
Distributed Adaptive Routing for Big-Data Applications

Running on Data Center Networks
Eitan Zahavi

Mellanox Technologies & Technion

eitan@mellanox.com

Isaac Keslassy
Technion

isaac@ee.technion.ac.il

Avinoam Kolodny
Technion

kolodny@ee.technion.ac.il

ABSTRACT
With the growing popularity of big-data applications, Data Center

Networks increasingly carry larger and longer traffic flows. As a

result of this increased flow granularity, static routing cannot

efficiently load-balance traffic, resulting in an increased network

contention and a reduced throughput. Unfortunately, while

adaptive routing can solve this load-balancing problem, network

designers refrain from using it, because it also creates out-of-order

packet delivery that can significantly degrade the reliable

transport performance of the longer flows.

In this paper, we show that by throttling each flow bandwidth to

half of the network link capacity, a distributed-adaptive-routing

algorithm is able to converge to a non-blocking routing

assignment within a few iterations, causing minimal out-of-order

packet delivery. We present a Markov chain model for

distributed-adaptive-routing in the context of Clos networks that

provides an approximation for the expected convergence time.

This model predicts that for full-link-bandwidth traffic, the

convergence time is exponential with the network size, so out-of-

order packet delivery is unavoidable for long messages. However,

with half-rate traffic, the algorithm converges within a few

iterations and exhibits weak dependency on the network size.

Therefore, we show that distributed-adaptive-routing may be used

to provide a scalable and non-blocking routing even for long

flows on a rearrangeably-non-blocking Clos network under half-

rate conditions. The proposed model is evaluated and

approximately fits the abstract system simulation model.

Hardware implementation guidelines are provided and evaluated

using a detailed flit-level InfiniBand simulation model. These

results directly apply to adaptive-routing systems designed and

deployed in various fields.

Categories and Subject Descriptors

C2.1 [Computer Communication Networks]: Network

Architecture and Design – Data Center Networks’ Adaptive

Routing.

General Terms

Algorithms, Management, Performance, Design.

Keywords

Data Center Networks, Big-Data, Adaptive Routing.

1. INTRODUCTION

1.1 Background
Nearly all currently-deployed state-of-the-art Data Center

Networks (DCNs) rely on layer-3 Equal Cost Multipath

(ECMP) routing to evenly distribute traffic and utilize the

aggregated bandwidth provided by the multi-tier network

[2]. ECMP routing is deterministic and static, because it is

based on constant hash functions of the flow‟s identifier.

The obtained bandwidth from these techniques is close to

the network cross-bisectional-bandwidth as long as flow

granularity is small, i.e. the routing algorithm spreads many

flows that are short and/or long but low-bandwidth.

In recent years a new challenge has emerged for DCNs:

support “big-data” applications like MapReduce [18][30].

In measurements conducted on the Shuffle and Data-

Spreading stages of MapReduce applications, it was shown

that up to 50% of the run time may be consumed by these

stages [7]. In fact, these stages transmit the intermediate

computation results with sizes up to 10‟s of gigabytes

between each pair of servers participating in the

computation. Therefore, the long and high-bandwidth flows

characterizing these phases break the nice traffic spreading

provided by the ECMP hash functions. For static routing

there are always adversary patterns exhibiting high link

over-subscription [28]. The probability of over-subscription

follows the balls-and-bins max-load distribution. The

contending flows result in a low effective bandwidth [6].

Adaptive routing can provide a solution to this contention

problem [25][26]. In fact, adaptive routing can reach

efficient traffic spreading in the DCN, even when flow

granularity is high. Furthermore, when using adaptive

routing, switches need to know little about the global state

of the network or about the states of other switches.

Unfortunately, adaptive routing can also cause high out-of-

order packet delivery in long flows, which greatly degrades

window-based transport protocols like TCP, and can result

in a significant degradation of throughput and latency

[23][31]. Due to this limitation, adaptive routing is often

considered irrelevant for DCNs running big-data

applications.1

In this paper, our goal is to determine conditions under

which a distributed adaptive routing DCN algorithm can

cause minimal out-of-order packet delivery in big-data

applications, while achieving high throughput.

1 Although new reliable transports may be designed to tolerate

some out-of-order delivery, they are limited by a basic tradeoff

between the allowed out-of-order window size and the resources

required to maintain it.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

ANCS‟12, October 29–30, 2012, Austin, Texas, USA.

Copyright 2012 ACM 978-1-4503-1685-9/12/10... $15.00.

1.2 Related Work
The network contention caused by a relatively small

number of high-bandwidth flows is also a long outstanding

problem of static routing in High Performance Computing

(HPC) clusters. The scientific applications run on these

clusters resemble big-data applications, because most

parallel scientific applications are coded according to the

BSP model [11], where computation and communication

are separated into non-overlapping phases [16]. Under such

a model, network contention directly impacts the overall

program runtime since the slowest flow dictates the length

of the entire communication phase [17][32]. For these

reasons, efforts have been made to provide adaptive-

routing, together with heuristics and mechanisms to

improve both throughput and latency [20][22]. Most

commercial interconnection networks like Cray

BlackWidow[27], IBM BlueGene [1] and the InfiniBand-

based Mellanox InfiniScale switch devices [5] provide

adaptive routing. The most scalable systems are designed

such that each switch knows little or nothing about the

traffic or queues of the other elements in the network. Such

systems are thus denoted oblivious-adaptive-routing.

Mechanisms to enhance the adaptive-routing hardware in

switches by relying on a complete or partial view of the

entire network state were also proposed [15][26].

Nevertheless, to maintain scalability, even when complex

feedback mechanisms are suggested, the self-routing

principle, where each switch makes its own independent

decisions, is maintained in most published works.

