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ABSTRACT
The most demanding tenants of shared clouds require com-
plete isolation from their neighbors, in order to guarantee
that their application performance is not affected by other
tenants. Unfortunately, while shared clouds can offer an op-
tion whereby tenants obtain dedicated servers, they do not
offer any network provisioning service, which would shield
these tenants from network interference.

In this paper, we introduce Links as a Service (LaaS), a
new abstraction for cloud service that provides isolation of
network links. Each tenant gets an exclusive set of links
forming a virtual fat-tree, and is guaranteed to receive the
exact same bandwidth and delay as if it were alone in the
shared cloud. Consequently, each tenant can use the for-
warding method that best fits its application. Under simple
assumptions, we derive theoretical conditions for enabling
LaaS without capacity over-provisioning in fat-trees. New
tenants are only admitted in the network when they can
be allocated hosts and links that maintain these conditions.
LaaS is implementable with common network gear, tested to
scale to large networks and provides full tenant isolation at
the worst cost of a 10% reduction in the cloud utilization.
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1. INTRODUCTION
Many owners of private data centers would like to move

to a shared multi-tenant cloud, which can offer a reduced
cost of ownership and better fault-tolerance. For some of
these tenants it is vital that their applications will not
be affected by other tenants, and will keep exhibiting the
same performance1 [11, 36, 37]. For example, a banking ap-
plication may need to roll-up all accounts data overnight,

1By performance, we refer to the inverse of either the total
application run-time, including both the computation and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ANCS ’16, March 17-18, 2016, Santa Clara, CA, USA
© 2016 ACM. ISBN 978-1-4503-4183-7/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2881025.2881028

and a weather prediction software should similarly complete
within a highly predictable time. For such tenants, run-time
predictability is a key requirement.

Unfortunately, distributed applications often suffer from
unpredictable performance when run on a shared cloud [12,
27]. This unpredictable performance is mainly caused by
two factors: server sharing and network sharing [7, 14, 17,
20, 24, 26, 32, 34, 35, 38, 41, 47, 49, 52–54, 56]. The first factor,
server sharing, is easily addressed by using bare-metal pro-
visioning of servers, such that each server is allocated to a
single tenant [3]. However, the second factor, network shar-
ing, is much more difficult to address. When network links
are shared by several tenants, network contention can signif-
icantly worsen the application performance if other tenant
applications consume more network resources, e.g. if they
simply want to benchmark their network or run a heavy
backup [31]. This can of course prove even worse when
other tenants purposely generate adversarial traffic for DoS
or side-channel attacks [48].

As detailed in Section 2, current solutions either (a)
require tenants to provide and adhere to a specific traf-
fic matrix declared in advance, which often proves im-
practical [14, 56]; (b) follow the hose model by providing
enough throughput for any set of admissible traffic matri-
ces [12, 21, 54], but also significantly reduce the link band-
width and burst size that can be allocated to each VM; or
(c) attempt to track the current traffic matrix, but cannot
guarantee constant performance [24, 35, 47, 49, 53]. In addi-
tion, while it is known that tailoring the packet forwarding
method to the specific tenant application can increase its
performance, none of the current cloud solutions allow mul-
tiple forwarding algorithms to co-exist on the same network
without impacting performance.

In this paper, we introduce a simple and effective approach
that eliminates any interference in the cloud network. This
approach allows each tenant to use a network forwarding
algorithm that is optimized for its own application. Keeping
with the notion that good fences make good neighbors, we
argue that the most demanding tenants should be provided
with exclusive access to a subset of the data center links,
such that each tenant receives its own dedicated fat-tree
network. We refer to this cloud architecture model as Links
as a Service (LaaS). The LaaS model guarantees that these
tenants can obtain the exact same bandwidth and delay as

communication times, or of the response time of online ser-
vices.



(a) No LaaS: Shared links (b) No LaaS: Bandwidth loss (c) LaaS: Full isolation

Figure 1: Two tenants hosted on a cloud. (a) Their traffic interferes on many shared links. (b) There are
no shared links, but the second tenant cannot service an admissible traffic from S0 and S1 to D0 and D1.
(c) Under LaaS conditions of tenant placement and link allocation, the network can service any admissible
tenant traffic demands.

if they were alone in the shared cloud, independently of the
number of additional tenants. We show that allocation of
links to tenants is cost-effective and implementable by using
common hardware. Note that LaaS can similarly support
a relaxed model that splits physical links into time-domain-
multiplexed channels. This relaxed model allows multiple
tenants per server, but requires accurate packet pacing [29]
not provided by common hardware today.

While the LaaS abstraction is attractive, Figure 1 illus-
trates why it can be a challenge to provide it given any
arbitrary set of tenants. First, Fig. 1(a) illustrates a bare-
metal allocation of distinct hosts (servers) to two tenants
that does not satisfy the LaaS abstraction, since the tenants
share common links. Likewise, the allocation of hosts and
links in Fig. 1(b) also does not satisfy LaaS, even though no
links are shared between tenants. This is because, regard-
less of the packet forwarding algorithm, internal traffic of
the second tenant from the two hosts S0 and S1 in the right
leaf switch to hosts D0 and D1 would need to share a com-
mon link, and so some admissible traffic patterns would not
be able to obtain full bandwidth. Interestingly, for this host
placement, we find that there is in fact no link allocation
that can provide full bandwidth to all the admissible traffic
patterns of both tenants. Finally, Fig. 1(c) fully satisfies
the LaaS conditions. All tenants obtain dedicated hosts and
links, and can service any admissible traffic demands be-
tween their nodes, independently of the traffic of other ten-
ants. To generalize the above examples, we further analyze
the fundamental requirements for providing LaaS guarantees
to tenants in 2- and 3-level homogeneous fat-trees. Under
minor assumptions, our analysis provides the necessary and
sufficient conditions to guarantee the same bandwidth and
delay performance over the shared fat-tree networks as when
being alone in the shared cloud. These conditions are novel
and greatly reduce the complexity for the online allocation
algorithm presented in Section 3.

We implement a standalone LaaS scheduler that auto-
mates tenant placement on top of OpenStack, as well as con-
figures an InfiniBand SDN controller to provide forwarding
without interference. Our open-source code is made avail-
able online [1]. We show that using this code, our LaaS
algorithm responds to tenant requests within a few millisec-
onds, even on a cloud of 11K nodes, i.e. several orders of
magnitude faster than the time it takes to provisioning a new
virtual machine. In addition, when the average tenant size
is smaller than a quarter of the cloud size, we find that our
LaaS algorithm achieves a cloud utilization of about 90%,

for various tenant-size distributions. For larger tenant sizes,
our LaaS allocation converges to the maximal utilization
obtained by a bare-metal scheduler that packs tenants with-
out constraints. Finally, to demonstrate LaaS strength, we
show performance improvements of 50%-200% for highly-
correlated tenant traffic generated by a Bulk Synchronous
Parallel (BSP) application relying on data exchanges along
a virtual three-dimensional axis system. Thus, the perfor-
mance improvement exceeds the utilization cost for such ap-
plications, uncovering an economic potential (Section 4).

