and connect between them. It also
deploys iPerf3 measurement containers and HAProxy
proxy containers. Finally, it implements the algorithms
of this paper to decide where to deploy the proxies. The
CloudPilot code is available online [43].

Deployment for FCT measurements. To obtain the
FCT measurements below, CloudPilot spawns Kuber-
netes 1.22.2 clusters on demand for each pair of (source,
destination) locations. The source cluster executes a
Kubernetes container running an iPerf3 3.9 client [18]
and the destination cluster executes a Kubernetes ser-
vice with a backend container running an iPerf3 server.
This way, FCT can be measured remotely between the
source and destination over a direct cloud connection.

To obtain the FCT for connections with TCP-split
proxies, CloudPilot creates additional Kubernetes clus-
ters in different locations. CloudPilot can create three
types of acceleration configurations: forwarding, one-
proxy, and two-proxy.

For the forwarding acceleration, CloudPilot uses an
Ubuntu 20.04 container. Traffic forwarding is done us-
ing appropriate iptables rules. For TCP splitting, Cloud-
Pilot uses an HAProxy 2.2.19 container that splits a



Table 1: Configuration of CloudPilot measurement experiments

source dest. 1 proxy 2 proxies
first second
a  Israel California London London Oregon
public net public net Gcp GCP Gcp
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Figure 3: Rate comparison between (1) direct connection, (2) one-
proxy forwarding, (3) one-proxy splitting and (4) two-proxy splitting,
using different types of (source, destination, proxies) tuples as de-
scribed in Table 1.

TCP connection into two connections with smaller RTT.
In addition, when CloudPilot uses two-proxy splitting
acceleration, it increases the TCP buffer size of the con-
tainers to match their intra-cloud bandwidths between
the proxies.

FCT measurements. Fig. 3 presents the results of our
preliminary measurement experiments intended to gain
an intuition about different flow proxy acceleration op-
tions. The rationale is to understand which options are
likely to result in most gains and focus our exploration
on those settings. Table 1 summarizes the configura-
tion of each experiment. Fig. 3 shows how a forward-
ing proxy obtains either negligibly better or even worse
performance compared to a direct communication over
public internet. This is consistent with previous stud-
ies [1, 27]. TCP-split proxies clearly outperform both
direct connections and forwarding proxies. Therefore,
in the remainder of this paper we focus on split proxies.

4.2. Proxy Acceleration Model

We now analyze how TCP-split proxies affect FCT
and develop a model for estimating the FCT for sev-
eral proxy deployment options: direct connection, one
proxy, and two proxies, using measurable permanent
properties of the end-hosts and the potential proxies.
To do so, we consciously ignore the temporary im-
pacts of the loss rate, queueing time, packet reorder-

ing, and similar effects along the packet path. In other
words, we make the following simplifying assumptions:
(1) each modeled flow transfers a large amount of data;
(2) packet loss rate is negligible; (3) queueing time in
the network is negligible vs. the propagation time; and
(4) packet reordering is negligible. As we show in the
next subsection, these assumptions are verified by our
real cloud experiments.

Direct connection. We consider four main measurable
factors affecting the FCT of a TCP flow from ¢ to j.

Transfer size. Assume that ¢ wants to transfer w; ; bits
to j. Then FCT is directly proportional to the transfer
size w; ; (using Assumption (1)).

Round Trip Time (RTT). The RTT equals RTT; ;, its
propagation component between ¢ and 7 (Assumption
(3)).

Maximum window size. Let WND; ; be the maximum
possible window size between ¢ and j, as limited by the
respective OS configurations. Since we send at most
WND; ; bytes per RTT, the rate between ¢ and j is

bounded by 2P 20,

RTT; ;

Last-mile bandwidth. The flow’s rate is limited by both
the last-mile egress bandwidth of source ¢ and the last-
mile ingress bandwidth of destination j. The last-mile
bandwidth may reflect a variety of factors, including the
internet service provider rate limit or the NIC speed.
We denote as BW; ; the minimum of these two last-mile
bandwidths.

Combining the above factors and applying assump-

tions, the flow rate is bounded by either VIZTNTD”
2,3

or BW; ;, yielding an approximate rate of R;; =~
\f{fﬁj 7BWi,j). Its FCT T is approximated

by Tfli.t“ect ~ Wi, j .

,] Ri j
One-proxy acceleration. FCT for a flow with one-
proxy accelerator p is T}, ~ W7 because
? 1, PP,
the flow rate is the rate of its slowest hop.

min

Two-proxy acceleration. FCT for a flow with two-
proxy acceleration (p, ) is T} ~ mm(R:’W
As in [1], we assume that in the proxies, the maximum
window sizes on the Internet side use the Linux de-
fault. However, on the internal cloud side they can be
increased to take full advantage of the paid cloud band-
width rates, namely R, ; ~ BW,, ,, which is set by the

cloud proxy capacity.