One of the key drawbacks of adaptive routing is the

resulting out-of-order packet delivery produced by the

modification of the forwarding path of different packets of

the same message [12]. To overcome the out-of-order

delivery, which greatly degrades TCP (or any other packet

window-based transport protocol), some studies propose

the use of re-order input-buffers and limit the number of in-

flight packets to control their cost [25][23]. However,

limiting the number of in-flight packets degrades

bandwidth, increases latency, and requires additional

hardware buffers.

Another challenge for adaptive routing is that previous

network states cannot be used for deciding about the new

routing when the entire traffic pattern changes

synchronously. Unfortunately, this is the exact behavior of

BSP model programs as well as for the shuffle stages of a

MapReduce.

Adaptive-routing stability was studied in the context of the

Internet [3][10]. In these studies, a centralized adaptive-

routing algorithm is employed to optimize the network

performance for some figure of merit. The computed

routing slowly changes when compared to the traffic

message times. The stability of such systems is then

defined as the ability to avoid fluctuations in routing

assignments when a computed routing is applied. Thus,

adaptive-routing stability is different from our definition of

adaptive-routing convergence, i.e. the ability of the system

 to reach a non-blocking routing assignment for any given

traffic permutation.

We limit our discussion to Clos and folded-Clos networks

(also known as fat trees), which are the most commonly

used topologies for DCNs. Routing in Clos networks was

mostly studied in the context of systems where a

centralized control unit allocates virtual circuits to injected

flows [19] (see Figure 1(a)). Consequently, the network‟s

topological properties that support strict sense non-blocking

(SNB), rearangeable non-blocking (RNB) and wide-sense

non-blocking (WSNB) [4] were defined. When packet

switching was proposed as an alternative to virtual circuits,

Clos research focused on the properties obtained for multi-

rate traffic injected into a network of multiple-capacity

links [9][24]. In Clos networks, the term n-rate represents

the number of different ratios of the traffic bandwidth to the

system link capacity [24].

The centralized controller approach used for Clos routing

does not scale with the cluster size, and therefore can

hardly apply to our DCNs: To estimate the time available

for the central controller for handling a single flow,

consider a DCN of 10K nodes each running 10 VMs. An

optimistically long flow length of 64KB on 40Gbps link

provides 12.8usec flow lifetime. Further, if we assume

communication is only 10% of application runtime; the

flows arrival rate is 1/128usec on average. Under the above

conditions the central routing unit has to handle a request

rate of ~1G[req/sec] which allows roughly 2 operations per

request on 2GHz CPU. Even a parallel routing algorithm

will have to use more than a single OP for handling a

request.

(a) (b)

Figure 1: Centralized Routing versus Self Routing:

 (a) In a centrally controlled Clos, input switches

request an output-port assignment for each arriving

flow from the central controller. (b) In a distributed

adaptive routing system, a Self Routing unit within

each input switch provides that decision in an

autonomic manner.

Data flow

Central Routing

Control

Data flow

SR

SR

SR

For this reason, a distributed adaptive routing approach was

also proposed in Clos networks, and denoted as “self-

routing” [8]. In this approach, each switch can make its

own routing decisions such that no central control unit is

required (see Figure 1(b)). The self-routing study [8] was

mainly focused on reducing the non-scalable overhead of

the central routing controller. A probability analysis

conducted by [33] on some specific self-routing Clos

systems also provides an upper-bound on the number of

contending flows (with high probability), and thus provides

an upper-bound for the expected network queue length and

service time. Our work is different as it shows that under

some conditions, adaptive-routing can actually converge

into a non-blocking routing assignment where no

networking queuing is formed.

1.3 Contributions
To the best of our knowledge, no work in the literature

examines the conditions under which adaptive routing

converges to a non-blocking forwarding assignment; and in

case of convergence, we also know of no result on its

convergence speed.

By analyzing convergence time, we are able to show that

under some traffic conditions the adaptive-routing can

converge to a non-blocking routing assignment within a

very short time. After this convergence time, there is no

out-of-order delivery and no network contention. Indeed,

there will be some performance degradation due to re-

transmission of the first few packets of the message.

However, even for 256KB messages, re-transmission

would introduce very small bandwidth degradation for the

entire flow.

To reach the above conclusion we have developed

approximated Markov process models for Clos self-

adaptive-routing system. The importance of these

approximated models is the insight they provide about the

speed of convergence. These models predict the extreme

difference between convergence time of oblivious-self-

routing Clos with flows of full link capacity, and flows of

half the link capacity. These models are then compared to

simulation. We define a set of features that are practical to

implement and provide converging oblivious-adaptive-

routing system. The proposed hardware is then evaluated

by simulation. We claim the following contributions:

 We present an approximate Markov chain model for a

three-level Clos network to evaluate the convergence rate

of the adaptive-routing process.

 Based on this model, we provide a lower bound on the

convergence time for the case where the bandwidth of

each flow equals the link capacity. The convergence time

under such conditions for rearrangeably-non-blocking

Clos networks is more than exponential with the number

of input switches, so it typically does not converge within

any practical message size.

 Conversely, for the case where each flow bandwidth

equals half the link capacity, the model shows fast

convergence with weak dependency on the network size.

Under these conditions, adaptive routing causes very

little out-of-order packet delivery.

 We propose a set of system features that provide an

oblivious-adaptive-routing. A detailed simulation model

of InfiniBand hardware, enhanced with these

mechanisms, confirms the above results.

The rest of the paper is organized as follows: Section 2

provides a description of an oblivious-self-routing system

Section 3 analyzes that system using a Markov chain model

for predicting the convergence time. Section 4 discusses

implementation guidelines for adaptive routing system and

Section 5 provides an evaluation of both the model and the

proposed implementation. A discussion and conclusions are

presented in Section 6.