While we focus, for brevity, on full-bisectional-bandwidth
fat-trees, we show how LaaS can be extended to support
over-provisioned (slimmed) fat-trees. We also describe how
LaaS can fit more general cloud cases, e.g. when mixing
highly-demanding tenants with regular tenants (Section 5).

Our evaluations show that LaaS is practical and effi-
cient, and completely avoids inter-tenant performance de-
pendence.

2. RELATED WORK
Application variability. Several studies about the vari-
ability of cloud services and HPC application performance
were presented by [12, 13, 27, 31, 40, 51]. They show signifi-
cant variability for such applications, which strengthens the
motivation for using LaaS.
Network isolation. Specific high-dimensional tori super-
computers like IBM BlueGene, Cray XE6, and the Fujitsu
K-computer provide scheduling techniques to isolate ten-
ants [5, 13, 42]. However, they all rely on forming an iso-
lated cube on 3 out of the 5- or 6-dimensional torus space,
and thus cannot be used in clouds with fat-tree topologies.
They also exhibit a significantly lower cluster utilization,
measured as the amount of servers used over time, than the
90% utilization obtained by LaaS on fat-trees. Another ap-
proach, reduces the interference between jobs running on
same fat-tree by applying hard placement constraints [33].
This work reduces but does not guarantee jobs isolation from
each other.
Packet forwarding. Many architectures rely on Equal
Cost Multiple Path (ECMP) [25] to spread the allocated
tenant traffic and avoid the need to allocate exact band-
width on each of the used physical links [12,30,46]. However,
while ECMP load-balancing is able to balance the average
bandwidth of many small bandwidth flows, it suffers from a
heavy tail of the load distribution. When traffic contains a
relatively small number of large flows, ECMP is known to



provide poor load-balancing. Thus, other tenants will affect
the application performance.

Silo [29] aims to provide guaranteed latency, bandwidth
and burst size to multiple tenants for a worst-case traffic
pattern, assuming that tenants do not optimize their for-
warding scheme. Silo achieves its guarantees by applying ac-
curate rate- and burst-size moderation to enforce centrally-
calculated values obtained from network calculus. Unfor-
tunately, Silo does not take forwarding into account. For
instance, consider a tenant of 200 VMs placed across more
than one 2-level sub-tree (which normally can contain thou-
sands of VMs). If 100 VMs need to send traffic to the other
VMs through the same uplink because of the forwarding
rules, then each would be restricted to use at most 1/100th
of the link bandwidth and 1/100th of the switch buffer size,
which is unacceptable for current large tenants. LaaS allows
the tenants to adapt their forwarding to the traffic pattern
without introducing inter-tenant interference, thus allowing
them to fully consume the full network bandwidth.
Time separation. Some systems like Cicade [34] accept
the need for handling the varying nature of tenant traffic in-
stead of relying only on the average demand. They assume
that traffic demands change at a pace that is slow enough to
enable them to react. Alternatively, scheduling the MapRe-
duce shuffle stages was proposed by Orchestra [16]. A gener-
alization of this approach that allows a tenant to describe its
changing communication needs is suggested by Coflow [15].
On the same line of thought, scheduling at a finer grain was
proposed by Hedera [7]. However, since these schemes pro-
pose a fair-share network bandwidth to the current set of
applications, they actually change the performance of a ten-
ant when new tenants are introduced. Even though fairness
does improve, the tenant performance variability grows.
Tenant resource allocation. Cloud network performance
has received significant attention over the last few years.
An overview of the different proposals to allocate tenant
network resources is provided by [38].

Virtual Network Embedding maps tenants’ requested
topologies and traffic matrix over arbitrary clusters [14,56].
However, tenants must know and declare their exact traf-
fic demands which is mostly impractical. Moreover, valid
embedding is calculated by variants of linear programming,
which are known not to scale as the size of the data cen-
ters and number of tenants grow. In addition, as most of
these solutions rely on the tenant traffic matrix, they con-
sider only the average demands, falling short of representing
the dynamic nature of the application traffic. For example,
they prove problematic when an application alternates be-
tween several traffic permutations, each utilizing the full link
bandwidth.

Other proposals, such as Topology Switching and Okto-
pus [12,54], propose an abstraction for the topology and traf-
fic demands to be allocated to the tenants. They are similar
to the hose model proposed for Virtual Private Networks
in the context of WAN [8]. In addition, [10] attempts to
provide a feedback-based fair-share bandwidth using edge-
based rate-limiting. However, to guarantee tenant latency
predictability and isolation, such solutions would need strict
time-pacing of packets, small limits on allowed VM band-
width and burst-size allocation, as shown in [29]. As men-
tioned above, these are impractical in current networks.

Another approach for isolation may rely on distributed
rate limiting like [47], NetShare [35], ScondNet [24], Sea-

wall [53], Gatekeeper [49] and Oktopus [12]. But distributed
rate limiting at the network edge requires tenant-wide coor-
dination to avoid bottlenecks due to load-imbalance. This
coordination leads to response time in the order of millisec-
onds [30], while the life time of a traffic pattern for high-
demanding applications may be 2 to 3 orders of magnitude
shorter.
Fairness. FairCloud provides a generalization of the re-
quired fairness properties of the shared cloud network [45].
LaaS tenant isolation satisfies these requirements, and
avoids the allocation complexity of the general case.
Application-based routing. The above schemes for net-
work resource allocation ignore the fact that each tenant ap-
plication may perform best with a different routing scheme.
Routing algorithm types span a wide range. Some are com-
pletely static and optimized for MPI applications [22, 57].
Others rely on traffic-spreading techniques like ECMP [25],
rely on traffic spray as in RPS or DeTail [18, 58], use adap-
tive routing as proposed by DARD [55], or even rely on per-
packet synchronized schemes like FastPass [43]. LaaS iso-
lates the sub-topology of each tenant, and therefore allows
each tenant to use the routing that maximizes its application
performance. Without link isolation the different routing
engines must continuously coordinate the actual bandwidth
each one of them utilize from each link. It is clear that
the involved complexity of such scheme renders it slow and
impractical.

3. LAAS ALGORITHM
In this section, we describe online algorithms for tenant

placement and link allocation in the LaaS scheduler. Online
placement algorithms require the existing tenant placement
to be maintained when a new job is placed, and therefore
do not move existing tenants. Similarly we provide online
link-allocation algorithms to avoid any traffic interruption
when a new tenant is introduced. The algorithm we describe
provably guarantees that a tenant will obtain a dedicated set
of hosts and links, with the same bandwidth as in its own
private data center. The algorithm relies on the required
properties of the placement to trim the solution space and
achieve fast results.

