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Abstract

In this paper, we study the interactions of user-based congestion control algorithms and router-based switch scheduling algo-
rithms. We show that switch scheduling algorithms that were designed without taking into account these interactions can exhibit a
completely different behavior when interacting with feedback-based Internet traffic. Previous papers neglected or mitigated these
interactions, and typically found that flow rates reach a fair equilibrium. On the contrary, we show that these interactions can lead
to extreme unfairness with temporary flow starvation, as well as to large rate oscillations. For instance, we prove that this is the
case for the MWM switch scheduling algorithm, even with a single router output and basic TCP flows. We also show that the
iSLIP switch scheduling algorithm achieves fairness among ports, instead of fairness among flows. Finally, we fully characterize
the network dynamics for both these switch scheduling algorithms.
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1. Introduction

1.1. Congestion Control vs. Switch Scheduling

This paper is about combining two conflicting parallel views
of the Internet: a user-centric view, which considers that user-
based end-to-end congestion control algorithms regulate the
Internet and that routers are just passive elements of the In-
ternet; and a router-centric view, which considers that router-
based switch scheduling algorithms regulate the Internet and
that users are just passive elements of the Internet.

Both the congestion control and the switch scheduling algo-
rithms have the same common goal: regulate Internet traffic
so as to maximize link utilization, minimize packet loss, and
provide fairness among flows. However, they use quite dif-
ferent means. User-based congestion control algorithms like
TCP regulate traffic by decreasing the rates of flows that expe-
rience losses, and increasing the rates of flows that do not. On
the other hand, router-based switch scheduling algorithms like
Maximum Weight Matching (MWM) regulate traffic by provid-
ing more services to long backlogged queues, and less services
to small queues.

While both traffic regulation algorithms reach high perfor-
mance when considered independently, we will show that their
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Figure 1: Simple network of two flows with common output link.

interacting actions might conflict when put together, and even-
tually cause more harm than good.

In this work we compare the scheduling schemes of Input-
queued (IQ) switches and Output-queued (OQ) switches. The
0OQ switch is used as a simplified ideal switch model, while the
1Q switch represents a more realistic model [11, 27, 28, 29, 38].
The main difference between them is the location of the queues.
The OQ switch architecture uses queues after the switching fab-
ric, but needs very high speed to write packets to the buffers. On
the other hand, the IQ switch model removes the need for a high
buffer-writing speed by using queues before the switching fab-
ric, but in exchange limits the switching possibilities, and adds
the complexity of switch scheduling schemes [28]. Note that in
this paper, all queues are assumed to be drop-tail.

Figure 1 illustrates these issues on a toy model consisting of
two flows queued at two different inputs and destined for the
same output. Assume that these are TCP flows of rates 4; and
Ay, and that the switch is using MWM by always servicing the
flow with the longest queue. Independently, both traffic regu-
lation algorithms (TCP and MWM) would have worked fine:
if the flows were using TCP but not MWM, e.g. by sharing
the same FIFO queue, then they would reach the well-known
TCP rate equilibrium [24, 31, 37]. Likewise, if the two flows
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were using MWM but not TCP, by using a non-adaptive algo-
rithm with fixed flow rates, then they would both receive 100%
throughput as long as 4; + 4, < 1 [11, 27, 38].

The problem arises when the two traffic regulation algo-
rithms interact. If the queue of the first flow gets larger, MWM
will keep servicing it, and therefore the first flow will increase
its rate even further in a vicious circle, because TCP will keep
receiving ACKs. On the other hand, the second flow will not re-
ceive services and get starved. Thus the first flow will overtake
all the network resources. The combination of the congestion
control and the switch scheduling will cause an extreme unfair-
ness, which was absent when they were each alone.

For router designers, this is no trivial result. It might
mean that their carefully-designed switch-scheduling algo-
rithms, which work perfectly with all the benchmarks based
on non-responsive flows, might break down when introduced
in real Internet networks with responsive TCP flows.

For network researchers, this is no trivial result either. It
might change the perceived value of many well-known results.
For instance, one of the most significant results in switch-
scheduling theory is that MWM provides 100% throughput for
all non-responsive flows with admissible rates. But when over
90% of the traffic consists of responsive TCP traffic, the value
of this result needs to be put in perspective, as shown in the
toy model. Likewise, the Birkhoff-von Neumann (BvN) switch
scheduling algorithm, which measures the average flow arrival
rates and can provide proportional service rates, is known to be
fair for non-responsive flows [8, 26, 40]. In fact, it is one of the
only switch scheduling algorithms that are known to provide
both throughput and fairness guarantees in practical switch ar-
chitectures. However, as in the example above, providing more
services to a responsive flow might increase its arrival rate in
turn, thus increasing its share of the total traffic and leading
again to a vicious circle with extreme unfairness. Therefore,
it might be that the BvN scheduling algorithm simply does not
fit real Internet traffic, with the vast majority of the bandwidth
consisting of TCP responsive flows [15, 16].

These considerations show that congestion control and
switch scheduling algorithms cannot be designed and analyzed
without taking into account their interactions, both in practical
router benchmarks and in theoretical network models.

Further, to make things even worse, the example above could
also lead to different results, depending on the network topol-
ogy. For instance, if the queue of the first flow is the longest
one and keeps getting served, its service rate might exceed its
arrival rate, and therefore its size will decrease, until both queue
sizes are equal and the second flow gets served as well. So
it might be that the queue sizes get equalized and stay equal.
Or it might also be that the two flows alternately overtake the
whole link capacity. Unfortunately, as seen in this work, all
these behaviors are possible, and highly depend on network pa-
rameters. Therefore, this example also illustrates the inherent
analysis complexity associated to the interactions between con-
gestion control and switch scheduling.

1.2. Related Work

Known models of congestion control algorithms often as-
sume output-queued switching, i.e. the existence of a single
passive queue shared by all the flows destined to a switch-
output bottleneck link. For instance, these models have dealt
with flow rate equilibria [24, 31, 37], router buffer sizing [5,
32, 35, 41], TCP dynamics [36, 39], TCP fairness [24, 25, 37],
Weighted Fair Queueing (WFQ) [21], and Active Queue Man-
agement (AQM) analysis [7, 12]. Unfortunately, output-queued
switching cannot be implemented in high-speed routers because
of its required memory speedup [1]. Therefore, it is not possible
to rely on the implementation of a WFQ or AQM mechanism in
a single output queue, without considering input queues as well.
On the contrary, we will analyze the more realistic input-queued
routers and their associated switch scheduling algorithms.

Known models of switch scheduling algorithms often as-
sume non-responsive traffic to analyze algorithms like MWM
[11, 27, 38], BVN [8, 26, 40], and the heuristic iSLIP [29, 28].
These models attempt to achieve more realistic conditions by
using admissible non-responsive flows with either variable-size
packets [6, 17, 2], fixed traces [20], router measurements [22],
or networked switches [4, 3]. But most of Internet traffic is
actually responsive. In this work, we also consider responsive
flows such as TCP flows.

Recently, research works have started modeling the interac-
tions of responsive flows with switch scheduling algorithms.
First, [18, 19] model the interaction of TCP sources and the
MWM scheduling algorithm. The work focuses on the dynamic
interaction in packet networks between regulated Additive-
Increase Multiplicative-Decrease (AIMD) traffic sources and
max-scalar scheduling policies at switches. The latter was
proved to be optimal in terms of throughput for stationary un-
regulated traffic sources. The average dynamics of AIMD traf-
fic sources and switch queues are described through a system
of delay differential equations. The studies find that AIMD
sources and max-scalar switches co-exist well. AIMD fluid
equations of congestion window size and queue size are pre-
sented. Their model relies on the RED AQM scheme, and the
studies convincingly prove that there always exists a fair sys-
tem equilibrium point. However, RED mitigates the effects
of MWM in that it discriminates against longer queues, while
MWM favors them. As a consequence, this model does not re-
flect the possible extreme unfairness and large rate oscillations
that can occur without AQM.

In addition, [9, 10] measure packet delays in a real router fed
with a closed-loop ns2-generated TCP traffic. Such an approach
can accurately reflect delays at real Internet routers. However,
it is dependent on the router implementation, and cannot model
arbitrary switch scheduling algorithms.