2. A DISTRIBUTED ADAPTIVE-ROUTING

SYSTEM MODEL
In this section, we introduce and define our architecture

model and adaptive routing algorithm, before analyzing

their performance in the next section.

As illustrated in Figure 2, consider a 1-rate and uniform

symmetrical Clos network. Assume that it has r input (and

output) switches, of n x m ports each, and denote it as

CLOS(n, r, m). Further assume that all links have an equal

capacity, and that all flows have an equal bandwidth

demand, such that this bandwidth equals of the link

capacity. For instance, means that each flow

bandwidth requires half of the link capacity.

Assume that the network carries a full-permutation traffic

pattern, i.e. each source sends a continuous flow of data to

a single destination, and each destination receives data

from a single source. When more than flows are routed

through a link, we declare these flows as bad flows, and

that link as a bad link. We declare the routing as a good

routing if there are no bad links in the system.

We now want to define the adaptive-routing algorithm.

There are many different adaptive-routing systems defined

in studies and implemented by hardware, as described in

the related work section of the introduction. Most of these

systems are hard to model mathematically. Some use

complex criteria for selecting output ports, some use state

history, and some even rely on the distribution of the global

network state. Since we seek to learn about the conditions

under which convergence is fast enough to support big-data

applications, we want to define an adaptive-routing system

that is simple enough to be modeled.

Assume that the adaptive-routing system behaves as

follows: At a new full-permutation traffic pattern is

applied at the input switches. Each input switch assigns an

output port to each of its flows (on Clos and folded Clos

topologies this output port defines the complete route to the

destination). The output port assignment performed by the

input switches is semi-random as a reasonable approach for

spreading their traffic with no global knowledge about the

flows in other switches. The assignment is termed semi-

random since, as input switches do know their own flows,

they never assign more than flows to any of their outputs.

This means that bad links are only possible between the

middle and output switches where flows from multiple

input switches may congest.

Once the initial routing is defined, the system iterates

synchronously through the following phases. Each iteration

takes exactly one time unit. In the middle of the th
 iteration

at , each output switch selects a random bad

flow that belongs to its input link with the largest number

of flows. It then sends to the input switch at the origin of

this bad flow a request to change its routing. The

notification process and the change of routing happen

before the end of the iteration period , when the

operation repeats itself. The system keeps adapting routes

until no more bad links exist.

When an input switch receives a bad-flow notification, it

moves that flow to a new randomly-selected output port. If

that new port is already full, the input switch swaps the

moved flow with another flow on that output port to avoid

congestion. As a result, the swapped flow may cause a new

oversubscription on some middle-switch-to-output-switch

link.

In the above model the middle switches do not perform any

adaptive routing. All input switches are active at the

beginning of each iteration period, and all output switches

at the middle of each iteration period. Packets continuously

flow through the network during the routing adaptation in

order to provide the switches with the information about

the flows routed through their links.

3. ANALYSIS
This section presents Markov chain models for the

convergence time of the system presented in Section 2.

Even for that simple system, an accurate model is hard to

provide since the system state should represent all the flows

on every link. Since the size of the Markov model grows

exponentially with the number of flows and the number of

links, we must provide an approximation instead.

The first model below takes the unrealistic but simplifying

assumption that each output switch may be treated as an

independent system. Due to the interdependency of the

output-switch convergence times, as imposed by the input

switches, this model is only useful to describe the

convergence process of a single output switch.

Then, to better predict the convergence time, we present

two other models, for full- and half-bandwidth flows. These

models track the dependency between the output switches,

and focus on the last stages of convergence when that inter-

dependency has its greatest impact. Finally, in the

evaluation section, we will use a simulation program that

mimics the analyzed system behavior to evaluate these

approximations.

(a)

(b)

Figure 3: (a) A balls-and-bins representation of the

m output-switch input links as bins and the n flows

as balls. The state variable e represents the total

number of empty bins. (b) When a contending ball is

requested to be moved in order to improve one

output-switch state it may contend with another flow

on the new input-switch output. Resolution of that

contention may cause some induced move on another

output-switch. For example: Balls are numbered by

their source input switch. Output switch 2 requests

to move ball 4 since it is a bad ball. Input switch 4

moves that ball to middle switch 4. This move

improves switch 2 situation. But since ball 4 of

output switch 1 is previously routed from input

switch 4 to middle switch 4, these two balls are

contending and are swapped. This causes an induced

move of ball 4 in output switch 1.

1 m

12 34 n

56

7

e – empty bins

1 2 3 4

MID: 1 2 3 4

Out SW 1 1 2 3

4

MID: 1 2 3 4

Induced

2 3 1

4

MID: 1 2 3 4

Out SW 2 1 2 3 4

MID: 1 2 3 4

ImproveCAUSE:

EFFECT:

Figure 2: A Symmetrical Clos network CLOS(n, r, m):

The top row consists of r crossbar switches of n x m

ports, denoted as input switches. The middle row

includes m crossbar switches of r x r ports. The bottom

row consists of r crossbar switches of m x n ports,

named output switches.

1 n 1 n

21 m

21 r

21 r

1 n 1 n 1 n

1 n
D

a
ta

 f
lo

w

Input

Switches

Middle

Switches

Output

Switches

As shown in Figure 3(a), we propose a model to represent

all the links that feed into the same output switch as a balls-

and-bins problem: each input link is considered as a bin,

and each flow as a ball. We start with a random spreading

of the balls into the bins, and want to obtain the

expected time at which there are at most balls in each

bin.

Inspecting the changes to flows routed through the links

feeding into a specific output switch, there are two

processes that happen concurrently: an improvement

process and an induced-move process. The improvement

process results from the request of that output switch to

move one of its worst-link bad flows, when that bad flow

appears on a new link. In the balls-and-bins representation

this would cause the movement of one of the worst bad-bin

balls into some new bin (not necessarily an empty one).

