
Sizing Router Buffers (Redux)
Nick McKeown
Stanford University

nickm@stanford.edu

Guido Appenzeller
Yubico, Inc.

guido@appenzeller.net

Isaac Keslassy
Technion, Israel

isaac@ee.technion.ac.il

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.

The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
The queueing delay faced by a packet is arguably the largest source

of uncertainty during its journey. It therefore seems crucial that we

understand how big the buffers should be in Internet routers. Our

2004 Sigcomm paper revisited the existing rule of thumb that a buffer

should hold one bandwidth-delay product of packets. We claimed

that for long-lived TCP flows, it could be reduced by
√
N , where

N is the number of active flows, potentially reducing the required

buffers by well over 90% in Internet backbone routers. One might

reasonably expect that such a result, which supports cheaper routers

with smaller buffers, would be embraced by the ISP community. In

this paper we revisit the result 15 years later, and explain where it

has succeeded and failed to affect how buffers are sized.

CCS CONCEPTS
• Networks → Intermediate nodes;

KEYWORDS
Router, Buffer Sizing, Switch ASIC

1 A BRIEF HISTORY OF BUFFER SIZES
We first started wondering “How big should a router buffer be?”

in 2002. We were curious for a few reasons. First, every packet-

switched router must have a buffer to hold packets during times of

congestion, and queueing delay through the buffer is the biggest

cause of uncertainty in the end-to-end latency. It seems important

we understand how big the buffer should be, else how can network

owners correctly design and configure their routers? Second, the

size has significant implications on how routers are designed. If the

buffer is small enough to fit on a single switch ASIC, the router is

smaller, simpler, cheaper and consumes less power. Third, at the

time, most router vendors claimed you need a buffer equal to the

bandwidth-delay product, which led to a separate class of routers

(some costing millions of dollars) for Internet service providers.

Curious, we polled five well-known researchers to ask them why

a router needs a bandwidth-delay product of buffering ... and we

received five different explanations! Clearly, as a community, the

buffer size was not well understood.

At the time, the popular rule-of-thumb came from the 1994 pa-

per by Villamizar and Song [19]. They experimentally evaluated

the buffers needed to keep a 40 Mb/s link fully utilized, using a

small number of TCP flows. They concluded that a router with port

speed C, carrying TCP flows with average minimum round-trip time

RTTmin ,1 needs a buffer

B ≥ C · RTTmin (1)

in order to maintain full utilization of the bottleneck link. This rule

was widely used by Internet service providers and router manufactur-

ers when configuring and designing routers, who argued that any less

buffering would be too risky. But the cost of the rule was substantial;

for example, a 100Gb/s link carrying flows with an average RTT

of 200ms would, according to the rule, require 2.4GBytes of buffer

memory.2 Not only does this mean a forwarding ASIC has to devote

half its capacity to accessing off-chip memory, it means packets can

potentially be delayed by an extra 200ms.

It is fairly easy to see that the rule-of-thumb is only correct in very

limited circumstances, for example in a network with a single TCP

flow (for versions of TCP using additive-increase and multiplicative-

decrease, or AIMD, e.g., New Reno). To understand why, we need

to understand how buffers and TCP interact.

Consider the simple network in Figure 1(a) carrying one TCP flow

through a router with a bottleneck link of rate C and buffer of size

B. The evolution of the TCP congestion window sawtooth is shown

in Figure 1(b) after the flow has settled into the familiar AIMD

mode; we expand the view of one sawtooth in Figure 1(c). When

the window size is at its maximum,W , the buffer is full and RTT =
RTTmin +B/C (point (1) on the figure). When the acknowledgments

are successfully received, the sender increases the window size by

one and the buffer overflows in the next round-trip time. A packet is

lost and the client halves its window, hence the window size becomes

W /2. With the new, smaller window, the sender must stop sending

until it has received enough acknowledgements to catch up to the

new, smaller window size ofW /2. The buffer serves as a reservoir

of packets during the pause. For the bottleneck link to remain busy

during the pause, the buffer must hold enough packets so that it

doesn’t go empty before the client resumes sending again and the

next packet arrives to the queue. If the buffer is just big enough,

then at the moment the next packet arrives, the buffer will have just
gone empty. Hence at point (2) on the figure, RTT = RTTmin , and

given that the bottleneck link is busy at both times, the sending rate

satisfies C = W /RTT , hence C = W

RTTmin+B/C =
W /2

RTTmin
, which

means B = C ·RTTmin . If we choose a smaller buffer, the bottleneck

link will go idle after a packet drop and we lose utilization of the link;

if we make the buffer bigger, the bottleneck link will always be busy,

but the buffer will never go empty and packets will unnecessarily

encounter a fixed additional delay. Put another way, there is no

1The minimum round-trip time is the fixed component when the queues are empty. The
average minimum is the average across the flows’ minimum round-trip times.
2For comparison, the largest on-chip SRAM buffer today is less than 100MBytes.