We first study 2-level fat-trees, and then generalize the
results to 3 levels. We first present a Simple heuristic al-
gorithm, and then extend it with a LaaS algorithm that
achieves a better cloud utilization.

3.1 Isolation for 2-level Fat Trees
Consider a 2-level full-bisectional-bandwidth fat-tree

topology, i.e. a Full Bipartite Graph between leaf switches
and spine switches, as in Fig. 1 above. For brevity we denote
Full Bipartite Graphs that make the fat-tree connections be-
tween switches at levels lvli and lvli+1: FBGi. It is com-
posed of r leaf switches, denoted Li for each i ∈ [1, r], and
m spine switches. Each leaf switch is connected to n ≤ m
hosts as required to meet the rearrangeably non-blocking
condition for fat-trees [28].
Problem definition. Given a pre-allocation of tenants
(with pre-assigned links and hosts), when a new tenant ar-
rives with a request for N hosts, we need to find:
(i) Host placement: Find which free hosts to allocate to the
new tenant, i.e. allocate Ni free hosts in each leaf i such

that N =
r∑

i=1

Ni.



Figure 2: Two tenants of sizes 6 and 7 hosts placed
by the Simple heuristic, where each tenant fills a
number of complete sub-trees.

(ii) Link allocation: Find how to support the tenant traf-
fic, i.e. allocate a set Si of spines for each leaf i, such that
the hosts of the new tenant in leaf i can exclusively use the
links to Si, and the resulting allocation can fully service any
admissible traffic matrix.

We want to fit as many arriving tenants as possible into
the cloud such that their host placement and link alloca-
tion obey the above requirements, and without changing
pre-existing tenant allocations.
Simple heuristic algorithm. We first introduce a Simple
heuristic algorithm, as basis for the discussion of our algo-
rithm. It relies on a property of fat-trees and minimum-hop
routing: if a single tenant is placed within a sub-tree, then
traffic from other tenants will not be routed through that
sub-tree. Note that for 2-level fat-trees a sub-tree is a leaf
switch.

Let N denote the number of tenant hosts, and n the num-
ber of hosts per leaf. The Simple heuristic simply computes
the minimal number s of leaf switches required for the ten-
ant: s = dN/ne. Then, it finds s empty leaf switches to
place the tenant hosts in. Finally, if s > 1, it allocates all
the up-links leaving the s leaf switches; else, no such links
are needed.

Fig. 2 illustrates the Simple algorithm, showing how ten-
ant T1 obtains a placement for N = 6 hosts. First, s =
d6/4e = 2. Assuming T1 arrives first, the two left leaves
are available when it arrives, and they are used to host T1.
Also, all the up-links of these 2 leaf switches are allocated
to T1. When it arrives, tenant T2 is similarly allocated the
two right leaves and their up-links.

In the general case, any placement obtained by Simple
supports any admissible traffic pattern. This is because the
dedicated sub-network of the tenant is a single leaf switch if
s = 1, and a 2-level fat-tree if s > 1, which is a folded-Clos
network with m ≥ n. It is well known that such a topol-
ogy supports any admissible traffic pattern, because it meets
the rearrangeable non-blocking criteria and the Birkhoff-
von Neumann doubly-stochastic matrix-decomposition the-
orem [28].
LaaS placement analysis. This section describes a re-
quired condition on placement and sufficient condition on
link allocation that are key to make the LaaS algorithm
correct and efficient. The placement condition requires the
allocation of N tenant hosts as Q leaves of D hosts and
optionally additional leaf of R | R < D hosts such that
N = QD + R. The sufficient link allocation condition re-
quires the links of R spines connecting to the Q leaves and
the optional single leaf of R hosts. A subset of size D − R
of these spines should connect just to the Q leaves.

Consider a single leaf i with Ni tenant hosts. In the anal-
ysis below, we make the following simplifying assumption:
on every leaf switch, the number of leaf-to-spine links (and
the corresponding number of spines) allocated to a tenant
equals the number of its allocated hosts:

|Si| = Ni. (1)

Our simplifying assumption is based on the following intu-
ition. On the one hand, for tenants occupying several leaves,
if |Si| < Ni, we may not be able to service all admissible traf-
fic demands (since we may have up to Ni flows that need to
exit leaf i, but only |Si| links to service them). On the other
hand, allocating |Si| > Ni, is wasteful, because the number
of remaining spine switches would then be less than the num-
ber of available hosts, and therefore future tenants spanning
more than one leaf may not be able to obtain enough links
to connect their hosts.

Without loss of generality, we also make a notational as-
sumption that the Ni’s are sorted such that 0 < N1 ≤ N2 ≤
· · · ≤ Nt, where t is the number of leaves connected to hosts
allocated to the tenant.

We will now see that our assumptions lead (by a sequence
of lemmas) to a simple rule that greatly simplifies the pos-
sible placements that need to be evaluated by our LaaS
scheduling algorithm.

Lemma 1. The number of common spines that connect
two leaves must at least equal their minimal number of allo-
cated hosts:

∀i < j ∈ [1, t] : Ni = min(Ni, Nj) ≤ |Si ∩ Sj | (2)

Proof. Consider a traffic permutation among the tenant
hosts. There are up to Ni full-link-capacity host-to-host
flows going from Li to Lj (or back). Since each flow has to
use a different link and each link goes to a different spine
switch, we will need at least Ni common spine switches in
|Si ∩ Sj |.

Lemma 2. The number of common spines that connect
two leaves to a third must at least equal the minimal number
of allocated hosts, either in the union of the first two leaves
or in the third, i.e. ∀i, j, k ∈ [1, t] : min(Ni + Nj , Nk) ≤
|Si ∪ Sj |.

Proof. Let c = min(Ni + Nj , Nk). There are at most
c flows going from Lk to either Li or Lj (or back). Since
each flow has to use a different link and each link goes to a
different spine switch, we will need at least c spines in the
union Si ∪ Sj of the spines connected to the two leaves.

Lemma 3. The number of allocated hosts in any leaf can-
not exceed the number in the union of any two other leaves,
i.e. ∀i 6= j 6= k ∈ [1, t] : Ni, Nj , Nk > 0→ Ni + Nj ≥ Nk

Proof. Assume the contrary: Ni + Nj < Nk. There are
only two cases: Ni ≤ Nj < Nk or Nj ≤ Ni < Nk. W.l.o.g.,
we assume the first. If so, min(Ni +Nj , Nk) = Ni +Nj . By
Lemma 1, to enable connectivity between Ni and Nj , they
must have at least Ni spines in common: |Si ∩ Sj | ≥ Ni.
Substituting the above into Lemma 2 we obtain: ∀i, j, k ∈
[1, t] : min(Ni + Nj , Nk) = Ni + Nj ≤ |Si ∪ Sj | = |Si| +
|Sj | − |Si ∩ Sj |. But since Ni = |Si| and Nj = |Sj | in LaaS
by Equation (1), we get 0 ≤ − |Si ∩ Sj |. But Si ∩Sj is non-
empty because otherwise traffic from hosts in leaf i to hosts
in j wouldn’t be able to pass. So we get a contradiction,
thus Ni + Nj ≥ Nk.