The induced-move process results from one of that output-

switch flows being involved in a flow-swap on some input-

switch. This change is denoted induced since the originator

for the swap may be some other output switch. Figure 3(b)

provides an example for how improvement in one output

switch causes an induced move on the other. The

distribution of induced moves on the different output

switches resembles the random throw of balls into bins,

where is the number of output switches that have not

reached their steady state.

3.1 A Single Output-Switch Markov Chain

Model for Full-Link Bandwidth per Flow
This sub-section presents an approximate Markov chain

model for a single output switch for the case of full-link

bandwidth per flow (i.e.,). Based on the system

symmetry, this model considers each output switch

independently. To model the interactions between output

switches, the model assumes that each time an output

switch kicks some bad ball, an induced move will happen

with probability of n/m.

As depicted in Figure 4 we define a state variable e that

represents the number of empty bins, and another state

variable g that counts the number of good bins. So the

Markov state for the single output switch can be

represented using the pair (e, g). To simplify the analysis,

this model makes the following approximations, as further

explained below: 1) Induced moves are evenly distributed

over all output switches, such that all the output-switch

systems are identical and can be treated as uncorrelated. 2)

When the number of bad bins is small compared to the

number of bad balls, such that there are in average over 2.5

bad balls per bad bin, the induced-move impact is modeled

as if all bad bins have at least 3 balls. The concurrent

processes that affect the state of the balls are:

The improvement process: Each output switch selects one

of the balls in one of the bins with the highest number of

balls, and randomly places it into a bin. As long as there are

any bins with at least 3 balls, it is guaranteed that the

number of bad bins cannot decrease by this process (since

the selected bin will only lose one ball). The probability for

the selected ball to fall on an empty, good or bad bin

depends on the number of such bins.

The induced-move process: This process takes a random

ball and randomly places it in some bin. The probability for

such moves to occur depends on the number of empty links

on the input switches. Since there are only flows spread

on links, and the selection of the flow to be moved is

random, the distribution of the moved flows to input

switches should follow the distribution of throwing balls

into bins. In order to avoid the complexity of using this

distribution, the model takes the approximation of the

average probability of an induced move, which is .

To predict if the induced move changes the number of good

bins by +1, -1 or -2, we should have tracked the exact

number of bins with 0, 1 and 2 balls. As shown in the

example of Figure 4, if the moved ball is from bins with

just 2 balls and it falls in an empty bin, g is increased by 2.

But if the bad ball is from a bin with more than 2 balls, the

number of good bins is only increased by 1. However, to

compute using a Markov chain the number of bins with 2

balls means we need to track the number of bins with 3

balls, and so forth. If we define these state variables, the

state space explodes. As the distribution of the number of

balls per bin is a sharp function, such that the probability

drops significantly with the number of balls, we claim that

a reasonable approximation is to assume that all the bad

bins have the same number of balls. The output switch

policy of re-routing a ball from the bin with the highest

number of balls strengthens this assumption.

Figure 4: An approximated model assuming an even

distribution of bad balls in bad bins:

In the shown case, the Improvement process must

take one of the balls in the left-most bin, as it is the

worst bin. The Induced-Move process may move any

ball. In the shown case, if a bad ball is selected by

the Induced-Move process from a bad bin with 2

balls (i.e. bin 2, 3 or 4) and then falls on an empty

bin, 2 good bins are created and g increases by 2.

Else if it is selected from the first bin and then falls

on an empty bin, the first bin does not become good

and g only increases by 1.

1 m

n

e

b=m-e-g

g

Table 1 Possible state changes with p=1 and their probability

Process b-balls/ b-bins Who moves Move Where New State Probability

Induced
Move

Any case good ball empty bin e, g g/n*e/m*n/m=ge/m^2

good ball other good bin e+1, g-2 g/n*(g-1)/m*n/m = g(g-1)/m^2

good ball same good bin e, g g/n*1/m*n/m=g/m^2

good ball bad bin e+1, g-1 g/n*(m-g-e)/m*n/m = g(m-g-e)/m^2

> 2.5 bad ball empty bin e-1, g+1 (n-g)/n*e/m*n/m=(n-g)e/m^2

bad ball good bin e, g-1 (n-g)/n*g/m*n/m=(n-g)g/m^2

bad ball bad bin e, g (n-g)/n*(m-g-e)/m*n/m=(n-g)(m-g-e)/m^2

≤ 2.5 bad ball empty bin e-1, g+2 (n-g)/n*e/m*n/m = (n-g)e/m^2

bad ball good bin e, g (n-g)/n*g/m*n/m= (n-g)g/m^2

bad ball other bad bin e, g+1 (n-g)/n*(m-e-g-1)/m*n/m=(n-g)(m-e-g-1)/m^2

bad ball same bad bin e, g (n-g)/n*1/m*n/m= (n-g) /m^2

Improvement > 2 bad ball empty bin e-1, g+1 e/m

bad ball good bin e, g-1 g/m

bad ball bad bin e, g (m-e-g)/m

≤ 2 bad ball empty bin e-1, g+2 e/m

bad ball good bin e, g g/m

bad ball same bad bin e, g 1/m

bad ball other bad bin e, g+1 (m-e-g-1)/m

Let us consider each state transition induced by the request

of some other output switch to improve its state. The ball

selected may be a good or bad ball, and we assume by

symmetry that it may be moved into any bin with the same

probability. The probability for a good ball to be selected is

 . The probability for a bad ball is the complementary

 . The possible moves and their respective

probabilities are described in Table 1.

The combined impact of the two processes is obtained by

considering each possible pair of the Improve and Induced-

move state transitions, and adding their probability product

to the Markov state transition matrix.