ACM SIGCOMM Computer Communication Review Volume 49, Issue 5, October 2019

69



(a) Simple example network.

(b) A single, stable AIMD flow.

(c) The sender’s rate is alwaysC because the link is fully utilized. There-
fore, it is C both just before the drop occurs at (1) as well as when the
sender resumes sending at (2), when the buffer is empty.

Figure 1: An example of a network carrying a single TCP flow,
illustrating why we need B ≥ C · RTTmin to keep the bottleneck
link busy all the time.

benefit to making the buffer bigger: It will increase latency and the

congestion control algorithm will be more sluggish because it has to

deal with a longer response time.3

A network carrying only one flow is obviously not very common.

What happens when we have multiple flows? If TCP flows are

synchronized (i.e., they all experience loss events within the same

RTT) then the same rule of thumb applies. The synchronization

behavior of TCP is not well understood, but simulation as well as

experimental evidence indicates that for a small number of TCP

flows with similar RTTs and no external source of randomization,

synchronization can occur, which helps explain the origin of the rule

of thumb [19].

3 As an interesting intellectual aside, it is interesting to note that Eqn 1 is a somewhat
arbitrary artifact of the design decision for TCP to divide its window in half when it
detects a lost packet. If instead the designers had chosen the TCP window to divide
by k > 1 instead, then Eqn 1 becomes: B ≥ (k − 1) · C · RTTmin . Furthermore, if
a sender knows or measures RTTmin and picks k = 1 + a/RTTmin for constant a,
then the buffer size becomes B ≥ aC and is independent of RTT . For example, for a
10Gb/s link and RTTmin = 100ms, then Eqn 1 says we need 1Gbit of buffering. If we
pick k = 1.14, it drops to 140Mbits. With k = 1 + 0.1/RTTmin , then it drops even
further to 50Mbits.

But an Internet core router, or a data-center switch, carries thou-

sands (sometimes hundreds of thousands) of flows and many exter-

nal sources of randomization break the synchronization between the

TCP flows. During any RTT interval, packets belonging to a small

fraction of the flows will happen to arrive to a full queue, be dropped

and cause their sender to halve its window size. Because only a small

fraction of flows reduce their window size, the occupancy of the

buffer changes little; in fact, under congestion, unlike the single flow

case, it will remain almost completely full all the time.

The main observation of our Sigcomm 2004 paper [2] is that with

many flows a central limit theorem applies. The paper proves that

for N desynchronized flows, the bottleneck link can be kept fully

utilized with a buffer size of approximately

B ≥ C · RTTmin√
N

(2)

and verifies it with multiple simulations, and a small test network in

the lab. In this paper we refer to Eqn 2 as the Small Buffers result.4

If correct, this result can have quite staggering consequences on

the design of Internet routers. For example, a 1 Tb/s ISP router

carrying one TCP flow with an RTTmin of 100ms would require

12.5 GB of buffer and off-chip buffering. If it carries 100,000 flows,

then the buffer can be safely reduced to less than 40MB, reducing

the buffering and worst-case latency by 99.7%. With Small Buffers,

the buffer would comfortably fit on a single chip switch ASIC.

1.1 Are Small Buffers OK in practice?
There was natural skepticism about our 2004 claim, and Eqn. 2 in

particular; after all, it was surprising to think that we could eliminate

almost all the buffers in a big public network and potentially improve
application behavior. There were of course some worried employees

at a few router manufacturers who felt the justification of a separate

class of ISP routers was under threat.5 We knew that big network

operators would need more solid evidence before adopting the new

guideline in their networks. So we ran some experiments.