4.3. Model validation

Fig. 4 puts our model to test in the real world. It
plots the real-world measured rate and rate accelera-
tion against the predicted values using our model, for
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Figure 4: Model validation: Real-world rate vs. predicted rate using (a) direct connection; (b) one proxy; and (c) two proxies; then real-world
rate acceleration (beyond direct connection) vs. predicted one using (d) one and (e) two proxies. In all cases, the model predictions seem close to

real-world measured values.

all three types of connections. The figure shows sample
results. Each data point averages 20 runs. Using Cloud-
Pilot we run three types of experiments: (1) Public in-
ternet, where source and destination are located in the
public internet, and proxies are located in different re-
gions of the same cloud, Google Cloud Platform (GCP)
in this case. We use a desktop computer with Ubuntu
v20.04 located at the Technion (Israel) as a host, and
nine public iPerf3 servers around the world as destina-
tions [18, 41]. (2) Single cloud, where the source, desti-
nation and proxies are sampled from 24 potential GCP
locations. (3) Multi cloud, where source and destination
are sampled from 9 IBM cloud locations, but the prox-
ies are deployed in GCP. Overall we run over 75 differ-
ent tuples (source, destination, proxies) with over 3, 000
tests. The flow average rate is measured for 40 seconds.
Our model prediction is based on a maximum window
size of 2.875MB (observed default for Linux TCP) for
all links, except in the cloud-facing links of the prox-
ies where they are set to 500MB. The proxy bandwidth
limitation is estimated as 17500/ b/s (the per-flow lim-
itation of HAProxy), as it is tighter than the 2Gb/s link
capacity of our used proxy machines.

5. Cloud-proxy placement problem

In this section, we present the cloud-proxy placement
problem. First, we explain the problem informally to
equip the reader with some intuition. Next, we intro-
duce a formal notation and present a MILP (mixed-
integer linear programming) formulation of the prob-
lem.

5.1. Informal Problem Definition

Given a set of source-destination pairs representing
TCP flows, we want to find a feasible allocation of the
flows to a set of TCP-split proxies in cloud regions, such
that we minimize the total FCT (the sum of per-flow

FCTs). An allocation is feasible if (a) its cost is no
greater than the overall predefined budget, and (b) for
any proxy, the sum of bandwidth demands of all flows
using this proxy is no greater than its capacity. Each
flow can be allocated one, two, or zero proxies (the lat-
ter corresponds to a direct connection).

The cost of using a proxy comprises two components:
(1) the proxy setup cost (e.g., a virtual machine or a con-
tainer with a specific bandwidth capacity), and (2) the
data-transmission cost.

Note that (1) the setup cost is paid only once when
multiple flows share a proxy, and (2) the cloud providers
do not impose costs on the inbound network traffic.
Only the outgoing traffic from the cloud proxy is billed
(to different regions or to exit the cloud).

5.2. Problem Statement

Fig. 5 presents a formal MILP formulation for our
cloud-proxy placement problem. Formally, we want to
find a feasible assignment of proxies to flows such that
the total FCT in the system is minimized, given con-
straints that reflect (1) the input sets and parameters
presented on the top-left of Fig. 5, including the proxy
setup costs, proxy data-transfer costs, and total budget;
and (2) the per-flow FCT of each flow using any zero,
one or two proxies, as computed by the proxy accelera-
tion model of §4.

Theorem 1. The cloud-proxy placement problem is NP-
Hard.

Proof. The 0/1 multiple-knapsack problem (MKP) [32]
is a known NP-hard problem. In this problem, we need
to place a subset of N non-splittable items in M bins.
Each item ¢ has a given positive weight w; and profit p;.
The sum of the weights of all items in a bin 7 cannot
exceed its capacity C;. Our goal is to place a subset of
items in the bins with maximum sum of the subset item
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Tiireet if (p,q) = (0,0)

if (p’ q) = (p7 0) Y(p,q)€A
otherwise.
(FCTs from §4)

Optimization goal

S Y. Tijlpa-uly (total FCT)