3.2 Last-Step Model for Flows of Full Link

Bandwidth
A full model of the entire Markov matrix of all states of all

output switches is infeasible due to its size. In order to

obtain an upper bound approximation on the convergence

time, we suggest inspecting the output switches just

before they reach convergence. We call this the Last-Step

model.

As we suspect that the long convergence times are a result

of the induced moves forced by one output switch on

another, we focus the model on the last steps of

convergence. Only when all the output switches reach

together their good state, they stop forcing each other back

into bad states. The model only uses a single bad state that

is closest to the good state. In that sense, it is an optimistic

model, as a sequence of bad induced moves is not modeled

and the output switch stays close to its good state. Yet, we

will later show that it correctly models the exponential

convergence time of our system.

Figure 5(a) shows the Markov states of a single output

switch. There are only two states for an output switch: 0

(good) and 1 (bad). Only a single bad bin is possible one

step away from the good state as shown on the balls-and-

bins systems drawn below the state graph. The probabilities

for transition represent the improvement and induced move

processes, but their values depend on the other output

switches states. The Markov system contains

approximated output switch sub-systems each with a single

state variable which is either 1 (bad) or 0 (good) as shown

in Figure 5(b). The system state is coded as a binary

variable of bits. Bit represents the state of the output

switch. The resulting state space has system states. The

entire system has a single absorbing state which is when all

the bits of the binary representation are 0. We can also

assume all output switches start with some bad bins so the

initial state value is . The total number of induced

moves denoted by is the number of „1‟s in the state

binary value. Before the observing state is reached, the

probability for each output switch to leave a good state

equals the probability for one of the induced moves to

throw a ball in that output switch. We assume the induced

moves are equally spread, and thus

The probability to improve a bad state is denoted and is

built from the impact of the two processes and .

The improvement process always selects a bad ball and

thus improvement depends on the number of empty bins.

For the induced move to improve we need to multiply the

chance for induced move by the probability a bad ball will

be selected and the probability the move will be into an

empty bin:

To build the Markov state transitions matrix the present

state is represented as a binary variable:

 and the next state is represented as

Define as the number of digits where ,

the number of digits j where , the number of

digits where and the number of digits

where . The probability to move from to is

given by:

3.3 Last-Step Model for Flows of Half Link

Bandwidth
Unlike the Last-Step model for that has just one

absorbing state for the output switches, the case of two

flows per link has several good states. As illustrated in

Figure 6, to distinguish these states we introduce the

following variables describing the ball distributions in each

output switch: e, the number of empty bins; o, the number

of bins with one ball; and t, the number of bins with two

balls.

It can be shown that for a state to be good the following

should be met:

Or:

As we are interested in an upper bound for the number of

iterations to convergence (for the case only) we pick

the worst absorbing state that is the state with highest

probability shown in Figure 7(a). For that state:

So the maximal is obtained for the maximal :

 ⁄

(

)

Consider the improvement probability for the bad state

closest to the worst B good state as shown in Figure 7(b).

The probability is then a combination of the probability

(a)

 (b)

Figure 7: (a) The absorbing state with maximal B

and (b) its neighbor “bad” state. The moved ball is

shadowed.

1 m

e=m-n/2t=n/2

e‘=et‘=t-2 o’=1

1 m

Figure 6: For p=2 we introduce new state variables:

e=empty, o=one, t=two.

1 m

n

e

b=m-e-o-t

ot

(a)

 (b)

Figure 5: Approximated Last Step model of a single

output-switch: (a) A single bad state implies a lower

bound on convergence time as it does not let the bad

state degrade further than the last step.

(b) The set of r state pairs describes the entire

system.

1 0

AB

C

D

GoodBad

1 0

AB

C

D

GoodBad

1 0

AB

C

D

GoodBad

Output switch 1

Output switch 2

1 0

AB

C

D

GoodBad

Output switch r

of the improvement process and for the induced move to

actually improve the state. We can see that:

The probability for induced moves with has to take

into account the probability for a ball to move without

requiring a swap. To that end we could use the balls-and-

bins distribution to predict the probability for a bin to have

more than two balls.

The construction of the Markov state transition matrix

follows the same procedure as in Section 3.2.

4. IMPLEMENTATION GUIDELINES
This section discusses the feature set required for the

implementation of an oblivious-adaptive-routing system.

To meet the required behavior described in Section 2, the

switches need to extend the deterministic routing and

provide random assignment of output ports for flows.

Reassignment of a flow output port is only allowed on

input switches and is triggered either when receiving an

Explicit Adaptation Request (EAR) from an output switch,

or when congestion is observed on the previously assigned

output port. A timer is used to throttle the number of

reassignments in the latter case to avoid multiple

reassignments before the congestion is relieved.

To enable an efficient hardware implementation, the

proposed mechanisms differs from the model described in

Section 2 in several aspects. The first difference is that a

real system does not likely count “flows” assuming they are

all of the same bandwidth. Instead, it makes more sense to

evaluate a transmit-port congestion, in mechanisms similar

to those proposed by the IEEE 802.1Qau known as QCN

[36].

The second aspect is about concurrency of bad flow re-

routes: congestion-based bad link detection means that the

knowledge about bad links is not available at the receiving

switch (output switch in our model) but in the middle

switch. In the model used in previous sections the output

switch requires this information in order to choose a single

worst bad flow to be re-routed. Selecting the worst bad link

implies the existence of a protocol for each middle switch

to notify the output switches to which it connects about bad

links and their severity. To avoid the latency and

complexity of such a protocol, the proposed

implementation does not enforce a single bad flow

transition per output switch per iteration. Instead, the

responsibility for requesting re-routing of bad flows is

given to the middle switches that use the same QCN-like

monitoring to detect congestion. When congestion is

detected, the middle switches send EAR requests to the

relevant input switches. These notifications do require a

special signaling protocol to be delivered.