Level 3 Backbone. The first measurement paper, led by Neda Be-

heshti and Yashar Ganjali, reported results collected in the Level 36

public Internet backbone [5]. Fortuitously (for us, not them), Level 3’s

network was extremely congested and in urgent need of faster links,

and they were about to upgrade links from 2.5Gb/s to 10Gb/s. They

approached us to see if we could collaborate to try and understand

how big their buffers needed to be. The financial consequences

were large: If they could justify purchasing lower-priced enterprise

switches with smaller on-chip buffers, they could save hundreds of

millions of dollars in their network by avoiding expensive routers

with large (and possibly unnecessary) packet buffers. Level 3 had the

clever idea of an apples-to-apples comparison across the three links

shown in Figure 2. Three 2.5Gb/s links carried nominally identical

traffic loads, which was achieved using a static hash function. During

the busiest period of the day, their 2.5Gb/s links were sustaining over

95% load and dropping packets. If they set different buffer sizes just

4Some other authors refer to it as the Stanford Model.
5A VP at one router vendor even approached us, offering to fund us to discredit our
own results. It was one of those occasions when you know you have hit a raw nerve and
are onto something.
6Level 3 was one of the largest commercial Tier-1 ISPs, acquired by CenturyLink in
2016.

ACM SIGCOMM Computer Communication Review Volume 49, Issue 5, October 2019

70



Figure 2: (Figure 1 reproduced from [5]). Network for buffer
sizing experiments in Level 3 Communications’ backbone net-
work. Traffic from Router A to Router B was divided equally
among the three 2.5Gb/s links using a static hash function to
balance TCP flows.

Figure 3: (Figure 3c reproduced from [5]). When Level 3 re-
duced buffers from 190ms to 1ms, there was no measurable loss
in throughput. In fact, a slight increase.

before the three links leaving Router A, then they could look at the

consequences for the same (or at least very similar) load. The router

vendor recommended a default of 190ms per-link (60MB). We re-

duced the buffer sizes to 10ms (3MB), 5ms (1.5MB), 2.5ms (750KB)

and 1ms (300KB) and ran experiments lasting several weeks. Based

on Eqn. 2, we expected to need a buffer size of 2-6ms (based on an

estimate of 10,000 flows).

Figure 3 reproduces a graph from the 2008 measurement paper [5],

comparing the utilization of the link with the default buffers (190ms)

against the link with the smallest experimental buffers (1ms). The

most important thing to notice is that there is no reduction in through-

put when reducing the buffer by 190-fold. In fact, there is a small

increase in throughput, which was not explained by packet loss or

imbalance in the hash function. Our suspicion (which we could not

verify with passive observations at the router) is that the TCP control

loop became tighter and faster, because of lower latency, and there-

fore could achieve higher link utilization with smaller buffers. If

true, it means that TCP works better with small buffers in this case.

As we will see later, we came across additional, anecdotal evidence

in 2018 to support this observation in a big video streaming service.

Internet 2. In order to accurately measure how throughput varies

with the number of flows in a real production network, we ran exper-

iments in the Internet2 backbone interconnecting US universities. To

make sure we could precisely control the buffer size (and change it

Figure 4: Screenshot of an experiment in Internet2 to verify
whether the new rule of thumb in Eqn. 2 holds. The screenshot
is from a video of the experiment [3].

in real-time), and accurately measure N and packet loss, we built our

own NetFPGA-based 4-port 1 Gb/s routers [14] and deployed them

in four Internet2 POPs (LA, Houston, New York and Washington

DC). Our routers carried a mix of production and experimental traf-

fic cross-country. We conducted a number of different experiments

to test whether Eqn. 2 holds, one of which is shown in Figure 4. In

this particular screenshot of an experiment, a 100Mb/s dedicated

link between LA and Houston carried 150 TCP flows. The old rule

of thumb in Eqn. 1 predicts we need 648-kB buffers, shown in the

horizontal red line on the bottom right graph. Our tool automatically

measures, by successive approximation, how big the router buffer

needs to be in order to sustain 100% utilization of the bottleneck link,

then plots it as a blue diamond on the graph. The tool controls N and

measures the required B; at the time the screenshot was taken, it was

evaluating the required buffer for N = 150 flows. In the particular

case shown, the system concludes we need 26kB of buffering (about

half of the 56kB predicted by Eqn. 2). As we can see in the graph

(and as we found in many more experiments), the amount of buffer

needed is consistently bounded above by our new rule of thumb in

Eqn. 2. This is explained in detail in a short video [3].

Stanford University Backbone. Several experiments involving real

routers are described in Chapter 6 of [1]. We came to realize that

the documented configurations of buffer size settings of commercial

routers were often incorrect or at least very confusing. We carefully

calibrated the settings of several types of routers from different

vendors using external packet capture devices.7 In every router we

looked at, it took considerable effort to understand and calibrate its

internal behavior.