Vfi,j€F (p,q)EA

Constraints

Zum =1 Vfij€F

Notation Description
Input Sets
S Set of all servers in the system, s; € S
F Set of all valid flows in the system, f; ; € F
L Set of all possible regions for proxies, [ € £
N Set of all possible instances for proxy, n € N
P Set of all possible proxies p € P,
‘P contains all instances in all locations, P = (£ x
N)
A Set of all possible proxy assignments (2 proxies, 1
proxy,
or direct connection), A = (P x P)U(P x {0})U
{(0,0)}
Input Parameters
Wi, j Data size to transfer by f; ;
BW (p) Bandwidth capacity of proxy p € P
Csw (p) Network traffic cost per Gigabyte using proxy p €
P
Csetup (p)  Cloud proxy setup cost for proxy p € P
B Maximum allowed budget in the system
Computed FCTs by CloudPilot (§4)
Ti‘“jreCt FCT of f; ; using direct path
ipj FCT of f; ; using one proxy p € P
Z:’? ;.q FCT of f; ; using two proxies p, g € P
Decision Variables
WP 1 flow f; ; uses proxies p,q € P
6.3 0 otherwise
{1 if proxy k € P is used
Tk

0 otherwise

(one allocation per flow)
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fi,;€F pa€A
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Figure 5: MILP formulation of cloud-proxy placement problem, with a table of used notations on the left.



(a) Flow-greedy: two proxies (b) Proxy-greedy: single proxy

Figure 6: Intuition for algorithm choices. (a) Flow-greedy algorithms
pick the best proxy acceleration for the flow that benefits most, even if
expensive, and tend to prefer two-proxy acceleration; while (b) proxy-
greedy algorithms choose the single proxy that can most benefit the
system by serving several flows, thus spending the budget more effi-
ciently.

profits. Given any 0/1 MKP instance, we define a corre-
sponding instance of the cloud-proxy placement prob-
lem with a single proxy location, and show that solving
it would also solve the 0/1 MKP problem. We define
N flows, and can freely choose their flow rates as w;
(we can arbitrarily change the maximum window, given
an infinite BW and a fixed RT'T), and flow FCT gain
(difference between FCT in direct connection and FCT
using the proxy) as p; (we can arbitrarily change the
data size of flow 7). We define the budget as B. We set
the bandwidth cost as Cgy = 0 and proxy-setup cost
as Cepup = %, so the budget allows exactly M proxy
instances at this location. We set the bandwidth capacity
of proxy j to C;. Since there is only one proxy location,
using two-proxy acceleration is never beneficial.

If there is a solution to our problem, we can also solve
the 0/1 MKP. Hence, by reducing the 0/1 MKP to the
above problem, we find it is NP-Hard. O

6. Algorithms

Since the cloud-proxy placement problem is NP-
hard, we propose two families of greedy approximation
algorithms:

* The flow-greedy family of algorithms, where we

greedily allocate flows, one at a time.

* The proxy-greedy family of algorithms, where we

greedily allocate proxies, one at a time.
Fig. 6 provides an example for understanding the intu-
ition behind the two families of algorithms.

6.1. Flow-greedy algorithms

We propose two versions of the flow-greedy algo-
rithm that differ only by the gain calculation, namely
the order of processing flows.

F-FCT (Flow-greedy FCT). The pseudo-code for F-

FCT is given in Alg. 1. It takes as input (Line 1) the set
of flows, the set of proxies, and the overall budget. For

Algorithm 1 Flow Greedy FCT (F-FCT)

1: MAIN(FO,PY, BY) > Flow and proxy sets, budget

2: D+ (LxL)U(Lx{0})U(0,0)>D is a list of every
possible proxy allo-
cation location

3: for f € FO do

4: ay < (0,0) >ay is the allocation for f,
initialized as a direct con-
nection

5: G < D, sorted non-increasing by GAIN(f, d) Vd € D

> G is a list of all possible
A for f sorted by gain

6: rp < BW (p) Vp€P® > Available proxy bandwidth

7: P+ > Allocated proxies so far

8: B+« B > Remaining budget
— end of initialization —

9: F+ FO > Flows without allocated proxies

10: while 7 # () do GREEDY-STEP

Return overall score and
11: returnZTf[af],{af}fe}_o
fero

allocation per flow

12: GAIN(f,a) > FCT reduction for f with allocation a = (p, q)
13: return T ;[0,0] — Ts[a]

14: GREEDY-STEP

15: [ argmax;cx (GAIN(f, Gf.head)) ©

16: a,b < FIND-PROXY-INSTANCES( f)
17: if b < B then ALLOCATE(f, a, b)

18: FIND-PROXY-INSTANCES(f)
19: (l1,lg) «— Gf.head
20: T<—UJf/Tf[ll,l2]

Greedily
choose flow

> Flow BW requirement

21: a <+ (FIND-PROXY-AT(l1, ), FIND-PROXY-AT(l2, 7))
2 b SwrCaw () + 3 Crotup (p) & orEn
pEa,p£0 pEAPEP allocation cost