The algorithms for EAR generation and forwarding, as well

as for determining when to adapt to output congestion, are

depicted in Figure 8.

5. EVALUATION
Evaluation of the worst convergence time using simulations

relies on the ability to check many permutations. As the

number of possible permutations is extremely large, it is

important to focus on the permutations that are presumed to

have the worst convergence time, or at least a large one.

These so-called worst permutations are derived by

contrasting them to the set of permutations that are fastest

to converge. The fastest converging permutations have all

flows originating on the same input switch destined to the

same output switch. For such permutations it is enough that

each input switch spreads its own outputs to avoid bad links

and provide good routing. Such assignment is possible if

 (this is also the rearangeable non-blocking

condition for 1-rate Clos with flows per link). Intuitively,

a permutation where each output switch is fed by flows

from different input switches will be the hardest to

converge as it will require the most synchronization

between the input switches that actually do not talk to each

other.

Randomize a random or worst permutation as dst[src]

MiddleSwitch[src, dst] = mod(src,n) for each (src, dst) pair

Iterations = 0

While any bad link (depends on P)

 Iterations++

 Randomly select one (src, dst) from the worst link for

 each out-switch

 For each bad (src, dst) selected, in random order

 Randomly select the new middle switch

 Move the (src, dst) to the new middle switch

 Optionally swap with other (src, dst) going

 through the same link

Report Iterations

Figure 9: Distributed Adaptive Routing Simulation

Main Loop

On Flits Queue or De-Queue (numFlits, TP, RP, to DEST)

 Update the number of flits queued for the Transmit Port (TP)

 If enough time from port change for this flow and TP is congested

 If switch is a middle switch

 Send EAR though the Receive Port (RP) flits were received on

 Else

 If TP is an up-going-port adapt the output port for DEST

 Possibly swap another DEST if the new output-port is busy

On Receiving an EAR (RP, DEST)

 If RP is an up-going-port adapt the output port for DEST

 Possibly swap another DEST if the new output-port is busy

Figure 8: Packet Forwarding Module Algorithms on the

queueing of new flits on a Transmit Queue and on

receiving an Explicit Adaptive Routing Request

5.1 Analyzed System Simulation Model
A dedicated simulation program was written to model the

system described in Section 2. The data structure used is a

simple matrix [] where represents the

source and destination for each flow and [] denotes

the middle switch assigned to that flow. The simulation

algorithm is depicted in Figure 9. The program optionally

starts from a fully randomized permutation or one that

meets the condition of a worst permutation. Each point of

simulation result is obtained by simulating a batch of 1000

permutations and then continues to simulate new batches

until the average number of iterations required to converge

changes by less than 1%.

The models of Sections 3.1, 3.2 and 3.3 were coded in

matlab2, to form an observable Markov chain matrix

following the theory presented in [21].

2 The presented Matlab-based evaluation is limited by the

exponential state space nature of Markov representations and

the capacity of our version of Matlab

The first comparison made is for the RNB topologies of the

p=1 case. The number of iterations to reach convergence is

provided in Figure 10(a). As expected, the Independent

output switch model of Section 3.1 is greatly optimistic,

while the Last-Step model of Section 3.2 is closer to the

simulated results. The Last-Step model is pessimistic for

very small n as it assumes all output switches start in a bad

state, which is not the case for very small n.

For the SNB case in Figure 10(b), it can be seen that the

simulation predicts convergence times many orders of

magnitude smaller than the RNB case but still mostly

above 10. The Independent output-switch model is very

optimistic, and the Last-Step model is pessimistic, probably

due to its assumption that all output switches start at a bad

state. For SNB, due to the over provisioning of the

network, there are many chances that some output switches

will start in a good state. Also note that the change of

slopes on the simulation curve may be attributed to the

change between even and odd port numbers, and how

routing in Clos best fits even number of ports.

To strengthen the point that the systems are dependent we

show the dependency of the convergence time in the

number of parallel output switches in Figure 11. The

convergence is plotted for different values of and a fixed

 . It can be observed that the dependency on is

exponential. The Last-Step model shows a lower slope,

which we suspect is a result of the approximation of using a

single bad state. Note that the Independent model does not

depend on at all, which exhibits yet another limitation of

this model.

The Last-Step Markov model of Section 3.3 for the case of

half-link capacity flows was simulated on RNB topology

and the number of iterations to convergence is provided in

Figure 12. The number of iterations required to reach

convergence is shown to be very small even for large

values of . As can also be seen the Markov model is

optimistic for larger networks. We attribute this behavior to

the approximation used by this model which defines a

single bad state for each output-switch sub-system.

Figure 11: The dependency of the number of

iterations to convergence on r for a constant m=n=6.

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

0 2 4 6 8 10 12 14

It
e

ra
ti

o
n

s
to

 C
o

n
ve

rg
e

n
ce

r changes while n=m=6

Simulation

Last-Step Model

Independent Model

(a)

(b)

Figure 10: Expected Convergence Time predicted

by the single-output-switch, the p=1 last-step model

compared to simulated results of worst

permutations as a function of (a) the m=n=r of RNB

and (b) m=2n=2r SNB topologies.

1

10

100

1000

10000

100000

1000000

10000000

100000000

4 5 6 7 8

Ie
ra

ti
o

n
s

to
 C

o
n

ve
rg

en
ce

m=n=r

Sim Worst Perm Last-Step Model

Independent Model

0

10

20

30

40

50

4 5 6 7 8

Ie
ra

ti
o

n
s

to
 C

o
n

ve
rg

en
ce

m=2n=2r

Sim Worst Perm Last-Step Model

Independent Model

5.2 Implementable System Simulation Model
A large compute cluster would have been the obvious

choice for the evaluation of an implemented adaptive

routing system. However, hardware that implements our

proposed Explicit Adaptation Request messaging described

above was not available to us.