One experiment involved a gateway—a Cisco VXR 7200 shared-

memory router—forwarding Internet traffic to and from Stanford’s

student dormitories. In the experiment, conducted in 2004, we could

control the data rate C, measure the link utilization and count the

number of flows, N , using Netflow.

After calibrating the router, we ran experiments varying C (using

a packet shaper to throttle the link) while measuring N and the

link utilization. The traffic was not idealized, but a complex mix

7For one widely deployed backbone router we discovered that the actual buffer size was
inversely proportional to the console setting!

ACM SIGCOMM Computer Communication Review Volume 49, Issue 5, October 2019

71



of long flows, short flows, UDP and TCP and a variety of non-

congestion-aware applications. While Eqn. 2 predicts we would need

557 packets, in our experiments the link sustained 98.5% utilization

with 85 packets, close to the amount predicted by Eqn. 1.

Experiments by others. We are aware of a small number of large

network operators who have experimented with, and in some cases

adopted, smaller buffers in their networks, inspired by these results.

For example, Google’s B4 private backbone network [11, 12, 18]

is based on single-chip ASICs with less than 48MB of buffer. They

don’t report N , so we cannot evaluate whether or not Eqn. 2 holds,

but published numbers for C and RTTmin suggest their buffers are

at least 25-times smaller than the old rule of thumb.

Similarly, Microsoft’s software-defined WAN network was origi-

nally built from switches with “queue sizes of 9-16MB” [10], about

two orders of magnitude smaller than the old rule. In neither case

do the operators report sizing buffers on the newer rule, nor do they

report the number of flows, N , but their results support the basic

idea that much smaller buffers are sufficient.

We are also aware, anecdotally, of two other large datacenter

owners who use similarly small buffers for their inter-DC WANs,

and a large streaming video service that found buffers of 25MB per

100Gb/s link are sufficient, once again about 25-fold smaller than

the old rule of thumb. We are encouraging all of them to present

their work at the Buffer Sizing Workshop, to be held at Stanford

University in December 2019 [13].

1.2 Small buffers and packet loss
A common and understandable concern is that smaller buffers in-

crease packet loss. Large networks often operate under the strict

requirements of a Service Level Agreement (SLA) with hard limits

on packet loss. Making the buffers smaller means risking violating

the SLA and paying a penalty.

As we know, packet loss is a double-edged sword for TCP: It is

good (it is the primary congestion control signal) and it is bad (it

leads to retransmissions). Even our well-behaved single TCP flow

in Figure 1 drops one out of every 3/8 ∗W 2 packets; i.e., to meet

a specific loss rate SLA, W must exceed a threshold. To control

congestion, TCP requires senders to decrease their sending rate,

W /RTT . But they can’t reduceW too far, and so instead the operators

must increase RTT , which is effectively what they do. They use huge

buffers that fill up (and never go empty), increasing RTT to a point

whereW is large enough to meet the SLA andW /RTT is low enough

to be sustainable. This is bad because it doesn’t actually help with

throughput, creates unnecessarily large queueing delay, and is very

challenging for real-time applications. If you run simple ping tests

across the public Internet today, you often see RTT s much larger than

the fixed propagation time, suggesting the ISPs are (inadvertently)

using large buffers to increase RTT and thereby indirectly control

congestion.

You may be wondering, as we have, why so few ISPs have pub-

licly tested the buffer size in Eqn. 2. After all, they could potentially

lower their costs by reducing buffers and removing the need for

special-purpose routers in their networks. There seem to be two

reasons. First, their understandable concern about SLAs makes them

nervous, for the reasons we described above. Among some large

ISPs we have observed a reluctance to even run brief experiments

in their production network, for fear of violating an SLA. Second,

several router vendors have tried to dismiss our results, for fear of

losing revenue for their special-purpose routers. In our opinion, this

is an example of the perils of a networking industry dominated by a

small number of vendors; we believe a coordinated push-back by the

ISPs is appropriate, based on a set of sound, commonly accepted and

reproducible experimental results. We expand on this in Section 4.

2 ALTERNATIVE BUFFER SIZE THEORIES
Our 2004 paper prompted several authors to publish refinements,

clarifications, and limitations of Eqn. 2, with many interesting pro-

posals and results. We are big fans of more debate, particularly on

an important, but poorly understood, topic such as this. We doubt

Eqn. 2 is the final answer, and we definitely do not think it is the only

answer — the result is for a specific context of a network carrying

many long-lived TCP New Reno flows.