Return chosen proxy instances, a,

23: return a, b and their marginal cost, b

Find proxy at location [ with r free
capacity

25: P + {p € P s.t. p’s location is [ }
26: if 3p € Py s.t. rp > 7 then

24: FIND-PROXY-AT(l,T) >
>P; <+ 0ifl =0

Proxy instance p has enough

capacity for the flow
Always Fualse

28: if 3p € PO\ Ps.t. p’slocationis I then > i
29: return p
30: return 0
31: ALLOCATE(f,a,b) > Allocate a to f with budget b
32: af<a, B+ B-b F+« F\{f}

33: for p € ado

34: P« PU{p}

35: rp <= 1p —wy/Tylal

27: return p

> New proxy instance

> Add proxy if new
> Update available capacity

each flow, F-FCT initializes the allocation to a direct
connection (Line 4) and computes its gain for every pos-
sible proxy allocation (Line 5). That is, it considers all
possible locations for one proxy or one proxy pair and
computes the gain w.r.t. a direct connection. The possi-
ble allocations for each flow are sorted by their gain.
The main loop (Line 10) greedily processes flows one
at a time, launching the greedy function that examines



the best proxy locations for each flow, and updates the
flow with the highest gain (Line 15). It then finds con-
crete proxy instances at these locations and calculates
the cost of allocating these instances to the flow. If the
budget allows, then the allocation for the flow is com-
pleted (Line 31) and the greedy step concludes. In or-
der to find concrete proxy instances and their marginal
cost (Line 18), Alg. F-FCT calculates the needed rate
through the allocated proxies (Line 20). Then, it looks
for a proxy with enough free capacity at each location
(Line 24). It first tries to find an existing proxy with
enough available capacity (Lines 25-26); if that fails,
it uses a new proxy instance. The cost of the allocation
(Line 22) includes the bandwidth cost of each proxy and
the setup cost if a new proxy instance is required.

The gain function used by Alg. F-FCT (Line 13)
only considers the reduction in FCT, regardless of its
impact on the total budget. As illustrated in Fig. 6,
F-FCT prefers expensive two-proxy acceleration types
that strongly reduce the FCT, rather than cost-efficient
one-proxy connections. Intuitively, F-FCT is best to use
when the budget is nearly unlimited.

Time complexity. Let m be the number of flows, L the
number of regions, and n the number of instances for
each region. The size of D is O(L?), so sorting for all
flows requires O(mL?log(L)) time. Each greedy step
requires O(m-+n) time, O(m) to find the best flow! and
O(n) to find its concrete proxy allocation. One flow is
removed after each successful greedy step, thus the total
time for the successful steps is O(m(m+n)) = O(m?)
(since n < m). In order to bound the work required to
process unsuccessful greedy steps, after each successful
allocation, we make sure that the best potential alloca-
tion for each flow (the head of its sorted list) falls within
the remaining budget. This is done by removing infea-
sible allocations from the head of each flow’s list (in
O(1) per removal).? There are at most O(m L?) such re-
movals, so overall O(mL?) time is required. Summing
all, we get O(m(L?log(L) +m)) time for Alg. F-FCT.
F-Cost (Flow-greedy FCT per cost). This algorithm
is similar to the previous one, but considers cost when
greedily choosing flows to process. The pseudo code is
given in Alg. 2; it uses the same code of Alg. 1 with the
GAIN function replaced. The idea is to scale down the
gain for each allocation by its expected cost. The flow
rate for each potential allocation can be computed at ini-
tialization from its expected FCT, so the BW cost of

"Note that the gain for each allocation can be cached.

2This implementation detail is omitted from Alg. 1 to simplify
the presentation. The check can be done in O(1) by caching
maxpep, Tp (Line 26).

each allocation is known. However, the exact setup cost
for each allocation cannot be known at initialization,
since it depends on whether the allocation would use
an existing proxy with enough free capacity or would
require a new instance. Instead, Alg. 2 attributes a frac-
tion of the setup cost for every allocated flow using the
ratio of the flow rate to the capacity of the proxy. Note
that this cost-based gain is only used to sort the flows
and allocations and is not used to calculate the actual
allocation cost (Alg. 1, Line 22). With this algorithm,
we get better performance under a limited budget. The
time complexity is the same as for Alg. 1.