Figure 3: A tenant of N = 8 = Q · D + R hosts. To
implement LaaS, there must be Q leaves of D hosts
and optionally one leaf of R < D hosts.

Necessary host placement. We will now provide two the-
orems showing necessary and sufficient conditions to get the
LaaS conditions of tenant traffic isolation and support for
any admissible traffic matrix. Interestingly, the first theorem
requires necessary conditions on the host placement, while
the second theorem provides sufficient conditions on the link
allocation. We continue to assume throughout the rest of the
paper that |Si| = Ni for all i, and N1 ≤ N2 ≤ · · · ≤ Nt.

Theorem 1. A necessary condition for LaaS is

N1 ≤ N2 = N3 = · · · = Nt, (3)

implying that all leaf switches of a tenant should hold the
exact same number of hosts except for a potential smaller
one.

Proof. We show that N2 = Nt. By Lemma 1, L1 and L2

must have at least N1 = |S1| spines in common, i.e. S1 ⊆
(S1 ∩ S2). Therefore, S1 is a subset of S2, so |S1 ∪ S2| =
|S2| = N2. By Lemma 3, when i = 1, j = 2 and k = t,
N1 + N2 ≥ Nt thus min(N1 + N2, Nt) = Nt. So, when
Nt flows are sent from Lt to L1 and L2, we must have at
least Nt common spines: |S1 ∪ S2| = N2 ≥ Nt. But since
N2 ≤ Nt, it follows that N2 = Nt.

Given Theorem 1, the tenant placement should follow the
form: N = Q · D + R, where Q is the number of repeated
leaves with D hosts each, and we optionally add one unique
leaf with a smaller number of hosts R. This notation follows
the Divisor, Quotient and Remainder of N . This result is
useful because it greatly simplifies the solution of the host
placement problem defined above.

Fig. 3 demonstrates this result. It shows Q leaf switches of
D hosts each, and optionally another leaf switch of R < D
hosts. We denote by SD the set of spines connected by
allocated links to the Q leaves of D hosts, and by SR those
that connect via allocated links to the optional leaf of R
hosts.
Sufficient link allocation. We can now prove sufficient
conditions on the link allocation to satisfy LaaS.

Theorem 2. A sufficient condition for LaaS is that the
link allocation satisfies ∀i ∈ [1, Q] : Si = SD and if R > 0 :
SR ⊂ SD, i.e. all the allocated leaf up-links of a given tenant
go to the exact same set of spine switches (or a subset of it
for the remainder leaf).

Proof. For the case R = 0, the link allocation above
means there is a group of D spine switches that connect to
all leaf switches. Thus the tenant sub-topology reduces to

(a) Placement (b) Link Allocation

Figure 4: Illustration that a simple host placement
is not sufficient, and a joint host placement and link
allocation is necessary for LaaS. (a) All tenants sat-
isfy the host placement necessary conditions, e.g.
the placement of C is 3 = Q ·D + R = 2 · 1 + 1. A and
B support any admissible traffic matrix by the suf-
ficient link allocation conditions. (b) However, the
link allocation for C is impossible. There is no way
to find a common set of spines with free ports.

an Full Bipartite Graph (FBG) with m′ = D spine switches
and n′ = D hosts per leaf. Since m′ = n′ such topology
is rearrangeable non-blocking folded-Clos which is known to
support any admissible traffic matrix as mentioned above.

For the case of one additional leaf LjR of R hosts, we
provide a constructive method for routing arbitrary per-
mutations. We consider the FBG sub-topology formed by
the tenant hosts and links, where LjR connects to all SD

spines. For this topology m′ = n′ = D and r′ = Q + 1.
Again, m′ = n′ so it is guaranteed by the rearrangeable
non-blocking theorem that every full permutation of n′ · r′
flows is route-able. Routing is symmetric with respect to the
spine switches. Moreover, to avoid congestion, each spine
needs to carry exactly 1 flow from each leaf and 1 flow to
each leaf. So any full permutation of our original topology
where LjR has only R flows will be D − R flows short. We
extend these flows with D−R flows going from LjR to LjR .
Since these flows share the same leaf switch they must be
routed through D−R different spines. After completing the
full permutation routing, and since all spines connect to all
leaves, we swap between each spine that carries one of the
added D −R flows with a spine that is not included in SR.
As the links allocated to the extra flows are not needed, any
permutation is fully routed by the original topology.

A necessary host allocation is not sufficient. The
above theorems provide us with guidelines for implementing
LaaS. We now show that due to previous tenant allocations,
a host placement as in Theorem 1 is not always sufficient
to provide a needed link allocation as in Theorem 2. This
is why Theorem 2 proves essential. If the link allocation
cannot be found for a specific placement our algorithm will
need to search for another host allocation.

Lemma 4. A host placement that meets Theorem 1
does not guarantee the existence of a link allocation that
meets Theorem 2, and therefore does not guarantee LaaS.

Proof. We prove Lemma 4 by the example provided in
Fig. 4. Three tenants are shown placed according to the
provided heuristic of the previous section: A has 8 = 2 ·3+2
hosts, B has 5 = 2 · 2 + 1, and C has 3 = 1 · 2 + 1. We track



allocated up-links of the leaf switches in a matrix where
rows represent the leaf switches and columns represent the
spines each port connects to. As can be observed, there is
no possible link allocation for tenant C, since the leaves it is
placed on do not have free links connected to any common
spine. There is no link allocation possible for C even though
it was placed according to the conditions of Theorem 1.
The online link allocation algorithm for C (after A and B
are placed) cannot allocate the links. In fact, even an offline
version of link allocation - reassigning the links of A and B
- cannot solve the problem once the placement of A and B
does not change.

According to Lemma 4, some tenant requests may be denied
because the scheduler cannot find a proper link allocation.
Thus any LaaS algorithm has to validate the feasibility of a
link allocation for each legal host placement.

3.2 Isolation for 3-level Fat Trees
So far we have discussed the LaaS allocation for 2-level fat-

trees. We now extend the results to 3-level fat-trees, which
form the most common cloud topology [6, 9]. We use the
notation of Extended Generalized Fat Trees (XGFT) [39],
which defines fat-trees of h levels and the number of sub-
trees at each level: m1,m2, . . . ,mh. and the number of par-
ent switches at each level: w1, w2, . . . , wh.