Further, [13, 30] model the interactions of responsive flows
with switch scheduling algorithms in wireless networks. How-
ever, they assume congestion control policies that are funda-
mentally different from TCP.

1.3. Contributions
In this paper, we attempt to provide a first characterization of
the interactions between congestion control and switch schedul-



ing algorithms, using mostly TCP flows and droptail queues.
We compare the performances of an output-queued switch; an
input-queued switch implementing iSLIP, the scheduling algo-
rithm on which the Cisco 12000 GSR router is based [29]; and
an input-queued switch implementing MWM.

We restricted our model to the tractable single output-
port case, equivalent to a server model, in which the iSLIP-
based input-queued switch becomes a round-robin (RR) server,
and the MWM-based input-queued switch becomes a longest-
queue-first (LQF) server. Using this model, we characterize the
system equilibria when they exist, and compare their fairness
properties. For instance, we show that output-queued servers
are fair for flows, while RR servers are fair for ports. We also
characterize the cases in which LQF leads to extreme unfairness
with temporary flow starvation.

Further, in this server model, we discover three different
modes of LQF: starvation, oscillation and equalization. We
find that these modes have fundamentally different properties,
and highly depend on the topology parameters.

Then, we completely describe the network dynamics for both
the RR and LQF scheduling algorithms in this server model,
using a set of differential equations. We show that RR can
be modeled by considering each (input, output) queue as a full
output-queued switch. We also find that the behavior of LQF is
based on synchronized congestion cycles, during which queues
have an equal size, and grow and fall together.

Last, we provide some intuition on the behavior of iSLIP and
MWM in a full switch using simulations. We show that iSLIP
typically keeps its port-fairness properties, while under certain
conditions, MWM tends to equalize the sum of queue sizes in
VOQ (virtual output queue) permutations.

The rest of the work is organized as follows. After defining
our model in Section 2, we successively analyze the fairness
of OQ, RR-based IQ and LQF-based IQ switches under TCP
traffic in the server model in Sections 3, 4 and 5. Then, we
characterize the network dynamics of RR and LQF in the server
model in Section 6. We finally show simulation results for these
models in Section 7.

2. Model and Notations

‘We now introduce and define our model and notations. We
first describe the general network topology and the congestion
control of each flow, and then focus on the switch and on its
scheduling algorithm.

2.1. Network Model

Figures 2 and 3 illustrate the general network topology, us-
ing a central switch that can be either output-queued or input-
queued.

Network — The network includes N groups of flow sources.
Each group 1 < i < N consists of m; persistent TCP-Reno
sources and several UDP (or more generally non-responsive)
sources modeled as a single UDP Poisson source. All these flow
sources are connected to a group aggregation switch, which is
connected with its own link of capacity C;, to input port i of the
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Figure 3: Network topology based on an input-queued switch.

N x N switch. The switch is then connected to the flow desti-
nations with links of capacity C,,,. Therefore, packets sent by
the sources are routed through the group aggregation switch to
the main switch, and then to their destination. Acknowledge-
ments (ACKs) come back in the same way. We now make a
few simplifying assumptions on the network properties to make
the problem more tractable. First, we assume that for these
flows, the only bottleneck links are the forwarding links from
the switch to the flow destinations.

Assumption 1. The only queues in the network are the packet
queues in the switch. In particular, all link capacities but C,y,
are assumed to be infinite, and the backward propagation times
are assumed to be fixed.

Round Trip Time —There are m = Y., m; TCP flows. For
each TCP flow k, let w*(f) denote the congestion window size,
0*() denote the number of queued packets and C(r) denote the
switch service rate of flow k at time ¢. Also, let RTT*(¢) denote
the total round-trip time (RTT), i.e. the total time from source
to destination and backwards including queueing time, and 7*
denote the propagation round-trip time (RTT), i.e. the total time
from source to destination and backwards excluding queueing
time.

In this work, we will neglect sub-RTT variations of time-
dependent rates, in order to avoid intractable delayed non-linear
differential equations. For instance, if QX(f) packets of flow k
are currently queued and they are currently served at rate C¥(¢),
then we assume that an entering packet from flow k will stay in
the queue for 0% (1)/Ck(¢) time-slots. Therefore, the total round-
trip time is
L 2w .
(?k(t) (1)

Further, for each input i and output j, let S;; be the set of TCP
flows going through input i and output j. Then, for simplicity,

RTTF@) =



we will assume that all flows in S;; have the same propagation
time.

Assumption 2. The propagation RTT of all flows k € S;j is
equal and denoted 7;;(t) 2 (7).

We now want to characterize the number of packets of each
flow in the network. We first make a simplifying assumption to
avoid distinguishing between services and departures. The next
assumption on non-empty queues is needed to build a theoreti-
cal model, even though it does not necessarily hold in practice.
It is further discussed in Section 8.

Assumption 3. The service rate C(f) of flow k always equals
its departure rate, i.e. if C*(t) > O then there are always packets
from flow k to service in the queue, so Q*(t) > 0.

Window — The total congestion window size W;;() of TCP
flows in S;; is denoted W;;(1) 2 ZkeS,-,- wX(#). Let wk(¢) denote
the number of packets in the network from flow k at time ¢,
including ACKs. Then, since packets depart from the queue at
rate C¥(r) and take a round-trip propagation time of 7* to come
back, there are CX(¢) - 7¥ packets on the links, in addition to the
O*(?) packets in the queue, hence

k@) = e - + 0Fe) 2)

Moreover, by definition of the congestion window, assum-
ing that TCP does not use the delayed-ACKs feature, we can
model [5]

wh(t) ~ (1), 3)

which is usually accurate unless flow & just experienced a con-
gestion, in which case wk(z) falls faster than Wk (7).

2.2. Switch Model

We now define the notations used for the switch arrivals,
schedules, and services.

Arrivals — For each (input, output) pair (i, j), we denote
4;(?) the total rate of packets arriving at input i and destined for
output j. We decompose this arrival traffic into two types:

e TCP traffic, with arrival rate /lfj(t) for each flow k € S;;,
yielding a total arrival rate /l[TjCP (¢); and

e Poisson UDP traffic, with fixed total arrival rate /lgDP .

Thus, we have:
_ TCP UpP
/l,‘j(l) = /lij 1+ /1”-
= > Awm+ e 4)
keS;;

Queues — We will assume that all data packets have a fixed
size. Let Q;;(¢) denote the number of packets arrived at input i,
destined to output j, and queued in the switch at time . We will
denote the number of queued TCP packets as Q]"(r) and UDP

packets as ij’.DP (). We saw that the number of queued packets
from flow k € Sy is Q4(r) = ij(t). Therefore:
ol ) + 0P (1)

D05+ QP ). )

keS;;

0i(®)

Likewise, the number of queued packets arrived at input i is
0:.(n = Zj}’: | ©i(?) and the number of queued packets destined
to output jis Q.;(t) = XN, QD).

Services — We saw that TCP flow k € S;; receives a service
rate of Ck(t) = Cffj(t). Likewise, the total service rate of all
flows belonging to the (input, output) pair (i, j) is denoted C;;(?),
including CiTjCP (¢) for TCP flows and C l.’;DP () for UDP flows, so

that
Cij) = [P0+

Do+ P, (6)

keS;;

2.3. Switch Architecture

We will distinguish two types of switches. First, an N X N
output-queued (0OQ) switch (Figure 2) contains N queues, lo-
cated at the output ports of the switch. As packets arrive, they
are transferred immediately to their corresponding output queue
Jjof length Q.;(?).

An N X N input-queued (IQ) switch (Figure 3) is built us-
ing N buffers, located at the input ports of the switch. Each
input buffer i is shared dynamically between N virtual output
queues (VOQs), which correspond to the N outputs and have
total length Q;.(f). When a packet arrives at input i and is des-
tined to output j, it is stored in the corresponding VOQ, denoted
VOQ,‘]‘, of length Q,‘j(l‘).

In an IQ switch, after packet arrivals, a centralized switch
scheduler decides on a match between the N input ports and the
N output ports, so that no input (resp. output) is matched to
more than one output (resp. input). Then, the scheduler picks
the head-of-line packets of the selected VOQs to depart accord-
ing to this match. The scheduler can follow any switch schedul-
ing algorithm in order to decide which packet to serve.