Algorithm 2 Flow Greedy Cost (F-Cost) extends Alg. 1

I: GAIN(f, a)
T -T _wr
2: return £[0,0]—T s [a] ey P T/ 1a] is
% (wf Cw (P)+ Csetup (P)Jfgwi(fp)) f s rate
pPEa

6.2. Proxy-greedy algorithms

In the proxy-greedy family of algorithms, we choose
the best proxy locations incrementally in a greedy man-
ner. We start from an empty proxy set and add a few
proxies at a time, so long as the overall FCT improves.
At each greedy step, we generate a list of candidate
proxy sets, and choose the one with the best total FCT.
The total FCT for each candidate proxy set is computed
using Alg. 1. The difference between the algorithms
is in the way the candidate sets are generated at each
greedy step.
1-P (one-proxy greedy). This is the basic proxy-greedy
algorithm, its pseudo-code is given in Alg. 3. Alg. 3
creates a candidate set that includes all possibilities
of adding a single proxy instance to the existing set
(Lines 5&14). For every possible location in L, it cre-
ates a candidate proxy set that includes the existing
proxies plus a new proxy instance at that location. Then,
at each greedy step, Alg. 1 is called for every proxy set
in the candidate set to compute its FCT score (Line 6).°
If a candidate has a better total FCT score then its allo-
cation is saved. The algorithm returns if no candidate
proxy set improves the total FCT (Line 10).

Time complexity The candidate set size is bounded by
the number of locations and the number of greedy steps
is O(m), since there are at most 2 proxies per flow.
Thus there are (mL) calls to Alg. 1. Each call re-
quires O(m(L?log(L) + m)), however the initializa-
tion sorting can be cached to reduce subsequent calls to

3Note that the proxy set defines how many instances are available
at each location, thus FIND-PROXY-AT may return O also for [ # 0.



Algorithm 3 One-Proxy Greedy (1-P)

oF = {a f} fer denotes a set of proxy allocations a s for all
flows f

MAIN
Scoremin, Q
do

1

2 iinvpmin <~ OO,{(O, O)}f@]—‘vw > Init

3

4 update <— False > Flag indicates score improvement
5: for each PP in CANDIDATE-PROXY-SETS(P;in) do

6: Score, Q7 «+ FLOW-GREEDY-FCT(F, Py, B)

7: if Score < Score,,, then

8 Scoremin, anin, Prnin — Score, Q7 P,

9 update < True

0 while update > Stop if no candidate improved score
1 return Scorepin, Q7

min

12: CANDIDATE-PROXY-SETS(P)
13: return ADD-ONE-PROXY(P)

14: ADD-ONE-PROXY(P)

15: for each region ! € L do

16: choose a proxy p; inregion [ s.t. p; & P
17: P PU{p}

18: return {7}, ~

Algorithm 4 Two-Proxy Greedy (2-P) extends Alg. 3

1: CANDIDATE-PROXY-SETS(P)
return ADD-TWO-PROXIES(P)

2
3: ADD-TWO-PROXIES(P)

4: P20

5: P! < ADD-ONE-PROXY(P)

6: for each combination P! € P! do

7 append ADD-ONE-PROXY(P!) to P2
8 return P2

O(m(L? +m)).* The overall time complexity is thus
O(m2L(L*+m)). Let P denote the number of proxies
returned by the algorithm. Both the number of greedy
steps and the number of available locations for each is
bounded by P. Thus there are (PL) calls to Alg. 1 each
requiring O(m(P? + m)). The overall complexity be-
comes O(mPL(P? + m)), which is tighter in practice
as P is limited by the overall budget.

2-P (two-proxy greedy). The algorithm is based on
Alg. 3, but with a candidate set that now includes all
possibilities of adding two-proxy instances to the ex-
isting set (Line 3). The implementation reuses ADD-
ONE-PROXY to generate the candidate set. The can-
didate set size is now O(L?), therefore the overall
time complexity increases to O(m?L?(L? + m)) and
O(mPL*(P? +m)).

2-P RB (two-proxy greedy with rollback). The algo-
rithm is again based on the Alg. 3, but with a candidate

“4In practice, the bound on L is smaller for most calls, as we only
need to consider the locations that are covered by each particular can-
didate proxy set ({L s.t. P; # 0}).

Algorithm 5 Two-Proxy Rollback (2-P RB) extends

Alg. 3
1: CANDIDATE-PROXY-SETS(P)
2: PRB ¢
3: for each p € P do
4 append ADD-TWO-PROXIES(P \ p) to PLB
5: return P15

set that now includes all possibilities of removing one
proxy and adding two proxy instances to the existing
set (Line 1). The idea is to avoid local minima by allow-
ing the greedy algorithm to rollback one of the existing
proxy allocations when it adds new proxies. Here we
reuse ADD-TwWO-PROXY from Alg. 4. Now the size of
the candidate set is O(L?), so the overall time complex-
ity is O(m2L3(L? +m)) or O(mPL3*(P? +m)). Al-
though the above theoretical complexity bound is high,
we found the actual run-time to be acceptable in prac-
tice. Both the number of world-wide cloud geographic
locations and the number of flows is relatively small
(dozens). Due to budget constraints, the number of al-
located proxies is even smaller.