We consider three approaches to this problem: a Simple
heuristics, a Hierarchical decomposition, and an Approxi-
mated scheme. We conclude with a description of the final
LaaS algorithm that we implemented, relying on the Ap-
proximated scheme.
Simple heuristic for 3-level fat-trees. The Simple algo-
rithm described in sub-section ’Simple heuristic algorithm’ is
easily extended to any fat-tree size. For an arbitrary XGFT,
first define the number of hosts Rl under a sub-tree of level
l: R0 = 0, and Rl =

∏l
i=1 mi. Given a tenant request for

N hosts, Simple first determines the minimum level lmin of
the tree that can contain all N tenant hosts:

lmin = min {l| (Rl−1 < N) ∧ (Rl ≥ N)} (4)

and the number s of required sub-trees of level lmin: s =
dN/Rlmin−1e. Then, it places the tenant hosts in s free sub-
trees of level lmin. It also allocates to the tenant all the links
internal to these s sub-trees; and if s > 1, it allocates as well
all the links connecting the sub-trees to the upper level.

It is clear that the Simple heuristic algorithm, by round-
ing up the number of nodes, trades off cluster utilization
for simplicity, non-fragmentation, and greater locality with
lower hop distances. As we show in the evaluation section,
the utilization obtained by this algorithm is low, making it
potentially unacceptable to cloud vendors, so we keep look-
ing for a better one.
Hierarchical decomposition. In this section we describe
how LaaS can be provided to a 3-level fat-tree using a hi-
erarchical decomposition approach following the recursive
description of fat-trees in [44].

Fig. 5 shows an example of 3-level fat-tree. We denote the
switches on the tree by their levels (from bottom up) lvl1,
lvl2 and lvl3. We show that for a LaaS link allocation to
be feasible, the condition of Theorem 1 needs to hold not
only for each 2-level sub-tree but also for each lvl2 - lvl3
Full Bipartite Graph (FBG2) at the top of the tree. One of
these FBGs is highlighted in Fig. 5.

Figure 5: A 3-level fat-tree showing the host alloca-
tion on each 2-level sub-tree matching Theorem 1.
One of the lvl2 - lvl3 Full Bipartite Graphs (FBG2) is
highlighted. We denote as Uj the maximal number
of flows injected into this FBG2 from the jth 2-level
sub-tree.

As we showed in the previous sections, since the tenant
traffic pattern may be completely contained within each 2-
level tree, host allocation in each 2-level tree must adhere
to Theorem 1. So the number of tenant hosts within the
2-level sub-tree j must be of the form Nj = Qj · Dj + Rj .
Note that an allocation that fits in a single leaf switch also
follows this scheme with Qj = 1.

Fig. 5 depicts a Theorem 1-compliant host allocation
within each of the 2-level sub-trees. It follows the form:
Nj = Qj ·Dj + Rj |j ∈ {1...m3}. Note that the link assign-
ment within the 2-level sub-trees must also adhere to The-
orem 2 such that SR

j ⊂ SD
j . Consequently, the maximum

number Uj of flows leaving the 2-level sub-tree from switch
s can be either 0 in case s /∈ SD

j , Qj in case s ∈ SD
j \SR

j , or

Qj + 1 if s ∈ SR
j .

When we consider the conditions required for the high-
lighted FBG2 to support any admissible traffic pattern, it is
strikingly similar to the analysis we provided for the 2-level
fat-tree. For the 2-level tree we already proved that in order
to support any admissible traffic pattern, the sequence of Uj

values must meet the rule U1 ≤ U2 = U3 = · · · = Um3 . Ap-
plying the same to the 3-level tree we obtain a requirement
for the assignments of Uj on each of the FBG2. However,
each one of the FBG1 (there are m3 such 2-level sub-trees)
could select a different set of SD

j and SR
j . This means that a

solution could allow each 2-level sub-tree to select a different
set of FBG2 to carry its flows, as long as the above rule is
maintained for each FBG2.

Unfortunately the above rule still allows a vast amount
of legal tenant-placement and link-allocation possibilities,
which make the full 3-level fat-tree LaaS problem too hard
to be solved in practical time even on high-end processors.
If we were to provide an optimal allocation we would con-
clude here that our problem is too hard. But our task is not
to find the optimal solution, or even any solution at a spe-
cific iteration. Our target is to show that there is a simple
enough algorithm that would be able to handle the online
LaaS problem in reasonable time and with reasonable suc-
cess rate such that the cluster utilization remains high and
LaaS is guaranteed. We do that by applying a restriction on
the solution space of the hierarchical decomposition.
Approximated algorithm. We provide a simpler algo-
rithm that compromises cluster utilization in favor of re-
duction of the solution search space. Our approximation



Figure 6: An example of host placement with N = 32
hosts on a 3-level fat-tree using the Approximated
method. Using a notation similar to the 2-level fat-
tree, this allocation is of the form: Q′ = 2, D′ = 3
and R′ = 2.

requires the allocation to be symmetrical with respect to all
the FBG2, i.e. that the allocation on all the FBG2 is iden-
tical and thus calculated just once. So the solution must
use the same number of flows Uj leaving any one of the lvl2
switches in the same 2-level sub-tree. Note that any alloca-
tion where the number of tenant hosts Ni connected to leaf
switch i does not include all the hosts on that leaf switch
Ni < m1, will not utilize all the links from that switch to the
upper-level switches. So only a subset of the lvl2 switches in
the same FBG1 is going to pass traffic of that tenant. Thus
if we now consider the lvl2 to lvl3 traffic, not all FBG2 will
see the same Uj . To avoid this we require that D is either
0 or m1 for all 2-level sub-trees, except where the tenant
fits within the same 2-level fat-tree and thus Uj = 0. As a
consequence, if a tenant cannot fit within a single sub-tree,
we round up its size to a multiple of m1. The host place-
ment can now be performed in complete leaf switches of m1

hosts. For instance, if each leaf switch can hold 10 hosts,
and a tenant requests N = 267 hosts, then we effectively
allocate it N ′ = m1 dN/m1e = 270 hosts.

Moreover, since the approximation in 3-level fat-tree allo-
cates complete lvl1 switches, it is equivalent to the 2-level
LaaS problem: lvl1 switches are equivalent to hosts, lvl2
switches are like leaf switches and lvl3 switches are like
spines. Thus the approximated 3-level fat-tree LaaS problem
has to comply to the same conditions as for the 2-level tree.
We denote the allocation of full lvl1 switches using a similar
notation to the 2-level: Q′ is the number of allocated 2-level
sub-trees, each with D′ = Q leaves. Optionally there may
be one additional 2-level sub-tree with R′ allocated leaves.
N ′ = dN/m1e = Q′ ·D′ + R′.