The team at Hamilton Institute published results from a mea-

surement study of their Internet uplink [20] making the good point

that the value of N is hard to pin-down, particularly because it is

time-varying. Their link contained a mix of long- and short-lived

flows, UDP and TCP traffic. Their adaptive buffer tuning algorithm

(ADT [20]) is a particularly interesting way to dynamically reap the

rewards of smaller buffers, while giving headroom for times when

larger buffers are needed. We agree that caution is required when

using Eqn. 2 in access networks, where the number and type of

flows fluctuate. As some of the work on buffer bloat has argued [15],

there are good reasons to reduce buffer size at the edge, and ADT

might provide a good way to do so automatically. However, if a large

carrier network has a relatively stable or predictable number of flows

during times of congestion (e.g., a large CDN carrying video flows

during peak viewing hours), then Eqn. 2 should still hold.

Our 2004 paper also includes a (less well-known) analysis of

short-lived TCP flows (that never leave slow-start). In summary,

with lots of short-lived flows, an effective bandwidth result appears

to hold:

P(Q ≥ b) = e
−b 2(1−ρ )

ρ
.
E[Xi ]
E[X 2

i
] (3)

with the interesting property that for short flows, the size of the

buffer does not depend on the line-rate, the propagation delay of the

flows, or the number of flows; it only depends on the load of the link,

and length of the flows. And because the analysis doesn’t depend on

the dynamics of slow-start (only on the burst-size distribution), it

can be easily extended to short unresponsive UDP flows.

We found that in environments with a mix of many long- and

short-lived flows, the longer flows dominate the buffer requirement

and therefore Eqn. 2 is still a good estimation. However, it may

not necessarily hold in environments with a small number of flows,

or very skewed mixes of short- and long-lived flows. In Internet

backbone routers, carrying very large numbers of flows, and with

the growing dominance of long-lived video TCP flows, it seems

reasonable to assume that Eqn. 2 holds. Still, caution is needed not

to overestimate N .

The authors of [7] in 2005 also pointed out that caution is needed

to avoid over-estimating N ; it should equal the number of flows

bottlenecked at this link, not those bottlenecked elsewhere. They

further argue that to limit the maximum loss rate, the buffer should

be proportional to N .

ACM SIGCOMM Computer Communication Review Volume 49, Issue 5, October 2019

72



In 2005, Raina et al.developed a first control theoretic model of

a network with small buffers [16]. They used their model to decide

whether or not the TCP congestion control algorithm is stable for

a given buffer size, which they likened to whether TCP flows are

desynchronized. They confirmed that if flows are desynchronized

then Eqn. 2 is sufficient; their theory suggests that small buffers

actually promote desynchronization in a virtuous circle.

A 2009 paper [17] provides a comprehensive fluid model of TCP

flows in a small-buffer network, providing a strong foundation for

exploring the interaction between buffer size and congestion control.

3 FROM SMALL TO TINY BUFFERS
In 2004, DARPA funded two large all-optical router projects under

its “Data in the Optical Domain” (DOD-N) program [6, 9]. Initially

we argued against the program saying that because a router is a

packet switch, and a packet switch needs buffers (FIFOs) that are

too large to be built using integrated optics, then it seemed a futile

endeavor. While some researchers had used fixed delay lines to

delay packets, often from unwieldy long spools of fiber, no-one to

our knowledge had built a meaningful optical FIFO. And anyway,

Eqn. 2 says we still need to store quite a lot of packets in large, high

data-rate networks.

Dan Blumenthal (UCSB) and Jagdeep Shah (DARPA MTO)

changed our minds. They told us about the work John Bowers and

Emily Burmeister were doing to build an integrated optical FIFO. By

the end of the LASOR project, the UCSB team built optical FIFOs

capable of delaying, perhaps, 20 short packets [4]. Figure 5(a) shows

a building block integrated onto a silicon substrate, and Figure 5(b)

shows how they are assembled to make an all-optical FIFO (with

electronic control signals).