Scheduling algorithms considered in this work include:

e iSLIP, a round-robin-based algorithm [29, 28]. In iSLIP,
each input (output) keeps a pointer to its preferred out-
put (input), which rotates in a round-robin order once it
is matched. Using an iterative process, the scheduler at-
tempts to find a match by giving preference to the inputs
and outputs indicated in the pointers. Note that iSLIP re-
duces to a simple round-robin (RR) server on a vector of
N VOQs, e.g. when there is only one input or output with
active flows.

o Maximum Weight Matching (MWM), which maximizes the
weight of the match, with weights given by the queue
lengths [38, 27, 11]. Intuitively, MWM favors larger
VOQs. Note that MWM reduces to the Longest Queue
First (LQF) policy on a vector of N VOQs.



In both switch architectures, the total buffer size at the switch
is NB, i.e. B per output in the OQ switch and B per input in 1Q
switch. Further, all buffers implement a droptail policy, i.e. an
arriving packet is dropped iff its buffer is full. We will define
the set of congestion times for flow k by 7%, where ¢ € 7 iff
the size Q of the queue that contains flow & satisfies Q(+7) < B
and Q(t) = B.

2.4. Single Output-Port Server Model

To get a better grasp of the problem, we will introduce and
consider the single output-port model, in which a single output
has active flows. Thus, the switch reduces to an N X 1 switch
model, i.e. as a server model. This server model uses simpler
notations and switch scheduling algorithms. In this case, we
will simplify notations by defining A; = i1, Qi = Qi1, and so
on.

Further, as mentioned above, in the server model, the iSLIP
switch scheduling algorithm reduces to the round-robin (RR)
server. Likewise, the MWM switch scheduling algorithm re-
duces to the longest queue first (LQF) server.

In Section 7 we will suggest how the results for the single-
port N X 1 server model can be extended to the general N X N
switch model.

3. Fairness of OQ servers

In the next sections,we want to compare OQ and IQ servers
from the point of view of fairness. To do so, we first define
two simple fairness measures: Jain’s fairness and utility-based
TCP fairness. Then, when considering the single-output case,
we show that OQ servers are fair, essentially stating that two
flows sharing the same link should receive the same bandwidth.

3.1. Fairness Measures

Our objective is to analyze the fairness of OQ and IQ servers,
i.e. the way in which the available output link capacity is di-
vided between flows. We first define two fairness measures,
and then apply these measures to compare the performance of
the servers. First, we define Jain’s fairness index [23]:

Definition 1 (Jain’s Fairness). Jain’s fairness index for m
flows is

A ( lr‘ilci)z

F
m- YL, C;

N

Next, we define the utility function [24, 37] of each TCP flow
k, and the resulting TCP-fair resource allocation.

Definition 2 (TCP-Fair Resource Allocation). The utility
function of a TCP flow k is
2 1
Ui(Ch) = ®

T (RTT*?  C*

Let S.; be the set of flows k that share output link j of capacity
Cour. Then a TCP-fair resource allocation is a resource alloca-
tion that achieves

max Z U(CY)
k

s.t. Z Ck<Cou Vj ©)
keS.j
ck>0 Vi

Since we assume a FIFO droptail queueing policy, it is
hard to analyze the precise behavior of each flow. Therefore,
we make a simplifying assumption on flows sharing the same
queue.

Assumption 4. Two flows sharing the same queue have equal
dropping probabilities. Further, their service rates are propor-
tional to their number of packets in the queue.

3.2. Fairness Analysis

We will now analyze the fairness measure of OQ servers, and
later compare it with IQ servers. For simplicity, we consider the
server model, in which all flows are switched to the same output
port j. In this fairness analysis, we assume that all round-trip
times are equal, and that there is no UDP traffic. We rely on
the following approximation of the steady-state throughput of a
TCP flow k with round-trip time RTT* [24, 25, 31, 33, 34, 37]
(where [33, 34] discuss droptail buffers more specially):

ck = V2

© RTT*. Vi (10

where C¥ and d* are the steady-state average values of the ca-
pacity C¥(r) and the dropping rate d*(r). We neglect the dif-
ference between the average over time and the average seen by
packet arrivals. The next two properties, which follow from
[24], show that the throughput of all flows in the output-queued
server is divided equally at the output link.

Property 1 (OQ Server Throughput). In the OQ server de-
fined above, the throughput of flow k is:

C()ll[

ck= 2
Zﬁl mj;

(1n
Proof By Assumption 4, all flows have the same dropping
probability. Therefore, using the steady-state throughput of a
TCP flow, as defined in Equation (10), all flows have the same
throughput. Finally, by Assumption 3, we have Y C* = C,,;,
hence the result. 0

Example 1. As illustrated in Figure 4, consider a 2 X 1 OQ
server with 10 flows in the first input (m; = 10) and a single
flow in the second input (my = 1). Then, the service rate of

each flow is

Cout C()Mt

k= = =2, 12
my + my 11 a2

independently of its input.
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Figure 4: 2 x 1 OQ server example

Property 2. The OQ server maximizes all fairness measures:
(1) Jain’s fairness index achieves its maximum F = 1, and

(i1) The total utility function achieves its maximum as well,
therefore the resource allocation is TCP-fair.

Proof Since all flows share the total throughput equally, Jain’s
fairness is clearly equal to 1: if m = Zﬁ\i | mj, then

. Cou')?
quzl. (13)

2
Cou

mem-(%)

Further, since the total utility function is defined as a sum

of equal concave functions of C*¥ with a single constraint on

their sum, the symmetric maximal resource allocation neces-

sarily achieves the maximum total utility function. Denote
a = 2/(RTT*)?. Then the total utility function is
- X - —am?

; Ui(Cy=m- (Com/m) - (14)

0

4. Fairness of IQ servers with iSLIP-like Scheduling

We saw above that OQ servers are fair. We now want to ana-
lyze iSLIP-based IQ servers. Under the same server model, we
prove that 1Q servers using iSLIP scheduling are unfair in the
general case, and show that they provide port-fairness instead
of flow-fairness.

In order to analyze the fairness of RR-based servers, we as-
sume the same setting as in the analysis of OQ fairness, with a
single output-port under the server model. In such a setting, the
iSLIP algorithm reduces to a simple round-robin (RR) schedul-
ing scheme. In the next theorem, we show that each input i
receives an equal share of the output capacity, divided equally
among its m; > 0 flows.

Theorem 1 (Throughput). In an N X 1 server model with
Round-Robin(RR) scheduling, the throughput of flow k in input
iis

Ck _ Cam‘

= 1
C N om (15)

Proof The round-robin algorithm provides the same share
of the output link capacity to each input. By Assumption 3,
this provided service rate also corresponds to departures, and
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Figure 5: 2 x 1 IQ server example

therefore all input ports have the same total departure rate and
the round-robin schedule does not need to skip queues in this
model. Thus, each input port behaves as an OQ server of rate
Cour/N with m; flows sharing the queue. The result follows from
Property 1 on the OQ server throughput. 0

Example 2. Consider again the network from Example 1, this
time with an N X 1 server using an RR scheduler, as illustrated
in Figure 5. Then, the service rate of each flow in the first input
port is C* = C, /20, and the service rate of the flow in the
second input port is C* = C,,/2. This is clearly an unfair
allocation among flows.

Based on the Cauchy-Schwarz inequalities, the following
theorem shows that RR is unfair under both fairness measures.
Its proof is presented in Appendix A.

Theorem 2. The N X 1 RR scheduler is unfair by both fairness
criteria, unless all inputs have the same number of flows. Fur-
ther,
(i) its Jain’s fairness index is
2
F = N , (16)
(=X m)- (22 7)

(i) and, using a = 2/(RTTX)?, then its total utility function is

aN l
ky = — 2, 17
;Ukm o Zm (17)

The results above show that the throughput allocation in an
1Q server using RR is generally unfair when all ports do not
have the same number of flows. In particular, under the N X
1 server model, they show that that the OQ server maintains
fairness among flows, while the RR-based IQ server maintains
fairness among ports.