An example of such allocation for a tenant of 32 hosts on
a 3-level fat-tree, with m1 = 4 hosts per leaf, is provided
in Fig. 6. On the left Q′ = 2 sub-trees, the tenant uses
D′ = 3 leaves and thus U1 = U2 = 3 for all FBG2. In
addition a single unique sub-tree r with R′ = 2 leaves is also
allocated and thus Ur = 2 for all FBG2. So all the FBG2

are thus identical. Each one of them has to support Q′ lvl2
switches of D′ = 3 flows and one lvl2 switch with R′ = 2
flows. These requirements meet the condition of Theorem 1
and thus may be feasible.
LaaS algorithm.

We now want to implement our final LaaS algorithm for
concurrent host placement and link allocation in fat-trees.

Algorithm 1 FLAP(D,Q,R, l, le, r, {ports} , {rl})
1: // find next Q size leaf
2: for i = l to le do
3: if |M [i]| >= Q then
4: {nPorts} = {ports} ∩M [i]
5: if |nPorts| ≥ Q then
6: {newRL} = {rl} ∪ i
7: if r = D then
8: // found all repeated leaves
9: if findUniqueLeaf(R, ls, le; {nPorts} {rl}) then
10: {DPORTS} = {nPorts}
11: {DL} = {newRL}
12: return true
13: end if
14: else
15: j = i + 1; s = r + 1
16: if FLAP(D,Q,R,j,le,s,{nPorts},{newRL}) then
17: return true
18: end if
19: end if
20: end if
21: end if
22: end for
23: return false

Algorithm 2 LAAS(N)

1: // Try 1 level allocation
2: if N ≤ m1 then
3: for l = 0 TO m2 ·m3 − 1 do
4: if FLAP (N, 1, 0, l, l, 0, {} , {}) then
5: return true
6: end if
7: end for
8: end if
9: // Try 2 level allocation
10: if N ≤ m1 ·m2 then
11: for D = max(N,m1) to 1 do
12: Q =

⌊
N
D

⌋
13: R = N −Q ·D
14: for l = 0 TO m3 − 1 do
15: if FLAP (D,Q,R, l ·m2, (l+ 1) ·m2− 1, 0, {} , {}) then
16: return true
17: end if
18: end for
19: end for
20: end if
21: // Try 3 level allocation

22: U =
⌈

N
m1

⌉
23: for D = max(U,m2) to 1 do
24: Q =

⌊
U
D

⌋
25: R = U −Q ·D
26: if Q ≤ m3 then
27: if FLAP2(D,Q,R, 0,m3 − 1, 0, {} , {}) then
28: return true
29: end if
30: end if
31: end for
32: return false

To do so, we rely on our Approximated approach, and track
the allocated up-links in a matrix similar to Fig. 7(a). The
required set of leaves and links is of the form N = Q ·D+R.
As described in the sub-section ’LaaS placement analysis’, in
a general fat-tree, this translates to R spines that connect to
all the Q+1 allocated leaves and D−R spines connected just
to the Q repeated leaves. These requirements are equivalent
to finding a set of Q leaves that have D free up-ports to
a common set of spines, and a single leaf that has only R
free up-ports that form a subset of the spines used by the
previous Q leaves.

The search for Q leaves with enough common spines is
performed recursively. In the worst case, it may require ex-
amining all

(
m2
Q

)
combinations. Our LaaS algorithm returns



(a) Link Allocation Table (b) Corresponding Topology

Figure 7: Example of allocation with 2 potential
placements. (a) Table of leaf up-links holding the
link assignments of tenants A and B, as well as 2
faulty links X. (b) Corresponding topology. The new
tenant C of 10 hosts, arranged as Q ·D +R = 2 · 4 + 2,
can be assigned one of two allocations. In (a), the
first link allocation is shown in solid, and the second
with slanted lines.

the first successful allocation, so trying the most-used leaves
first packs the allocations and achieves the best overall uti-
lization results.

Fig. 7 demonstrates the process of evaluating a specific
D,Q,R division. Consider a new tenant C of 10 hosts, ar-
ranged as 2 leaves of 4 hosts plus 1 leaf of 2 hosts. We show
2 possible placements: The first would use 4 hosts on leaves
4 and 5, and 2 hosts on another leaf 6. The second would
use 4 hosts on leaves 3 and 4, and 2 hosts on another leaf 2.
We also illustrate how we could take into account two faulty
links in our link allocation if needed.

In the following section we describe the algorithm for map-
ping free leaves. The algorithm to perform the above exam-
ple is provided in Algorithm 1. The recursive function is
assuming the availability of matrix M [l] of free ports on
each leaf switch. It is given the following constants: D,R,Q
and the start and end leaf switch indexes ls, le. The re-
cursive function provides its current state on the recursion
using the following variables: l represents the current leaf
index to examine, r the number of Q size leaves that were
already found, {ports} the set of ports that are possible
for this allocation, {rl} the collected set of, so far, Q size
leaves. Eventually the recursion provides the following re-
sults: {DL} set of leaves with Q hosts, {DPORTS} the set of
ports to be used by the Q size leaves, UL the unique, sized
R, leaf and {UPORTS} the ports on that leaf. The higher
level algorithm considering the possible valid combinations
of Q,D and R, for 2-level and 3-level fat-trees is provided in
Algorithm 2.
Extension for over-subscribed fat trees. In order to
reduce the network equipment cost, some cloud vendors
use over-subscribed fat-trees, also known as slimmed fat-
trees [50]. In an over-subscribed fat-tree, the number of
uplinks is smaller than the number of downlinks in the
switches, contrarily to the full bisectional bandwidth fat-
tree, where they are equal. (We assume equal-bandwidth
links). In such trees, we denote Oi the ratio between the two
total number of links: those connecting switches at level i
to the previous level i− 1, and those connecting to the next
level i + 1. By this definition for XGFT:

Oi =
mi

wi+1
(5)

We describe here how to provide LaaS for over-subscribed
fat-trees, without requiring hardware-assisted accurate
TDMA link sharing. For simplicity we do not support ten-
ant selection of their requested bandwidth. Since we allow
no link-sharing between tenants, and we have no preference
between tenants, a tenant placed across a level i of the tree
has at least Oi permutation flows shared on each link. So
for crossing level i we only require S common switches at
level i + 1:

S =
∣∣∣SD

∣∣∣ =

⌈
D

dOie

⌉
(6)

Clearly, a selection of D such that it is not divisible by
dOie reduces the cluster utilization, so the order by which we
search for sub-trees should reflect that priority. The changes
to Algorithm 1 are a new function argument S which defines
the number of spines required, and its usage in line 7: if r =
S then. The changes to Algorithm 2 involve adding an S
of Equation (6) to the calls of FLAP and also adding an
external loop around the for statements in lines 11 − 19
and 23− 31 to try D values divisible by dOie first.