Our job was to understand what happens in an all-optical packet

switched network with tiny buffers, much smaller than Eqn 2. Does

throughput fall slowly as we reduce the buffers, or does it fall pre-

cipitously? We noticed in earlier simulations that the utilization

drops slowly until a threshold, beyond which it drops steeply. Curi-

ously, the threshold often seemed to be below 100 packets. In 2005,

Enaschecu et al. published a perhaps surprising result arguing that

with only

B ≥ O(logW ) (4)

packets of buffering (whereW is the average TCP window size and

logW is typically below 100 packets), a backbone network carrying

many TCP flows can achieve 90-95% utilization, with the main

caveat that packets are paced [8]. Pacing could be explicit (by the

sender) or could be a consequence of multiplexing packets from a

slower edge network to a faster core. This result is sometimes called

the Tiny Buffers result.

The intriguing possibility suggested by the Tiny Buffers result

is that packet buffers might be made much smaller; perhaps as

small as 20 packets, if we are prepared to sacrifice some of the

link capacity. For example, a 40Gb/s link with 15 packet buffers

could be considered to operate like a 30Gb/s link, which could

be compensated by making the router run faster than the link-rate.

Maybe future networks with abundant link capacity could trade off

capacity for all-optical processing and tiny buffers. While in the

past we could assume packet buffers were cheap, and long-haul

links were expensive and needed to be fully utilized, in an all-optical

(a) A small integrated waveguide loop to hold one packet.

(b) Multiple single packet waveguides are switched to create a FIFO.

Figure 5: Integrated optical buffers built as part of the LASOR
project at UCSB [6].

log(W )

Figure 6: Summary of three theories of buffer size. From right
hand side: Old rule of thumb (Eqn. 1), the Small Buffers result
(Eqn. 2), and the Tiny Buffers result (Eqn. 4).

network packet buffers are extremely costly and capacity is abundant.

Only time will tell if this tradeoff makes sense.

4 BUFFER SIZES IN FUTURE
While many papers have been published about buffer sizing since

our 2004 paper, without doubt there is much more research to be

done. At the very least, the following questions remain open:

(1) Does Eqn. 2 hold for most backbone networks today, carrying

large numbers of predominantly long-lived TCP flows? Are

ACM SIGCOMM Computer Communication Review Volume 49, Issue 5, October 2019

73



there networks of this type where the results appear not to

hold?

(2) Are there experimental methods for large network owners

to run buffer size experiments, without needing to worry so

much about customer SLAs?

(3) What is the correct value of N , the number of active flows, to

use in different settings?

(4) What effect do newer congestion control algorithms, such

as Timely, DCTCP, BBR and PCC have on buffer size, par-

ticularly with large numbers of multiplexed flows? Intuition

suggests that a smoothing central limit theorem is still likely,

but can we determine the correct buffer size for large N ?

(5) It is common in congested networks to understand fairness,

or introduce different priorities and classes of service. What

happens in networks with small or tiny buffers?

(6) Now that datacenter and cellular networks have become much

more important than they were in 2004, are these results

relevant to these networks?

(7) How does buffer size affect the application and the user’s

QoE? There has been some work in this direction, but it is

important to understand the relationship.

It seems that the large datacenter and cloud companies are deploy-

ing networks with much smaller buffers than most of the ISPs. With

the benefit of hindsight, we could have encouraged large ISPs more

strongly to run experiments in their networks, to reap the rewards of

lower-cost routers with smaller buffers.

For all these reasons, and because we think there is much more

work to be done, we are hosting a Workshop on Buffer Sizing at

Stanford University in December 2019 [13], and encourage readers

to submit new ideas and measurements.

REFERENCES
[1] APPENZELLER, G. Sizing Router Buffers. PhD thesis, Stanford University, 2005.
[2] APPENZELLER, G., KESLASSY, I., AND MCKEOWN, N. Sizing router buffers.

In ACM SIGCOMM (2004), pp. 281–292.
[3] BEHESHTI, N. Buffer sizing in Internet routers. https://youtu.be/ykga6N_x27w?

t=170, 2011.
[4] BEHESHTI, N., BURMEISTER, E., GANJALI, Y., BOWERS, J. E., BLUMENTHAL,

D. J., AND MCKEOWN, N. Optical packet buffers for backbone Internet routers.
IEEE/ACM Trans. Netw. 18, 5 (Oct. 2010), 1599–1609.

[5] BEHESHTI, N., GANJALI, Y., GHOBADI, M., MCKEOWN, N., AND SALMON,
G. Experimental study of router buffer sizing. In ACM IMC (2008), pp. 197–210.