5. Fairness of IQ Servers with MWM-like Scheduling

5.1. Starvation Mode vs. Oscillation Mode

We now analyze the fairness of IQ servers with MWM
scheduling under the N X 1 server model, where the scheduler
reduces to the LQF algorithm. For simplicity, we reduce the
analysis to the 2 X 1 case mentioned in the Introduction and
shown in Figure 1. We first neglect timeouts and UDP traffic,
and later take them into account.
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Figure 6: Starvation mode for two TCP flows in a 2 X 1 LQF switch

There are two conflicting intuitions on the expected results
in the 2 x 1 case. First, we might believe that once a queue
becomes large, the LQF scheduler keeps servicing it, and so
its congestion window will keep growing until the flow takes
control over the whole service rate and causes other flows to
temporarily starve. So the LQF scheduler might be extremely
unfair in such a starvation mode.

On the other hand, if a flow has the largest queue and keeps
getting served, its queue can empty out faster, and then another
flow will in turn have a larger queue and get service, thus over-
coming the first flow. The service rate of each flow will oscillate
between 0 and the full capacity C,,,. So over a long average,
the LQF scheduler might actually be somehow more fair in this
oscillation mode.

The following analysis shows that both intuitions can be cor-
rect, and both the starvation and the oscillation modes can oc-
cur, depending on the network parameters. For instance, let’s
assume that at some time ¢ the first queue is longer than the
second one:

01(to) > Qa(t) (18)

Then the starvation mode occurs when this strict inequality
keeps holding at all times ¢ > fy, both in stable phases (when
queue sizes keep growing) and in congestion phases (when
queue sizes fall).

Figure 6 illustrates the typical behavior of the starvation
mode, in which the first flow keeps prevailing and the second
flow is starved. Since we always have Q(f) > Q,(?), the first
flow keeps getting served at rate C; = C,,,. Therefore it keeps
increasing its window size, and its corresponding queue arrival,
until Q; = B. This causes a packet drop, and the window size
is halved.

There is then a race condition between Atc, the time before
both the window and the queue of the first flow start growing
again, and Atg, the time it takes to equalize the queues lengths
Q) and Q,. As we will prove, when Afc < Atg, the first queue
is always longer than the second one, and therefore the network
stays in starvation mode. However, if Atc > Atg, the two queue
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Figure 7: Oscillation mode for two TCP flows in a 2 X 1 LQF switch

lengths get equal, and the other flow might start growing faster,
thus the network enters an oscillation mode as shown in Figure
7.

In other words, during stable phases, a single prevailing
queue is always being served, and the other queue is starved
— but in starvation mode, the same queue is always prevailing,
while in oscillation mode, the identity of the prevailing queue
might change during the congestion phase. As stated in the
following theorem, the mode depends in fact on the network
topology.

Theorem 3. In the 2 X 1 LOF scheduler described above, as-
sume that Qi(ty) > Qs(ty) at time ty. Then the server is in
starvation mode with Q(t) > Q»(t) for all t > ty iff the buffer
size B satisfies

B> Cout ‘T + 2Q2([0) (19)

Furthermore, if B < C,,; - min(7y, T2), the server is always in
oscillation mode.

The proof is presented in Appendix B. The intuition is that if
the buffers are large enough, the prevailing queue will be suffi-
ciently long to stay longer than the starved queue after a conges-
tion happens. On the other side, if the buffer is small, the served
queue will decrease to a small value after a congestion and the
other queue will receive a service, thus causing oscillation.

In particular, if Q»(#)) = 0, then the condition for the star-
vation mode corresponds to the well-known rule-of-thumb for
the buffer size of an OQ switch [5]. With such a buffer size, we
guarantee that the buffer of the first flow never goes empty, and
therefore that it is always picked by the LQF scheduler.

In addition, both in the starvation and the oscillation modes,
we can quantify the inter-congestion time 7; of the prevailing
flow i.

Theorem 4 (Inter-Congestion Time). Both in the starvation
and the oscillation modes, the inter-congestion time T; of the



prevailing flow i is:

_ 3- (Ti ! Cnut + B)2

T;
8- Cout

(20)
Proof Appenzeller et al. [5] introduced the following model for
the evolution of the congestion window size:

WK (8) = VCous - 1 + (WE(0))2. (21)

Assigning wk(0) = Yae = 2CuTB and wK(T) = 2C 7 + B, we
get the result. (|
Note that when we assume the existence of timeouts in star-
vation mode, O, slightly grows at each timeout. However, even
through the second queue is served from time to time, the fun-
damental network properties are unchanged and it is still in
starvation mode, with a negligible service rate for Q5.

5.2. Starved queue length in LOF-starved mode

The maximal length of the starved queue is the minimal
length of the prevailing queue. Otherwise, it contradicts the
existence of starvation. This is reflected in the following result,
proved in Appendix C.

Proposition 1 (Starved queue length). The length Q of the
starved queue behaves according to

P

where RTO is either the maximum Retransmission Time-Out
value or the RTT of the last successful ACK as measured by the
source, and

QZ,max = Ql,min (23)

5.3. UDP Flows and Equalization Mode

We now want to analyze the influence of UDP flows on the
network. We show that when the UDP flows have a low rate,
their influence is negligible and we still have the same starva-
tion and oscillation modes. However, for a slightly higher UDP
flow rate, we prove the apparition of a third mode, the equal-
ization mode, which keeps all queue sizes equal.

Assume that Qi(ty) > Q»(ty) at time fy. The intuition is
that starvation will happen whenever dd%(to) > d%(to), ie.
Q1(tp) is longer than Q,(#y) and their difference keeps increas-
ing. Otherwise, if %(1‘0) < %(1‘0) and their difference keeps
decreasing, queue 2 will exceed queue 1 at some time 7 (i.e.,
0»(t1) > Q1(t1)), and queue 2 will be served in turn. Therefore,
we may obtain in turn %(ll) > %(n), and eventually queue 1
will exceed again queue 2. Thus, no queue will always prevail.
Further, if this equalization happens fast, both queue sizes will
remain nearly equal.

We first make the following simplifying assumption, and de-
duce the conditions for this equalization mode.

Assumption 5 (Arrivals and departures of UDP packets).
We assume that the rate of the UDP packets is sufficiently
low relatively to the service rate, so that during congestions
the amount of dropped UDP packets is negligible. Therefore
CZ-Z;DP(I) - /lgDP-

Theorem 5 (Equalization mode). In the 2 X 1 LOF scheduler
described above, the system is in equalization mode at time t
whenever the arrival rate of UDP packets AYPF is sufficiently
large and satisfies

C()Mt
Q1(to) + Cour * 71

In particular, if

C{)Mt

AUPF .
Ox(t) + Cour - T2

and /li/DP >

C()llt
B + Cout ° T]

CULII

/lUDP > ,
2 B + C()M[ * T2

and /l?D P>
then the system is always in equalization mode. Further, if UDP
traffic is negligible and satisfies

Cout
B+ Coy -1y

CDMf

AUPP < .
B+ Cum‘ *T2

and AVP" <
then as previously the system is either in a finite-time starvation
mode or in oscillation mode.

The proof is presented in Appendix D. The intuition for
the theorem is that above some threshold of arrival rate of UDP
flow, the UDP flow has more effect on the queue length than the
TCP flow. The influence of the UDP flow is more significant
than the influence of the TCP flow, because the packets keep
arriving, even when no packets are served in opposite to TCP.

5.4. Fairness measures of LQF server modes

We now analyze the fairness of the starvation, oscillation,
and equalization modes in the simple 2 x 1 server example
shown in Figure 1, where each input queue serves a single flow.
In this case, MWM reduces to an LQF scheduled under a server
model. The proofs of all theorems in this section are presented
in Appendix E.

Starvation Mode — In this case one of the queues is al-
ways being served, while the other is always starved, i.e. C; =
Cour, C2 = 0. We establish the following fairness result showing
that the starvation mode is fundamentally unfair.

Theorem 6. In starvation mode, Jain’s index is F = %
(i) Jain’s fairness index is F = %,
(ii) The total utility function is Y,; Uy(C;) = —co.

Oscillation Mode — Assume that in oscillation mode, the
flow prevailing is determined at each congestion in a round-
robin manner. Then we obtain:

Theorem 7. Denote o; = 1;-C,,s+B. Then in oscillation mode,
(sz +a%)2

2Aat+as)”

(a3+a3)?

2((1‘1‘-#(1‘2‘) :

Jain’s fairness index is F =

(i) Jain’s fairness index is F =
(ii) The total utility function is

ZU(C)— —2(a%+a§) 1 . 1
— """ Cow \a?-RTT? 2 -RTT?