4. EVALUATION
Our evaluation is reported in three sub-sections. The

first deals with the resulting cloud utilization when applying
LaaS conditions. It shows that our LaaS algorithm reaches a
reasonable cloud utilization, within about 10% of bare-metal
allocation. The second part describes the system implemen-
tation on top of OpenStack, and the third part shows how
the LaaS architecture improves the performance of a tenant
in the presence of other tenants by completely isolating the
tenants from each other.

4.1 Evaluation of Cloud Utilization
Cloud utilization. We want to study whether our LaaS
network isolation constraints significantly reduce the num-
ber of hosts that can be allocated to tenants. We define
the cloud utilization as the average percentage of allocated
hosts in steady state. Assuming that tenants pay a fee pro-
portional to the number of used hosts and the time used,
the cloud utilization is a direct measure of the revenue of
the cloud provider.
Scheduling simulator. To evaluate the different heuris-
tics on large-scale clouds, we developed a scheduling sim-
ulator that runs many tenant requests over a user-defined
topology. The simulator is configured to run any of the
above algorithms for host and link allocation. This algo-
rithm may succeed and place the tenant, or fail. We use a
strict FIFO scheduling, i.e. when a tenant fails, it blocks
the entire queue of upcoming tenants. Note that this block-
ing assumption forms an extremely conservative approach
in terms of cloud utilization. In practice, clouds would typi-
cally not allow a single tenant to block the entire queue and
use resource reservation with back-filling techniques to over-
come such cases. Since smaller tenants are easier to place,
for any tenant size distribution, not letting smaller tenants
bypass those waiting means that we fill fewer tenants into
the cloud. Thus, the result should be regarded as an intu-
itive lower-bound for a real-life cloud utilization.
Simulation settings. We simulate the scheduler with LaaS
algorithm on the largest full-bisectional-bandwidth 3-level
fat-tree network that can be built with 36-port switches, i.e.
a cloud of 11,662 hosts. The evaluation uses a randomized



(a) (b)

Figure 8: (a) Measured job-size Cumulative Dis-
tribution Function (CDF) for the Julich JUROPA
scientific-computing cloud. (b) Resulting cloud uti-
lization. LaaS achieves 88%.

sequence of 10,000 tenant requests. A random run-time in
the range of 20 to 3,000 time units is assigned to each ten-
ant. The variation of run-time makes scheduling harder as
it increases fragmentation.

We evaluate 2 distribution types for the number of hosts
requested by incoming tenants. First, we randomly gener-
ate sizes according to a job size distribution extracted from
the Julich JUROPA job scheduler traces. These previously-
unpublished traces represent 1.5 years of activity (Jan.
2010 - June 2011) of a large high-performance scientific-
computing cloud. Second, we use a truncated exponential
distribution of variable average x. It is truncated between 1
and the cluster size.

In order to measure the utilization loss we fill the cluster
with tenants by assuming all tenant requests are available
at simulation start. Tenants’ run-time is randomized with
uniform distribution from 10 to 3000 time units.

As a baseline algorithm, we implement an Unconstrained
placement approach that simply allocates unused hosts to
the request, as in bare-metal allocation. Note that some
requests may still fail if the tenant requests more hosts than
the number of currently-free cloud hosts. We compare this
baseline to the Simple and LaaS algorithms, as described in
Section 3.
Simulation results. Fig. 8(a) illustrates the Cumulative
Distribution Function (CDF) of the tenant sizes (in number
of hosts) collected from the Julich JUROPA cluster. The
CDF shows peaks for numbers of hosts that are powers of
2 (1, 2, 4, 8, 16, and 32). We further generated 10,000
tenants with this job-size probability distribution, and the
same random run-time distribution as above (instead of the
original run-times, since they resulted in a low load, and
therefore in an easy allocation). Fig. 8(b) shows the tenant
allocation results: again, the cost of our LaaS allocation
versus the Unconstrained bare-metal provisioning is about
10% of cloud utilization (88% vs. 98%).

To further test the sensitivity of our algorithm to the ten-
ant sizes, we use a truncated exponential distribution for
tenant host sizes and modify the exponential parameter x.
The distribution of the JUROPA tenant sizes is similar to
such a truncated exponential distribution. Fig. 9 illustrates
the cloud utilization for Unconstrained, Simple, and LaaS, is
plotted as a function of the exponential parameter x, which
is close to the average tenant host size due to the trun-
cation. The Unconstrained line shows how the utilization
degrades with the job size, even without any network isola-

Figure 9: Cloud utilization for a truncated expo-
nential distribution of tenant host sizes in a cloud of
11,662 hosts.

tion. This is an expected behavior of bin packing. As the
job size grows, so does the probability for more nodes to
be left unassigned when the cloud is almost full. The uti-
lization of our LaaS algorithm stays steadily at about 10%
less than the Unconstrained algorithm. Finally, Simple has
the lowest cloud utilization for the entire tenant size range.
Note that it is less steady, since its utilization is more closely
tied to the sizes of the leaves and sub-trees. Once the ten-
ant size crosses the leaf size (18 in our case), it is rounded
up to a multiple of that number. Likewise, once it crosses
the size of a complete sub-tree (324 hosts), it is rounded up
to the nearest multiple of that number. These results show
that our LaaS algorithm provides an efficient solution for
avoiding tenant variability, as its cost is only about 10% for
a wide range of tenant sizes. Simple suffers from a partic-
ularly large fluctuation in utilization. LaaS is more stable
over the entire range, with about 90% utilization. There
are a few points where the Simple heuristic provides a bet-
ter utilization than LaaS. But, note that utilization stability
is key to cloud vendors, since changing the allocation algo-
rithm dynamically would require predicting the future size
distribution, and thus may produce worse results when the
distribution does not behave as expected.