[6] BLUMENTHAL, D. J., BARTON, J., NEDA, B., BOWERS, J. E., BURMEISTER,
E., ET AL. Integrated photonics for low-power packet networking. IEEE Journal
of Selected Topics in Quantum Electronics 17 (2011), 458 – 471.

[7] DHAMDHERE, A., JIANG, H., AND DOVROLIS, C. Buffer sizing for congested
Internet links. In IEEE Infocom (2005), pp. 1072–1083.

[8] ENACHESCU, M., GANJALI, Y., GOEL, A., MCKEOWN, N., AND ROUGHGAR-
DEN, T. Part iii: Routers with very small buffers. SIGCOMM Comput. Commun.
Rev. 35, 3 (July 2005), 83–90.

[9] GRIPP, J., SIMSARIAN, J. E., LEGRANGE, J. D., BERNASCONI, P., AND NEIL-
SON, D. T. Photonic Terabit routers: The iris project. In Optical Fiber Communi-
cation Conference (2010), Optical Society of America, p. OThP3.

[10] HONG, C.-Y., KANDULA, S., MAHAJAN, R., ZHANG, M., GILL, V., NANDURI,
M., AND WATTENHOFER, R. Achieving high utilization with software-driven
WAN. SIGCOMM Comput. Commun. Rev. 43, 4 (Aug. 2013), 15–26.

[11] HONG, C.-Y., MANDAL, S., AL-FARES, M., ZHU, M., ALIMI, R., B., K. N.,
BHAGAT, C., JAIN, S., KAIMAL, J., LIANG, S., MENDELEV, K., PADGETT,
S., RABE, F., RAY, S., TEWARI, M., TIERNEY, M., ZAHN, M., ZOLLA, J.,
ONG, J., AND VAHDAT, A. B4 and after: Managing hierarchy, partitioning, and
asymmetry for availability and scale in Google’s software-defined WAN. In ACM
SIGCOMM (2018), pp. 74–87.

[12] JAIN, S., KUMAR, A., MANDAL, S., ONG, J., POUTIEVSKI, L., SINGH, A.,
VENKATA, S., WANDERER, J., ZHOU, J., ZHU, M., ZOLLA, J., HÖLZLE, U.,
STUART, S., AND VAHDAT, A. B4: Experience with a globally-deployed software

defined WAN. In ACM SIGCOMM (2013), pp. 3–14.
[13] MCKEOWN, N., AND DIOT, C. Buffer sizing workshop, Dec. 2-3. https://

buffer-workshop.stanford.edu/, 2019.
[14] NAOUS, J., GIBB, G., BOLOUKI, S., AND MCKEOWN, N. NetFPGA: Reusable

router architecture for experimental research. In Proceedings of the ACM Work-
shop on Programmable Routers for Extensible Services of Tomorrow (2008),
PRESTO ’08.

[15] NICHOLS, K., AND JACOBSON, V. Controlling queue delay. Queue 10, 5 (May
2012), 20:20–20:34.

[16] RAINA, G., TOWSLEY, D., AND WISCHIK, D. Part ii: Control theory for buffer
sizing. SIGCOMM Comput. Commun. Rev. 35, 3 (July 2005), 79–82.

[17] SHIFRIN, M., AND KESLASSY, I. Small-buffer networks. Comput. Netw. 53, 14
(Sept. 2009), 2552–2565.

[18] SINGH, A., ONG, J., AGARWAL, A., ANDERSON, G., ARMISTEAD, A., BAN-
NON, R., BOVING, S., DESAI, G., FELDERMAN, B., GERMANO, P., KANA-
GALA, A., PROVOST, J., SIMMONS, J., TANDA, E., WANDERER, J., HÖLZLE,
U., STUART, S., AND VAHDAT, A. Jupiter rising: A decade of Clos topologies
and centralized control in Google’s datacenter network. In ACM SIGCOMM
(2015), pp. 183–197.

[19] VILLAMIZAR, C., AND SONG, C. High performance TCP in ANSNET. SIG-
COMM Comput. Commun. Rev. 24, 5 (Oct. 1994), 45–60.

[20] VU-BRUGIER, G., STANOJEVIC, R. S., LEITH, D. J., AND SHORTEN, R. N.
A critique of recently proposed buffer-sizing strategies. SIGCOMM Comput.
Commun. Rev. 37, 1 (Jan. 2007), 43–48.

ACM SIGCOMM Computer Communication Review Volume 49, Issue 5, October 2019

74