] (24)

Equalization Mode — We now characterize fairness in
equalization mode.



Theorem 8. In equalization mode,
(T1+1)*

(1) Jain’s fairness index is F = AT

(i1) The total utility function is

_ 2(7’1 + T2) 1 1
Z vl =-"c, ((RTTL)2 | RTT,? -n)

UDP Mode — We now analyze the case where traffic only
consists of UDP flows, without any TCP flows.

Theorem 9. Jain’s fairness index is

Fo— 1 (25)

2
AUDP_UDP
T+ ( Co

Note that the total TCP utility function does not apply to this
case.

6. Network Dynamics using I1Q Servers

In the next section, we introduce more general models that
rely on differential equations to model the network dynamics,
while not restricting the number of inputs and the number of
flows per input. While the previous section characterized the
long-term bandwidth averages to analyze fairness, we now fo-
cus on short-term flow dynamics.

The aim of the model is to change the known models of TCP
dynamics from [24, 31, 37] given RR and LQF-based servers.

6.1. Model

We consider again the simplified single-output server model.
We now want to describe the network dynamics in the cases of
the RR and LQF-based server scheduling algorithms. To do so,
we first use many small building blocks, which describe the be-
haviors of the network components (see Appendix F), and then
connect them in a single set of equations. Finally, we reduce
this set of general equations to a simplified set of equations,
from which all other equations can be deduced. For instance,
the simplified set only considers queue sizes and services rates
— and once we solve it, we can deduce window sizes, arrival
rates, long-term rate averages, fairness measures, etc.

We will see that the simplified set of equations has an inter-
esting structure: it is always a double set of equations, reflect-
ing the two sides of the interactions, i.e. both the congestion
control and the switch scheduling algorithms. In fact, there are
two equations per flow, one corresponding to the congestion
control and one to the switch scheduling. In total, there are
2(m + N) equations, for the m TCP and N UDP flows. Fur-
ther, the congestion control equations are different when TCP
is in stable phase and congestion phase, i.e. between drops and
during drops.

There is still one step left beyond this double set of equations.
We need to determine when a flow has a packet drop and enters
congestion. For instance, we previously defined 7%, the set of
congestion times for flow k. Likewise, we define the set of con-
gestion times for input i by 7, where ¢t € 7; iff Q;(r") < B and

Qi(t) = B. Then if input i experiences congestion, not necessar-
ily all flows going through this input will experience congestion
as well — only those that experience packet drops. Further, a
flow with more packets has more chance to experience packet
drops. Thus, we need a model linking queue congestion and
flow congestion. We will simply use the mean-field model
from [39], and assume that the probability that flow k of input
i experiences congestion given that input i experiences conges-
tion 1s

Wk Sil

- 26
Ci'Ti+B+|Si| ( )
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In the remainder, we first describe the two simplified sets of
equations for iSLIP and MWM, which reduce to RR and LQF
under the N X 1 server model. Then, we introduce in subse-
quent lemmas a few interesting building blocks that were used
to construct this simplified set of equations.

6.2. Network Dynamics Theorems

First, we present the dynamics of the RR network topol-
ogy based on the N X 1 server model. In the next theorem,
the switch-scheduling equations rely on the intuition that RR
equally divides output capacity among incoming ports, and
divides a port capacity among flows proportionally to their
number of queued packets (Equation (27)). In addition, the
congestion-control equations successively model TCP flows in
stable phase, TCP flows in congestion phase, and UDP traffic
(Equation (28)).

Theorem 10 (RR Dynamics). The dynamics of Internet traffic
going through an N X 1 RR scheduler can be modeled using
the following set of 2(m + N) equations on the 2(m + N) flow
variables {(Q*(1), CX())1<k<m, (QF PP (1), CYPP (1)1 <ien}:

(1) m + N switch scheduling equations:

k(py — R0} . Cou . _
= Twes, O +Q7PP(0) - N Vik €S, 27
CUPP(p) = VeV Cou @7
i 0= Toes, 07000 - N

(i) m+ N congestion control equations, reflecting stable phases
and congestion phases:

GO O+l =200 ifre T

QN(r) + Ch(t)rh = L e e (28)
UDP

e (1) = AUPP — VPP (1)

The full proof of Theorem 10 is presented in Appendix F.
Intuitively, Equation (27) is based on equal service rates be-
tween the input queues and is discussed further in Appendix
F.3. Equation (28) is based on TCP congestion window be-
havior and is discussed further in Appendix F.1 and Appendix
F.2. Per-flow derivation from the general per-queue equations
is based on Assumption 4 and is discussed further in Appendix
E5. The derivation of the UDP flows from the general per-
queue equations is also based on Assumption 4 and is discussed
further in Appendix F.6.



The next theorem presents the dynamics of the LQF network
topology. The switch-scheduling equations express the full ser-
vice rate provided to the longest queue by LQF (Equation (30)).
As in Theorem 10, the congestion-control equations model TCP
and UDP flows (Equation (31)).

Theorem 11 (LQF Dynamics). The dynamics of Internet traf-
fic going through an N X 1 LQF scheduler can be modeled using
the following set of 2(N + m) equations on the 2(N + m) input
variables ((Q(1), CX(1)1<k<ms (QF PF (1), CTPP (1)) 1<)

(1) m + N switch scheduling equations: let A(t) denote the set
of inputs with the longest queue at time t, i.e.

A ={i: Qi = m;élX 0}, (29)
then
ke _ Zwes CCOHCIPPW
G0 = 5 oo 20O
UDPpy _ Swes, CC @O0 pp
Ci ) = Ywes; O 0+07PF (1) QOi @) (30)

Yikes, Qi(t) = Yyes, Qi) if i, j € AM)
L5 s, QX =0 if i ¢ AW
221:1 Ck(t) + Zf\il C,'UDP = Cout

where the number of independent equations for each equation
line is successively (m — N, N, |A@)| — 1, N — |[A(?)|, 1), yielding
a total of m + N.

(i1) m+ N congestion control equations, reflecting stable phases
and congestion phases:

QO+t =200 ifre T
Qk(tJr) + Ck(t+),rk — Qk(77)+2ck(f7)'fk l.fl‘ c Tk

dng/DP
T(t) — /llUDP _ C[UDP(I)

€1V}

The full proof of Theorem 11 is presented in Appendix F.
Equation (30) reflects the equalization of the queue sizes of the
maximal queues and the lack of service for the non-maximal
queues, and is discussed further in Appendix F.4. Equation
(31) is similar to Equation (28), because it is based on the TCP
algorithm, independently of the switch scheduling. It is dis-
cussed in Appendix F.1 and Appendix F.2. Per-flow derivation
from the general per-queue equations is based on Assumption 4
and is discussed further in Appendix E.5. The derivation of the
UDP flows from the general per-queue equations is also based
on Assumption 4 and is discussed further in Appendix F.6.

6.3. Intuition on the N X N switch

We want to gain an intuition on the behavior of iSLIP and
MWM in N x N switches. Such switches are much harder to
analyze than N X 1 switches, because of the many interactions
between queues. However, we expect that their behavior will
reflect the modes analyzed in N X 1 switches. We provide be-
low some heuristic rules that we would expect to see, and dis-
cuss them using simulations in Sections 7.5 and 7.6. However,
because of their complexity, we do not provide any proof.

iSLIP — Consider again Assumption 3, which basically
states that queues are never empty for the theoretical model. if
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all VOQs contain at least one flow, the switch is then expected
to provide periodic TDM service between all the VOQs. We
would then expect the port-fairness discussed in Section 4 to
extend to a VOQ-fairness in the general N X N case. Therefore,
the VOQs would be served equally, independently of the num-
ber of flows in each queue. As later shown in simulations, it ap-
pears that this intuition might even extend to some non-uniform
traffic matrices in which not all VOQs contain at least one flow,
yet all VOQs with at least one flow receive equal service.