7. Evaluation

First, in simulations based on real-world parameters,
we study the impact of several key model parameters
and evaluate the performance of our algorithms on the
use cases of §3. Then, in CloudPilot-based real-world
cloud-environment experiments using Kubernetes and
HAProxy, we confirm that the model predictions are
close to reality, and that the proxy acceleration can be
significant.

7.1. Settings

Runs. Each simulation data point is an average of 30
runs.

Proxy locations. We use 18 actual GCP regions for pos-
sible locations of the cloud proxies. The RTTs between
the proxies are measured by CloudPilot and are consis-
tent with a GCP RTT benchmark [11]. Due to lack of
space, we present only the GCP results, but we obtained
similar results in other cloud platforms that we checked,
e.g., IBM cloud.

Source and destination locations. To deploy each
source, we first choose a random proxy, then select a
location such that it has a reasonably small RTT to this
proxy. We randomly choose locations with RT'T; ,, <
40ms, corresponding to some 8,000Km using optical
fibers [28]. Destination locations are chosen in the same
way.
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Figure 7: Impact of number of flows in one-to-many use case. (a) shows that the sum of flow FCTs tends to grow linearly with the number
of flows in all algorithms, i.e., the average FCT tends to converge, albeit the flow-greedy family achieves worse results than the proxy-greedy
family. (b) illustrates the FCT acceleration when compared to a baseline without proxy. The proxy-greedy family of algorithms outperforms the
flow-greedy algorithms and obtains over 2 X acceleration. (c) shows that the flow-greedy algorithms tend to spend a larger share of the budget on
establishing proxies. while proxy-greedy algorithms focus on sharing proxies and spending on bandwidth. (d) details each family’s connection
type distribution with 60 flows, confirming the intuition from Fig. 6 that flow-greedy algorithms tend to choose expensive single-use two-proxy
accelerations for flows, while proxy-greedy algorithms prefer cheaper one-proxy accelerations with proxy sharing.

Network parameters. We set the transferred data size
as w = 2GB for each flow. We use a default constant
proxy setup cost of Cietup (p) = 50¢ and constant band-
width cost of Cw (p) = 8¢ per GB for all proxies and
regions, approximating the GCP prices [15, 14]. We set
the proxy bandwidth capacity to 2Gbits since this is a
standard egress bandwidth of a container on GCP [13].
We set the last-mile bandwidth BW of all our end-hosts
to be 1Gbps, planning for a next-generation widespread
gigabit access, at least among corporate customers [25];
except for the multi-flow servers, such as in the CDN
and one-to-many use cases, which are not constrained
by last-mile bandwidth. We use the default Linux win-
dow size for all servers and for one-proxy connections.
For two-proxy connections, we increase the window
size to 500MB for intra-cloud communications only.

10

7.2. System Evaluations

Impact of number of flows. We start by evaluating
the impact of the number of flows on performance in
a one-to-many use case. One source in Tokyo trans-
fers data to each destination. At each step, we incre-
ment the number of flows by randomly adding a new
destination worldwide. We set the budget proportion-
ally to the number of flows. Fig. 7(a) and Fig. 7(b)
show that proxy-greedy algorithms improve the total
FCT in the system and outperform the flow-greedy al-
gorithms. Fig. 7(c) illustrates how proxy-greedy algo-
rithms use less proxies. Then, Fig. 7(d) shows that this
is because proxy-greedy algorithms prefer having many
flows share a single proxy for one-proxy acceleration.
By saving on the proxy setup cost, they can accelerate
more additional flows. By contrast, flow-greedy algo-
rithms rely on expensive two-proxy acceleration.

Impact of budget. Fig. 8 shows the influence of bud-
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Figure 8: FCT acceleration for a one-to-many topology with 30 flows
and different budgets. For instance, for a total budget of 14.5$, i.e.,
50¢ per flow, it is possible to achieve some 3.1X improvement in
the average FCT. The P incr family better leverages low budgets and
achieves higher accelerations. On the other hand, with high budgets,
the F-greedy FCT that tends to pick the best and most expensive two-
proxy acceleration choices manages to achieve the unlimited-budget
bound, while the other algorithms cannot improve their choices that
were picked greedily.

get on the overall FCT improvement for each algorithm.
The FCT improvement is compared to the system per-
formance without any proxy acceleration. In this simu-
lation, we keep the settings of the previous one-to-many
evaluation and consider 30 flows. We increase the to-
tal budget by 1% at every stage of the test. We can see
that the proxy-greedy algorithms are superior for low
and medium budgets. The gap between the F-FCT al-
gorithm and the proxy-greedy algorithms is reduced for
larger budgets. In addition, with a high budget, the F-
FCT algorithm gets the best result, because it always
picks the best proxy locations regardless of cost. Even-
tually, it gets the same improvement as in the case of an
unlimited budget (when we use the best proxy locations
for each flow without budget concerns). Consequently,
when there is no budget limit, we should look at each
flow separately and see that the two-proxy acceleration
is the best option.