Instead, we have used a well-known flit level simulator for

InfiniBand that accurately models flow dynamics, network

queuing and arbitration. These simulators are described in

the following sections.

The OMNet++ [29] based InfiniBand flit-level simulation

model [35] is commonly used for predicting bandwidth and

latency for InfiniBand networks [34][13][14]. In order to

evaluate the proposed implementation guidelines presented

in Section 4, a new packet-forwarding module was added to

the switches. This module implements all the algorithms to

detect link capacity overflow, provide flow re-route, swap

output ports and introduce a signaling protocol to carry the

Explicit Adaptation Requests (EAR) between switches.

The overhead and timing of the EAR protocol is accurately

modeled by encapsulating EARs as 8-byte messages

similarly to the flow-control packets of the InfiniBand, and

sending them through the regular packet send queues.

The simulations performed are of two topologies

containing 1152 hosts: The rearrangeably non-blocking

(RNB) topology is a folded CLOS(24, 48, 24) equivalent to

XGFT(2; 24,48; 1,24) fat-tree topology. The strictly non-

blocking topology (SNB) has double the number of middle

switches, i.e. is a folded CLOS(24, 48, 48) equivalent to

XGFT(2; 24,48; 1,48) fat-tree. The SNB topology is

simulated to provide a fair comparison to the half-flows

case as it provides double the links. The model assumes a

link capacity of 40Gbps and hosts may send data at that

speed or be throttled to 20Gbps +/- 0.8Gbps.

The traffic pattern applied to the system is a sequence of

random permutations. In each permutation each host sends

data to a single random destination and receives data from a

single random source. The hosts progress through their

sequence of destinations in an asynchronous fashion

sending 256KB to each destination.

The simulation tracks the number of routing changes

performed by each switch in periods of 10µsec as well as

the final throughput at each of the network egress ports.

The ratio of packets delivered out-of-order to those

provided in-order is also measured. Another measured

variable is the out-of-order packet window size, defined as

the gap in the number of packets, as observed by the

receiving host. This variable is a clear indication for the

feasibility of implementing a re-order buffer. The

bandwidth, latency and out-of-order percent and window

size results are represented in Table 2. The values are taken

as average, max or min value over all receivers of the

average or max value measured on each receiving host. For

example, the min of average throughput means that each

egress port throughput is averaged over time, and the

reported number is the minimal values over all the egress

ports. To establish a fair comparison we focus on the

results of the two cases when only half of the network

resources are used: SNB 40Gbps (first data column) and

RNB 19.2Gbps (third data column).

It is shown that although the bandwidth provided by the

SNB case is higher, any transport that would require

retransmission due to out-of-order delivery would actually

fail to work on the SNB case since only one of three

packets is provided in order (ratio of ~2). The latency of

the network is also impacted by not reaching a steady state,

thus showing a much longer latency.

The routing convergence provided by the case is

most visible when inspecting the number of routing

changes per 10μsec. Figure 13 shows on each line the

number of adaptations conducted by a specific switch in

each 10µsec period for (a) SNB 40Gbps, (b) RNB

20.8Gbps during a single permutation. It can be observed

that routing is constantly changing for the SNB 40Gbps and

the RNB 20.8Gbps cases. A long sequence of 256KB

message permutations on RNB 19.2Gbps is shown in

Figure 13(c). It can be observed that adaptive-routing

reaches a non-blocking assignment for all permutations in

less than 80µsec.

Table 1 Simulation results for a 1152-hosts cluster

Parameter SNB Full
BW:
40Gbps

RNB Full
BW:
40Gbps

RNB Half
BW:
19.2Gbps

Avg-of-Avg Throughput 37.7Gbps 23.0Gbps 18.9Gbps
Min-of-Avg Throughput 36.5Gbps 20.7Gbps 18.9Gbps
Avg-of-Avg Network
Latency

17.0µsec 32µsec 5.8µsec

Max-of-Max Network
Latency

877µsec 656µsec 11.7µsec

Avg-of-Avg Out-of-order
/ In-order Ratio

 1.87 5.2 0.0023

Max-of-Avg Out-of-
order / In-order Ratio

3.25 7.4 0.0072

Avg-of-Avg Out-of-order
Window

6.9pkts 5.1pkts 2.3pkts

Max-of-Avg Out-of-
order Window

8.9pkts 5.7pkts 5.0pkts

Figure 12: Comparison of time to convergence for

Clos(n=m=r) with half rate flows (p=2) cases using

Last Step Model and a dedicated simulation model.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

6 7 8 9 10 11 12 13

It
e

ra
ti

o
n

s
to

 C
o

n
ve

rg
e

n
ce

n=m=r

Last-Step Model

Sim Worst Perm

Sim All Perms

6. DISCUSSION AND CONCLUSIONS
In this paper we find sufficient conditions allowing

distributed oblivious-adaptive-routing to converge to a non-

blocking routing assignment within a very short time, thus

making it a viable solution for adaptive routing for

medium-to-long messages on fat-trees.

Convergence is shown to require flows that do not exceed

half of the link capacity, which raises the question of

whether it is worth to pay that high price. Note that actually

in our proposed Adaptive Routing only the edge links of

the network are operated at half the core network link

bandwidth. Many of the network links do route more than

one flow and thus utilize the full link capacity. Alternative

approaches to deal with the contention caused by high-

volume correlated flows may seem cheaper but they are not

scalable. They propose the introduction of a centralized

traffic engineering engine that can throttle traffic as

necessary or perform re-routes. However, as the number of

flows correlates to the number of cluster nodes, a central

unit is likely to become a bottleneck. Other attempts [26] to

provide adaptive routing based on protocols that convey the

system state to each switch are also not scalable due to the

state size on every switch, the number of messages to

provide state updates and the synchronous change of traffic

which makes previous states irrelevant.