MWM Equalization Mode — The MWM scheduler ser-
vices the VOQs that belong to a permutation of the VOQs with
the largest weight, where the weight of a VOQ is its current
number of packets, and the weight of a VOQ permutation is the
sum of the weights of its VOQs. Therefore, we would expect
the modes to apply to permutation sets of VOQs, instead of ap-
plying to single queues. For instance, when an N X 1 switch
is in equalization mode, all served queues tend to be equalized.
Likewise, we would expect that an N X N switch with at least
one flow in each VOQ is in equalization mode when the weights
of all its permutations tend to be equalized. Simulations sug-
gest that this might in fact be extended to the case where not all
VOQs necessarily contain at least one flow.

MWM Starvation Mode — The N1 switch is in starvation
mode, when only one of the queues is served and other queues
are starved. We would expect that an N X N switch is in starva-
tion mode when a single permutation has a weight higher than
the others, and therefore is always being served. Note that some
of the other permutation weights increase despite the fact that
they are not served, because the permutations share VOQs with
the served permutation. Therefore, the N X N switch dynamics
reflect the dynamics analyzed in the N X 1 switch. Instead of
dealing with packets queued in a single queue, these are now
the dynamics of all packets queued in a specific permutation.
(Note that we skip the oscillation mode, which is complex to
analyze in a general N X N switch.)

7. Simulations

7.1. Simulation Settings

We now want to evaluate the correctness of our models by
comparing them with simulation results. We ran ns2 simula-
tions of the network dynamics, and compared them with Mat-
lab implementations of the differential equations in the RR- and
LQF- based server models.

In our simulations, we modeled iSLIP and MWM switches
in ns2 and used default ns2 protocol implementations of other
components. Fori,j = 1,...,Nand k = 0,...,|S;;| — 1 we
assumed that the round-trip propagation time of flow k at input
i and output j is

Sl 2

where 790 = 100 ms (unless stated otherwise) is a base propa-
gation time and |S; ;| is the number of flows at input 7 and output
J- We also assumed a uniform packet size of 1 kB.

Tijk = (l + j + (32)
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Figure 8: Simulation of OQ and RR cumulative average throughput. As ex-
pected, the graphs of OQ; and OQ> become hard to distinguish

7.2. Fairness of OQ and RR Servers

Figure 8 displays simulation results for the 2 X 1 switch ex-
ample under the server model with 11 flows, as shown in Fig-
ure 4 and discussed in Examples 1 and 2. It plots the cumu-
lative average throughput of one flow from each input, assum-
ing both OQ and RR in the server model. The simulation used
Cour = 10 Mbps, B = 28 kB, and a total average rate of UDP
flows equal to 1% of the output link capacity C,,,.

The figure confirms the results presented in the analysis and
validates Property 1 and Theorem 1. In the OQ server, the
throughput of different flows equalizes over time even if they
are from different inputs, thus resulting in a fair allocation.
However, in the RR server, the throughput of the flow from the
second input tends to be ten times larger than the throughput
of each of the ten flows from the first input, thus resulting in a
large unfairness.

By setting the simulation settings in Equation (11) we re-
ceive:

C 10 10
1.2 out
2 = = = —Mb
R T I TR (53)
and to Equation (15):
C 10 1
k out
=2 — = _Mb 4
Cr = Nom ~ 710 - 2Mbps (34
and c 0
Ch=—"" - _—— =5Mb 35
2T Nomy 241 ps (33)

7.3. LQF Modes

Figures 9(a), 9(c) and 9(b) show the evolution of the instan-
taneous queue lengths of each input in the three LQF modes,
assuming the 2 X 1 server model. All these figures were ob-
tained using the same switch architecture, but different network
topology conditions (different buffer sizes, propagation times,
and output capacity).

Figure 9(a) shows the starvation mode, where queue 1 is the
prevailing served queue and queue 2 is the starved queue. It
used a single flow per input, no UDP packets, C,,, = 1 Mbps
and B = 41 kB.
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Figure 9(b) shows the oscillation mode, where only one of
the queues gets full service rate at each time. In between two
full-service states the queue apparently goes through an equal-
ization phase between ¢t = 56.5 seconds and t = 57.5 seconds.
As opposed to the starvation mode, we can see that the full ser-
vice is passing from one queue to another. It used five flows per
input, no UDP packets, C,,; = 5 Mbps and B = 150 kB.

Finally, Figure 9(c) plots the equalization mode, in which
queue lengths are kept equal. It used a single flow per input,
Cour = 2 Mbps, a total UDP rate of 20% - C,,,, and B = 31 kB.

These simulations can be used to validate Theorems 3 and
5. For instance, in the starvation mode settings, the following
condition of Theorem 3 holds:

Cou - T1 +205(t0) ~ 1-10°/8 - 0.1 +2- 14 - 10°
= 40.5kB < 41kB = B

In the oscillation mode settings, the following condition of
Theorem 3 holds:

Couw - T1 +205(t0) ~5-10/8 -0.1 +2-85-10°
=232.5kB > 150kB = B

And finally, in the equalization mode settings, the following
condition of Theorem 5 holds:

2. 103 Cout

AYPP =02.2.10° -
" 3132-10-01 B+Cyy-11

7.4. Switch Dynamics

Figures 10(a) and 10(b) show the modeled dynamics (Theo-
rem 10) and the ns2 simulation results of the 2 X 1 RR server
under the server model with 100 TCP flows per input, using
Cour = 100 Mbps, a total UDP rate of 5%-C,,; and B = 180 kB.
On the graphs, Q) represents the sizes of each of the queues
and C| , the amount of served packets in last 25 ms for each of
the queues. We can observe the constant and equal service rate
of both queues and the similar graphs of the queue dynamics in
the model and in the simulation.

Further, Figures 11(a) and 11(b) compare the LQF server dy-
namics (Theorem 11) in an ns2-based network simulation and
in an implementation of the differential-equations model, both
being run under the same topology conditions. We assumed a
2 x 1 switch five TCP flows per input, using C,,; = 5 Mbps, a
total UDP rate of 5% - C,ys, Tooo = 50 ms and B = 70 kB.

In both plots, the two queues appear to be in equalization
mode, with both queue plots barely distinguishable. The queue
dynamics seem quite similar in the model and in the simulation,
thus providing a partial validation of the model. In particular,
there is similarity in the minimal values, maximal values, and
slopes of the respective functions.

The differences between the model and the simulations result
from using probabilistic (random) values in of the model, which
are expressed in Equation (26).
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expected, the graphs of Q1 and O are often hard to distinguish.
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7.5. iSLIP Scheduling in N X N Switches

We simulated a 4 x 4 iSLIP switch in a network with C,,; =
10 Mbps, B = 5000 kB, and 1gp9 = 10 ms. We used the follow-
ing number of TCP flows per VOQ:

10 20 40 O
30 50 30 O
40 20 10 O
0 0 0 50

The iSLIP scheduler served periodically 3 permutations. The
service ratio of each VOQ converged to:

W | =

O = = =

O = = =

O = = =

w o oo

(36)

As expected, VOQ (3,3) received three times more service
than other non-empty VOQs. In addition, as expected, the ser-
vice is fair for VOQs, i.e independent of the number of flows in
the VOQs.

In the next simulation, we used the following number of TCP
flows per VOQ:

10 20 40 O
0 50 30 O
0 0 10 O
0 0 0 50

Again, the iSLIP scheduler served periodically 3 permuta-
tions. The asymptotic service ratio of each VOQ was:

—_

(37

O == =
W o oo

1
1
0
0

w
[

thus obtaining again a VOQ-fairness.

7.6. MWM Modes in N X N Switches

Figures 12(a) and 12(b) illustrate the behavior of a 3 x 3
MWM switch under different topology parameters. Both plot
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Figure 12: Simulation graphs of 3x3 MWM switch with 100 flows per VOQ.

the 3! = 6 possible permutations weights, i.e. the total num-
ber of packets in the corresponding VOQs. Both assume 100
flows per (input,output) pair, i.e. a total of 900 flows. Fur-
ther, Figure 12(a) used C,,; = 100 Mbps, B 1.25 MB,
and 1900 = 100 ms, while Figure 12(b) used C,,, = 1 Mbps,
B =10 MB, and 799 = 100 ms.

We can see that in Figure 12(a), the switch is in equalization
mode, under which all permutation weights tend to stay equal.
On the other hand, in Figure 12(b), the switch is in starvation
mode, with a single permutation having a weight higher than
the others, and therefore always being served. Note that other
permutation weights steadily increase because the permutations
include also some of the queues from the served permutation
and because of UDP and timeout packets that keep arriving.