Impact of cost parameters. Fig. 9 and 10 show the
impact of cost parameters. Each boxplot box represents
the results between the 25th and 75th percentiles of 30
runs.

Data-transfer cost. Fig. 9 doubles the data-transfer cost
to 16¢ per GB and zeroes the proxy-setup cost. In this
case, almost all the algorithms reach the same results
(Fig. 9(a)). The two-proxy acceleration method is pre-
ferred (Fig. 9(b) because the cost of an extra proxy is
neglected. So, we can create different proxies for each
flow without utilizing and combining flows to the same
proxies. This example applies when we transfer vast
amounts of data between several flows and the data
transfer price is dominant. In addition, the 1-P algo-
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Figure 10: Impact of proxy setup cost. (a) With dominant proxy-
setup cost, the cost-efficient algorithms obtain better accelerations.
(b) In this case, the algorithms use one-proxy acceleration and reduce
the number of proxies in the system.

rithm receives the lowest results because it is less capa-
ble of efficiently placing the corresponding two proxies.

Proxy-setup cost. Fig. 10 zeroes the data-transfer
cost and doubles the proxy-setup cost to $1. Cost-
efficient algorithms that share proxies obtain better re-
sults (Fig. 10(a)). Because we want to limit as much
as possible the number of proxies, in this case, the
F-greedy cost and the proxy-greedy families get the
best results by choosing more cost-efficient flows and
display a larger usage of the one-proxy acceleration
(Fig. 10(b)). This example applies when every proxy
setup has a large overhead (cost) in the organization.

Impact of file data size. Fig. 11 shows the impact of
the file data size on the total acceleration. We use the
F-FCT greedy algorithm, assuming 50¢ per flow. As
we can see, we cannot accelerate files of small data size
since the bandwidth of the source is sufficient to send
the small files and there is no need to use TCP-split
proxies. The FCT acceleration increases as we increase
the file data size, and more flows use the TCP-split prox-
ies. In addition, the data-transfer cost increases when
we increase the file data size. We can accelerate fewer
flows with a large data size for a fixed budget, therefore
the acceleration is decreasing. On the other hand, for an
incremental budget per file data size, the budget and ac-
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Figure 11: Impact of file data size: We do not get FCT improvements
for small files. As we increase the file data size, the FCT acceleration
improves. For a fixed budget, when the data transfer cost becomes
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Figure 12: Impact of last-mile access bandwidth: As it grows, FCT
acceleration increases significantly, especially when the cloud-proxy
capacity is 20Gbps.

celeration increase when we increase the file data size.

Impact of last-mile access bandwidth. Fig. 12 shows
the impact of the last-mile access bandwidth on the
total acceleration. We use the 2-P RB algorithm, as-
sume 50¢ per flow, and compare two types of proxy:
small (2Gbps), as in current cheapest proxies, and large
(20Gbps), assuming next-generation proxies will have
larger limits. As the access bandwidth grows beyond
some 100Mbps, the FCT acceleration increases signif-
icantly, especially with the large proxy capacity. This
is because the flows are less constrained by the last-
mile bandwidth, but rather by the long RTT, in which
case cloud proxies with TCP splitting help more. This
may partly justify the current increased interest in cloud
proxies, as last-mile fiber-optics deployment becomes
wider.

Impact of cloud proxy bandwidth. Fig. 13 shows the
impact of the proxy cloud bandwidth on the total ac-
celeration. We use the 2-P RB algorithm, assume 50¢
per flow, and compare three types of last-mile band-
width: small (500Mbps), medium (1Gbps), and large
(5Gbps). As cloud proxy bandwidth grows, accelera-
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Figure 13: Impact of cloud proxy bandwidth: As the cloud proxy
bandwidth grows, FCT acceleration increases, especially when the
cloud-proxy capacity exceeds the last-mile bandwidth.

tion increases for all cases. The main reason for the
acceleration increase is that with cloud proxies using
larger bandwidth, we can aggregate more flows in the
same proxy and reduce the proxy set-up cost in the sys-
tem. The acceleration grows until we reach the budget
limit. In addition, we can see that with a larger last-mile
bandwidth, we can better utilize the larger-bandwidth
cloud proxies. Interestingly, in some cases, the 1Gbps
last mile-bandwidth FCT acceleration is greater than the
5Gbps last-mile bandwidth acceleration. These cases
can happen only where the cloud proxy bandwidth is
smaller than the last-mile bandwidth (5Gbps). In those
cases, for the smaller last-mile bandwidth, the total FCT
does not improve, but the FCT acceleration does. So, we
can get acceleration even if the cloud proxy’s bandwidth
is smaller than the last-mile bandwidth, because we re-
duce the RTT of the connection with the TCP split. Still,
to get higher accelerations, it is better to use a cloud
proxy with larger bandwidth than the sources and desti-
nations.