4.2 System Implementation
We implemented the LaaS architecture by extending the

OpenStack Nova scheduler with a new service that first runs
the LaaS host and link allocation algorithm, and then trans-
lates the resulting allocation to an SDN controller that en-
forces the link isolation via routing assignments.
Host and link allocation. The integration of the LaaS
algorithm was done on top of OpenStack (Icecube release),
utilizing filter type: AggregateMultiTenancyIsolation. This
filter allows limiting tenant placement to a group of hosts
declared as an “aggregate”, which is allocated to the specific
tenant-id. Our automation, provided as a standalone service
on top of OpenStack’s nova controller, obtains new tenant
requests, and then calls the LaaS allocation algorithm. If
the allocation succeeds, we invoke the command to create a
new aggregate that is further marked by the tenant-id. The
allocated hosts are then added to the aggregate. The filter
guarantees that a new host request, conducted by a user
that belongs to a specific tenant, is mapped to a host that
belongs to the tenant aggregate.
Network controller. We further implement a method
to provide the link allocation to the InfiniBand SDN con-
troller [2], which allows it to enforce the isolation by chang-



Figure 10: Average run-time of single tenant alloca-
tion versus average tenant size.

ing routing. The controller supports defining sub-topologies,
by providing a file with a list of the switch ports and hosts
that form each sub-topology. Then each sub-topology may
have its own policy file that determines how it is routed.
Run-time. The LaaS Approximation scans through all pos-
sible placements for valid link allocation. This involves eval-
uating all possible valid combinations of R and Q values.
Fig. 10 presents the average run-time per tenant request for
placing tenants on 11,664 nodes cluster providing a trun-
cated exponential tenant size distribution. Run time was
measured on an Intel® Xeon® CPU X5670 @ 2.93GHz.
The peak in run-time of about 5 msec appears just below
the average tenant size of 324, which is the exact point where
our algorithm first scans all possible placements under a sin-
gle sub-tree and continues with multiple sub-tree placement.

4.3 Evaluation of Tenant Performance
Since LaaS guarantees tenant isolation, tenant perfor-

mance should be independent of the number of other tenants
that run on the same network. To demonstrate LaaS ten-
ant isolation, we simulate a large cluster using a well known
InfiniBand flit level simulator used by [19,23,57].

Fig. 11 presents the relative performance of single and
multiple tenants running Stencil scientific-computing appli-
cations on a cloud of 1,728 hosts, under either Unconstrained
or LaaS, normalized by the performance of a single tenant
placed without constraints. The figure illustrates many ef-
fects. First, the performance of a single tenant with Un-
constrained significantly degrades when other tenants are
active, e.g. to 45% with 32-KB message sizes. This is be-
cause the bare-metal allocation of Unconstrained does not
provide link isolation. Second, under our LaaS algorithm,
the single-tenant performance is not impacted when the other
tenants become active (the third and fourth sets of columns
look identical). This was the key goal of this work. LaaS
prevents any inter-tenant traffic contention. Finally, we can
observe an additional surprising effect (first vs. third sets of
columns): the tenant performance is slightly improved for
small messages under LaaS versus the Unconstrained allo-
cation. The reason is that LaaS does not accept tenants
unless it can place them with no contention, and therefore
the resulting placement tends to be tighter, thus improving
the run-time performance with small message sizes when
the synchronization time of the tasks is not negligible. The
lower network diameter of LaaS improves the synchroniza-
tion time, which is latency-dominated.

Figure 11: Simulated relative performance for ten-
ants running Stencil scientific-computing applica-
tions on a cloud of 1,728 hosts, either alone or as
32 concurrent tenants. While tenant performance
degrades when placed unconstrained (without link
isolation), the performance of single and multiple
tenants with LaaS appears identical, fulfilling the
promise of LaaS.

5. DISCUSSION
Recursive LaaS. When talking to industry vendors, they
pointed out simple extensions that would easily generalize
the use of LaaS. First, LaaS could be applied recursively, by
having each tenant application or each sub-tenant reserve
its own chunk of the cloud within the tenant’s chunk of the
cloud. Second, LaaS could also be applied in private clouds,
with cloud chunks being reserved by applications instead of
tenants. Third, shared-cloud vendors could easily restrict
LaaS to a subset of their cloud, while keeping the remainder
of their cloud as it is today. This can be done by reserv-
ing large portions of the topology to a virtual tenant that is
shared between many real tenants. Pre-allocation and mod-
ification of that sub-topology is already supported by our
code. As a result, LaaS offers a smooth and gradual tran-
sition to better service guarantees, enabling cloud vendors
to start only with the tenant owners who are most ready to
pay for it.
Off-the-shelf LaaS. LaaS is implementable today with no
extra hardware cost in existing switches and no host changes.
The algorithm requires only a moderate software change in
the allocation scheme, which we provide as open source. It
also relies on an isolated-routing feature of the SDN con-
troller, which is already available in InfiniBand and could
be implemented in Ethernet SDN controllers like OpenDay-
light.
Proportional network power. LaaS eases the use of an
elastic network link power that would be made proportional
to cloud utilization [4]. This is because it explicitly mentions
which links and switches are to be used, and therefore can
turn off other links and switches. In other approaches the
control has to happen as a result of traffic load change and
thus is not realistic for common switch hardware for which
the turn-ON time is much larger than a microsecond.
Heterogeneous LaaS. Host allocation in heterogeneous
clouds involves allowing tenants to express their required
host features in terms of CPU, memory, disk and available
accelerators. On such systems, the host allocation algorithm
should allow the provider to trade off the acceptance of a new
tenant versus the cost of the available hosts, which may be
higher as their capabilities may exceed the user needs. Our



LaaS algorithm could support these requirements. Although
this requirement complicates the allocation algorithm, it is
feasible to support it in LaaS. First, it should use the host
costs to order the search. Second, it should try all the pos-
sible divisors and select the one with best accumulated cost.
A trade-off between the resulting fragmentation and the cost
difference could extend it.
LaaS with VMs. LaaS could easily support multiple ten-
ants running as virtual machines (VMs) on the same host,
assuming accurate packet pacing and burst control is pro-
vided by hosts and switches. LaaS could then treat each
link as a set of isolated links and assign them to different
tenants. This includes the links leaving the host.
Non-FIFO tenant scheduling. We conservatively evalu-
ated our LaaS allocation algorithm assuming FIFO schedul-
ing of incoming tenants. To improve the cloud utilization,
we could equally rely on a non-FIFO policy, e.g. by using
back-filling, reservations, or a jointly-optimal allocation of
multiple tenants [42].
Fault Tolerance. When a link is down before being allo-
cated it is easy to avoid allocating it to new tenants. How-
ever, if a link was already allocated to a tenant, it is not al-
ways possible to provide an alternative link without breaking
the current operation of the tenant. Similarly to losing a link
on the private cloud, the tenant will see some degradation
until the link is fixed or the forwarding plane is adapted.

6. CONCLUSIONS
In this paper, we demonstrated that the interference with

other tenants causes a performance degradation in cloud ap-
plications that may exceed 65%. We introduced LaaS (Links
as a Service), a novel cloud allocation and routing technol-
ogy that provides each tenant with the same bandwidth as
in its own private data center. We showed that LaaS com-
pletely eliminates the application performance degradation.
We further explained how LaaS can be used in clouds today
without any change of hardware, and showed how it can rely
on open-source software code that we contributed. Finally,
we also used previously-unpublished tenant-size statistics of
a large scientific-computing cloud, obtained over a long pe-
riod of time, to construct a random workload that illustrates
how isolation is possible at the cost of some 10% cloud uti-
lization loss.
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