8. Discussions

Let’s now briefly discuss the correctness and generality of
the assumptions made in this paper.

Single bottleneck — Assumption 1 presumes a single bot-
tleneck in the network, and therefore neglects the influence of
the other queues. This assumption relies on the observation
that in the Internet, few flows practically have more than one
bottleneck, and they mostly depend on their most congested
queue [5, 14, 35]. In addition, it also relies on an implicit as-
sumption that one output is more congested than others, thus
yielding an N X N switch in which its influence will be predom-
inant, and which can be modeled using a simpler N X 1 switch.
We leave the general model of an N x N switch to future work.
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However, note that in the restricted simulations above, an intu-
itive extension of our theory to permutations did seem to closely
approximate the behavior of the simulated N X N switch.

In addition, we also assumed that the congestion only affects
packets, not ACKs. This assumption is too restrictive, and ACK
congestion is left for future study.

We readily acknowledge that this work does not cover all
possible topologies. In fact, as further discussed in [14], while
these assumptions are commonly made in the literature, they
have not been substantiated enough in the past and would cer-
tainly require more study.

Similar round trip times — Assumption 2 neglects the RTT
variations between flows in the same input port to keep the
equations simple. In simulations, we did make sure to simulate
different ranges of RTTs in order to make sure that the variance
in RTTs does not significantly the results. In fact, we used a
uniformly-distributed RTT distribution in each input port. In
the simulations of the 3x3 switch, as shown in Equation (32),
we used a ratio between the highest and lowest RTT of 3.5. Yet,
we only found a limited impact of the RTT variance. Likewise,
in the simulations for the Nx1 switch, we only saw a small im-
pact of 15 % on the flow capacities between the simulations and
the theoretical calculations.

Non-empty queues — Assumption 3 relies on non-empty
queues in the iSLIP switch. The assumption is only needed to
build a theoretical model, and is obviously wrong in the gen-
eral case. We found that queues are seldom empty when buffer
sizes are large enough. For instance, in our simulations, queues
were typically empty less than 1 % of the time. Also, in an
iSLIP switch, when a queue gets empty and does not use its as-
signed service, the next queue in the round-robin order is typi-
cally served.

Drop-tail queues — Assumption 4 presupposes equal drop-
ping probabilities for flows at the same queue. In simulations,
we found that this assumption held when averaged over some
sufficiently large time period (over 5 seconds), as long as the
number of flows was large enough and the loss rate was reason-
able.

UDP loss rate — Assumption 5 neglects the number of lost
UDP packets compared to the total number of lost packets. We
found that it held in simulations as well, as long as the total
UDP rate was negligible.

9. Conclusions

In this paper we modeled the interactions of user-based con-
gestion control algorithms and router-based switch scheduling
algorithms. We found that these interactions can lead to ex-
treme unfairness and flow starvation, as well as to large rate
oscillations. Further, we discovered three modes of MWM
behavior, namely the starvation, oscillation and equalization
modes. We also modeled the dynamics of both iSLIP and
MWM switches, and showed in simulation results that our mod-
els were quite close to simulated dynamics.

None of the studied arbitration modes in IQ switch schemes
was found to be fair, further emphasizing the fairness issues



resulting from the interactions of congestion control and switch
scheduling. Given our assumptions, iSLIP can be seen as less
unfair than MWM, because it arbitrates equally across ports and
does not discriminate against flows with large RTTs. However,
iSLIP does not always provide 100% throughput [29]. Finding
a fair scheme that guarantees 100% throughput is not an easy
task — we conjecture that it can be reached using credit-based
fairness mechanisms, but leave it for future work.
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Appendix A. Proof of Theorem 2

Proof Jain’s fairness index is:
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By the Cauchy-Schwarz inequality,
N | 2 N N

i.e. F <1, with equality iff all the m; are equal. Likewise, the
total utility function is
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where (a) follows from the Cauchy-Schwarz inequality, with
equality iff all the m; are equal.

Appendix B. Proof of Theorem 3

We prove Theorem 3 by first proving three lemmas on the
general dynamics of flow k, and then using them to characterize
the needed conditions for the starvation mode.

The first lemma characterizes the dynamics of the window
size of flow k. It distinguishes the congestion times (t € Tk) in
which the window size is halved, the times that follow conges-
tion in which the window size does not change as long as it’s
less than the number of packets in the network (Wk(t) > wh (t)),
and the other times in which the growth rate of the window size
is 1/RTT (¥).

Lemma 1. The congestion window size w*(t) of flow k is ap-
proximated by:

Wity = M0 e 7
WO =0 Ak > w), g T
if W) < wh(n),t ¢ T*

(B.1)

awk( _ 1
dt  ~ RTT0)

Proof These equations are based on the behavior of the TCP-
Reno protocol, as explained above. g
The next lemma characterizes the arrival rate of flow k.

Lemma 2. The arrival rate A*(t) of flow k is approximated by

0
k —
A1) = { WD)

RTTX(r)

if Wi () > wh()

if Wh(t) < wh(z) (B-2)
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Proof When w (r) > wk(?), just after congestion, the source
of flow k stops sending packets, therefore A*(f) = 0, until
WwK(t) < wk(f) again. Then, there are Wwk(f) ~ w* packets on the
network (Equation (3)) distributed over a total time of RTT*, so
the sending rate is the ratio of these quantities. |

The last lemma compares the arrival rate AK() with the ser-
vice rate CX(¢).

Lemma 3. When w*(t) < wk(t), the arrival rate A*(t) of flow k
follows

ko ok 1 B dck@
@) =C"@) + RTTA) 7 (B.3)
and therefore
dok() B 1 ack@
di  RTTy  dr ¢ (B.4)

Proof We know that w/(r) = Q*(t) + C*(¢) - 7" from Equations
(2) and (3). Therefore, after differentiation and using Lemma 1,

we get dd—th = RT;W - dd—ctk‘rk. Finally, using dTQ: = () - Ck(r)
(Assumption 3), we get the result. O
We are finally ready to prove Theorem 3.

Proof [of Theorem 3] First, let’s prove that Q;(r) > Q,(f) in the
stable phase following 7y and preceding congestion. Assume by
contradiction that this is only the case until time #; + Az. By the

a0t _ 1 _ dC*_k -
S = RITG 7¢ If until ty + Af the

proof of Lemma 3 yr
first flow is served at rate C,,, while the second flow does not
receive any service, then the queues keep growing at the same
rate, because round-trip times are presumed equal. Therefore
01 (ty + Ar) > Q,(tg + At) and there is contradiction.

Next, let’s analyze the congestion phase. By Lemma 1, be-
fore congestion at time T € 7 k the window size w, is at its
maximum and equal to the maximum number of packets of flow
1 in the network:

WI(T_) = Wimax = Cout T+ B. (BS)
During congestion the window size is halved and w;(T™")
wi(T™) > w!(T*). The congestion period ends when W1 (¢)
wi(?) again, i.e. once wy .y /2 packets have been transmitted at
rate C,,;. Thus the congestion period lasts

2R

Wl,max/ 2 _ B
Cout - 2Com

71

Ate = 2

(B.6)

Further, the time period needed to equalize queues lengths after

congestion is

_ B-0x(1)
COM[

This is because there are Q;(7~) = B packets of flow 1 and
0,(T™) = Os(tp) packets of flow 2 before congestion, while O,
decreases at rate C,,, while O, is kept constant. Therefore, to
keep Atc < Atg, we obtain the lower-bound on B stated in the
theorem. Q> is then kept constant during both the fluid and con-
gestion phases, and therefore the same results can be obtained
in the following stages as well. g

Atg (B.7)



Appendix C. Proof of Proposition 1

Proof Based on the properties of the TCP-Reno retransmission
timer. The first retransmission timer expires after the last previ-
ous measured RTT or the predefined maximum Retransmission
Time-Out value (MAXRTO):

TO, 2 RTO = min(RTT, MAXRT O) (C.1)

Each next retransmission timer is twice longer than the previous
one:

TO;=2-TO;, (C.2)
So, suppose that at time ¢ = 0, Q,(¢) = 0. Then:
O)t) =1 ifRTO<t<3-RTO
=2 if3-RTO<t<7-RTO
=i ifQ-1)-RTO<t<@2)-RTO
ie. ;
0,() = iifi < log, (RTO + 1) <i+1 (C.3)
So, J
0x(1) [ ( t ) J
a2l _ |y C4
di °82\RT0 €4
O

Appendix D. Proof of Theorem 5

Proof Let Q; be the length of the served queue and Q, be the
length of the unserved queue. The length of the served queue
Q) is expressed by

do,

— 0 = 4TO+ 40 -0
= L _da T (D.1)
RTTy()  dr '

that follows from Assumption 5 and Lemma 3.