Use cases. Fig. 14 shows the algorithm performance re-
sults for all four different use cases of §3. In all cases,
we assume a 50¢ budget per flow and measure the total-
FCT improvement for 60 flows. In the many localized
one-to-many CDN-like topology, we first randomly se-
lect three sources in three different continents: Asia,
Europe and North America. Since CDNs are not per-
fect, at each step, when we sample a random destina-
tion, it connects to its closest source with 90% proba-
bility, to its second-closest source with 7% probability,
and to its farthest source with 3%. The first three use
cases get high accelerations. In the fourth, the accel-
eration is smaller due to the shorter average distance,
but non-negligible due to the many available proxy loca-
tions that enable us to perform a two-proxy acceleration
(especially with F-FCT).

Run-time. The simulation time for an example run
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Figure 15: Real-world experiment: We measure the total FCT obtained in a real-world experiment on GCP. We consider a many-to-many topology
with users in Brazil, England, Finland, and Japan. We use our CloudPilot system to deploy cloud proxies with Kubernetes and HAProxy, such that
our algorithms select the locations. We then compare the results against our model prediction. We can see that our FCT acceleration prediction

achieves very close results to the obtained real-world results.

with 60 flows in unoptimized Python, as in Fig. 7(d),
takes less than one second for the flow-greedy algo-
rithms while for the 1-P, 2P, and 2P with RB, it takes
1.6s, 6.5s, and 131s, respectively.

7.3. Cloud Experiments

Methodology. We deploy our CloudPilot system on
GCP to set up the proxies and run iPerf3 tests (de-
tails are provided in §4). We consider a many-to-
many full-mesh use-case for 2 cases: (1) with three
servers in Hamina (Finland), Sao-Paulo (Brazil), and
Tokyo (Japan), and therefore six flows. (2) with four
servers in Hamina (Finland), London (England), Sao-
Paulo (Brazil), and Tokyo (Japan), and therefore twelve
flows. In both cases, we measure the FCT of each flow.
All the hosts run virtual machines with default instances
(E2-medium). The budget is 50¢ per flow, i.e., is 3$ for
the first experiment and 6$ for the second one. Each
result averages 20 runs.

Results. Fig. 15 shows how the proxy-greedy algo-
rithms achieve better real-world results than the flow-
greedy ones, as previously seen in the simulations. This
is because the proxy-greedy algorithms family tends to
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prefer the one-proxy connection method. Significantly,
as we also saw in the model evaluation for individual
flows (Fig. 4), our modeled predictions for the total sys-
tem FCT appear close to the real-world measured FCTs.
In addition, we can see that the FCT acceleration can
increase when we have a larger budget and more flows
with long RTT.

8. Conclusion and future work

In this paper, we introduced CloudPilot, a
Kubernetes-based system that measures communi-
cation parameters across different cloud regions, and
uses these measurements to deploy cloud proxies in
optimized locations on multiple cloud providers. We
further demonstrated how it can significantly improve
the flow completion time of global geo-distributed
applications by relying on an optimized placement of
cloud proxies.

Many ideas and questions remain open and left for
future work. There is a vast area for improvement that
can be made in the CloudPilot system. For instance,
we want to perform cloud evaluation in other cloud
providers such as AWS or Azure. In addition, with the



rise of multi-cloud applications, it will be interesting to
check the multi-cloud scenario, when proxies can be al-
located in more than one cloud provider, with the poten-
tial to reach better results.

Also, we could support other cloud providers like
Azure, or use Kubernetes container platforms that sup-
port multi-cloud like OpenShift [37] or Google An-
thos [12].

Going forward it will be interesting to examine our
problem in the context of Service Function Chaining
when we do not use just TCP split proxy acceleration,
but integrate further acceleration and services, such as
compression, caching, transcoding to different QoS lev-
els and their combination with encryption, firewalls, and
other network services.

Another area of exploration concerns sharing prox-
ies among multiple flows and considering additional
cost parameters, such as the cost of egress traffic in a
cross-cloud setup in addition to the cost of proxies. In
addition, the use of the presented approach for edge
cloud communication is an important potential direc-
tion for further exploration. For example, uploading
large video files for backup from security cameras to
the cloud can benefit significantly from our CloudPilot
system and save uploading time. Likewise, we plan to
explore whether CloudPilot can be extended to handle
large transfers with different priorities and QoS in com-
plex cloud edge applications, such as AR/VR, manufac-
turing, digital twin, etc.
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