For the unserved queue, there is no service so C, = 0.
Because TCP packets are not served, they are also not ac-
knowledged, and as a result, no new TCP packets arrive, thus
/lTCP 0 (neglecting timeout packets, as assumed previously).
So the length of the unserved queue Q; is expressed by

sz

(z) = AJPP (D.2)

Equalization happens if dQ' =) < thz (#) for all #. Combining
Equations (D.1) and (D.2) and assigning O mq = B, we get the

final result. O

Appendix E. Proofs of Fairness Theorems for LQF

Appendix E.1. Starvation Mode

Proof [of Theorem 6] First, Jain’s fairness index is: F' = % =

%. Further, the total utility function is }}; U;(C;) = — (RT2T])2 Cl, -
2 1 -

WC—Z,WIth C2 =0. O
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Appendix E.2. Oscillation Mode

Proof [of Theorem 7] Using the inter-congestion times from
Theorem 4, C | = CUM% and C2 =C and therefore

CI = Cout z e and C2 =
ing C; and Cz in falrness Equatlons (7) and (8).

T,
out T +T ’
Oth "

. We conclude by replac-
2
O

Appendix E.3. Equalization Mode

We first prove the following lemma, before characterizing
fairness in equalization mode.

Lemma 4. In equalization mode, the approximate service rate
C; of queue i is
T

Ci = Copy—2—, E.l
tTi + Tj ( )
where i # ].
Proof In equalization mode, Q; = Q;. Using Q; = W; = C; * 7;
and C; + C; = Cyyy, We get
W= Wi+ Cous - Tj
C; = ! L (E2)

Ti+7T;

Approximating the average value of W; (and W;) as the average
between its maximum and minimum values, where the mini-
mum equals half the maximum,

Wl max + Wl max/2 3(B + C Tl)
Wi ~ E.3
2 4 (E-3)
Substituting into the previous equation, we get the result. [

Proof [of Theorem 8] By assigning C; and C, from Lemma 4
into Equations (7) and (8). Il
Appendix E.4. UDP Mode

Lemmas. In a 2 x 1 LQF server with only UDP flows the
approximated service rate C; of queue i is

Cp + AUPP _ QUDP
Ci = : d E4
5 (E4)
where i # ].

Proof Assume V7% > /l;]DP . The amount AAZDP = AUDP _
AYPF s the first to depart from queue i. The rest (Co, — A1VPP

is divided equally between the queues:

Cout - A/l{]ZDP

C; = A/lij’gp + > : (E.5)
C;is found using C; = Coyy — C;. O

Proof [of Theorem 9] By assigning C; and C, from Lemma 5
into Equation (7). O
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Figure F.14: 2 x 1 LQF server model.

Appendix F. Proofs of Network Dynamics Theorems

In the proofs below, for each congestion time 7T € 7; we
distinguish two different times for simplicity. Let t = T~ be the
time when the congestion of the flow happened and r = T* be
the time when the flow recovered from the congestion.

Figures F.13 and F.14 illustrate the notations and behavior of
the dynamics model for RR and for LQF server. The model
composed of two phases: the stable phase and the congestion
phase.

The stable phase models the stable situation, when queues
are not full. The output link is fully utilized, the conges-
tion windows are continuously increasing (because there are no
drops), so the queues are continuously increasing too (Equa-
tions (2) and (3)). During the stable phase of queue i, the arrival
rate exceeds the service rate, i.e. A; > C;.

The congestion phase starts immediately after the congestion
indication. Following congestion, there is window halving: the
source waits for packets to be acknowledged, in order to equal-
ize the number of packets on the fly to the window size. Mean-
while, the arrival rate decreases, and therefore the queue length
decreases as well, because the arrival rate is lower then the ser-
vice rate. Therefore, during the congestion phase of queue i,
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A < Ci.

Appendix F.1. TCP stable phase

We provide below a proof, in which we demonstrate the con-
gestion control equations in the stable phase.

Lemma 6. In the stable phase, each TCP flow k satisfies

(@0 + o) = 20 E1)

Proof First, all flows k in the same input i have the same round-

trip time RTTi(r) £ RTTH(1) = * + &2,
same 7¥(¢) (Assumption 2) and because their share of the input
bandwidth (C¥(r)) is proportional to their share of the queue
size (QX()) (Assumption 4). Next, in the stable phase, from
Equations (2) and (3), the congestion window size of each flow
k is assumed to satisfy wk(f) = C¥(¢) - RTT*(¢). Further, for

vk _ 1 _ 1 d ¢ Ok k 2 _
each flow k, == = RETRD = 7rroe thus (@ () +C (0)7)”" =

ka7 = 2040 - k) = 2(CHO - RTTHD) - gy,
the result.

because they have the

hence

Appendix F.2. TCP congestion phase
Next is the set of m equations of the TCP congestion phase.

Lemma 7 (TCP congestion phase equations). In the conges-
tion phase, each TCP flow k satisfies

_ Q)+ T -

oNTy+clrry - 5

(F.2)

Proof Resulting immediately from the properties of TCP-Reno
and based on the dynamics of w* that are shown in Lemma 1:

WA(T™) = QNT™) + CH(T) - 7
WA(T*) = 2 E3)
U

Appendix F.3. RR switch scheduling

The service rate of queue i in an RR switch is defined by the
number of input ports (N), as shown in the following lemma.

Lemma 8 (RR server equations). The service rate C;(t) of in-
put queue i in an Nx1 RR switch is defined by the next equation:

Cin = So

N (F4)

Proof The service rate of the switch is divided equally between
the inputs, as showed in Theorem 1. 0

Note that the N X 1 RR server with service rate C,,, can
be modeled as N FIFO queues with service rate C,, /N, as
each queue receives an equal service rate independently of each
other.



Appendix F4. LQF switch scheduling

We denote A(f) as the set of active queues at time #, i.e.
queues with C;(f) > 0. Then using LQF, all queues i, j € A(f)
tend to have equal length: Q;(¥) = Q;(¢) at time ¢.

Lemma 9 (Queue equalization). If 0 < C;(#),C;(t) < Cou,
the lengths of the queues i, j in a N X 1 LQF switch behave
according to

Qi(t) = Q;(n (F.5)

Proof Nx1 LQF scheduling gives service to the longest queue.
If at some time several queues were served, they all have the
longest queue length, and therefore can be modeled as equal.
]

Next is the set of the N equations of the LQF switch schedul-
ing.

Lemma 10 (LQF switch scheduling equations).

Qi) = Qi) if i,je Al)
doi"'(n =0 if i¢ A®) (F.6)
ZZ] Ci = Cout
Proof Resulting from Lemma 9 and the TCP-Reno properties.
O

Appendix FE5. Per-flow equations

The service rate of each TCP flow satisfies the following
lemma.

Lemma 11 (Per-flow equations). Each TCP flow k in input i
behaves according to the next set of equations:

iy — Co(r) . 2O
{C,.(o-c,(t) 0 )

a9 _ ik ke — D den ok
@ =h0-GO =3 -5 -GO

The dynamics of wf are shown in Lemma 1.

Proof The first equation results from Assumption 4, stating
that the service rates of two flows sharing the same queue are
proportional to their queue sizes. The second equation results
from the queue dynamics [5]. ]

Appendix F.6. UDP equations

The next set of equations describes the influence of UDP traf-
fic.

Lemma 12 (UDP equations).

UDP _ 0, — QTCP
CibDP -C - CiT'CP

upp _ 2" (E.8)
Ci =5 Ci

d UDP
G — oor - cuor
Proof The first two equations result from the definitions of
QYPP and CYPP. As in Lemma 11, the third equation comes
from Assumption 4, stating that the service rates of two flows
sharing the same queue are proportional to their queue sizes.
The last equation comes from Assumption 3. 0
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