The developed approximate model provides the insight that

the origin of the long convergence time is the

interdependency of re-route events on the different output

switches, as imposed by the topology. It was shown that the

time it takes to converge to a non-blocking routing is

exponential with the number of input or output switches.

For that reason, the probability of creating bad links on a

single output switch has a major impact on the convergence

time. For rearangeable-non-blocking CLOS, limiting the

traffic flows to half or less of the link bandwidth reduces

this probability for creating bad links to less than 0.5, and

therefore provides fast convergence.

Finally, we propose a simple system architecture for the

signaling needed for adaptation, and simulate it to show

how it converges within 20-80μsec on a 1152-host network.

The insights provided by this research should help in

providing self-routing solution to long messages in data-

center applications of various fields.

7. ACKNOWLEDGMENTS

We would like to thank Marina Lipshteyn of Mellanox and

Israel Cidon, Yossi Kanizo and Erez Kantor from the

Technion for their support and insight. This work was

partly supported by the Intel ICRI-CI Center and by

European Research Council Starting Grant No. 210389.

8. REFERENCES
[1] Adiga, N.R. et al. 2005. Blue Gene/L torus

interconnection network. IBM Journal of Research

and Development. 49, 2.3 (Mar. 2005), 265–276.

[2] Al-Fares, M. et al. 2010. Hedera: dynamic flow

scheduling for data center networks. Proceedings of

the 7th USENIX conference on Networked systems

design and implementation (Berkeley, CA, USA,

2010), 19–19.

[3] Anderson, E.J. and Anderson, T.E. 2003. On the

stability of adaptive routing in the presence of

congestion control. INFOCOM 2003. Twenty-Second

Annual Joint Conference of the IEEE Computer and

Communications. IEEE Societies (Apr. 2003), 948–

958 vol.2.

[4] Benes, V.E. 1965. Mathematical theory of connecting

networks and telephone traffic. Academic press New

York.

Figure 13: Simulated 1152 nodes cluster, number of re-routing events on each input-switch averaged over 10µsec time

periods for 256KB messages for (a) SNB 40Gbps (b) RNB 20.8Gbps and (c) RNB 19.2Gbps. The plots in (a) and (b)

focus on a single 150µsec permutation period and show that convergence is not met. For the RNB 19.2Gbps case (c),

convergence is reached within a few tens of microseconds from the start of each of the applied random permutations.

S
w

itc
h

R
ou

tin
g

A
da

pt
at

io
ns

/ 1
0u

se
c

t [sec](a) t [sec]

S
w

itc
h

R
ou

tin
g

A
da

pt
at

io
ns

/ 1
0u

se
c

(b)

[5] BLOCH, G. et al. High-Performance Adaptive

Routing. Publication number: US 2011/0096668 A1

U.S. Classification: 370/237.

[6] Chen, Y. et al. 2009. Understanding TCP incast

throughput collapse in datacenter networks.

Proceedings of the 1st ACM workshop on Research on

enterprise networking (New York, NY, USA, 2009),

73–82.

[7] Chowdhury, M. et al. 2011. Managing data transfers in

computer clusters with orchestra. Proceedings of the

ACM SIGCOMM 2011 conference (New York, NY,

USA, 2011), 98–109.

[8] Douglass, B.G. and Oruc, A.Y. 1993. On self-routing

in Clos connection networks. Communications, IEEE

Transactions on. 41, 1 (1993), 121–124.

[9] Du, D.Z. et al. 1998. On multirate rearrangeable Clos

networks. SIAM J. Comput. 28, 2 (1998), 463–470.

[10] Gamarnik, D. 1999. Stability of adaptive and non-

adaptive packet routing policies in adversarial

queueing networks. Proceedings of the thirty-first

annual ACM symposium on Theory of computing

(New York, NY, USA, 1999), 206–214.

[11] Gerbessiotis, A.V. and Valiant, L.G. 1994. Direct

bulk-synchronous parallel algorithms. J. Parallel

Distrib. Comput. 22, 2 (Aug. 1994), 251–267.

[12] Gomez, C. et al. 2007. Deterministic versus Adaptive

Routing in Fat-Trees. 2007 IEEE International

Parallel and Distributed Processing Symposium (Long

Beach, CA, USA, Mar. 2007), 1–8.

[13] Gran, E.G. et al. 2010. First experiences with

congestion control in InfiniBand hardware. 2010 IEEE

International Symposium on Parallel & Distributed

Processing (IPDPS) (Apr. 2010), 1–12.

[14] Gran, E.G. et al. 2011. On the Relation between

Congestion Control, Switch Arbitration and Fairness.

(May. 2011), 342–351.

[15] Gusat, M. et al. 2010. R3C2: Reactive Route and Rate

Control for CEE. High-Performance Interconnects,

Symposium on (Los Alamitos, CA, USA, 2010), 50–

57.

[16] Hoefler, T. et al. 2007. A Case for Standard Non-

blocking Collective Operations. Recent Advances in

Parallel Virtual Machine and Message Passing

Interface. F. Cappello et al., eds. Springer Berlin /

Heidelberg. 125–134.

[17] Hoefler, T. et al. 2008. Multistage switches are not

crossbars: Effects of static routing in high-

performance networks. 2008 IEEE International

Conference on Cluster Computing (Oct. 2008), 116–

125.

[18] Isard, M. et al. 2007. Dryad: distributed data-parallel

programs from sequential building blocks.

Proceedings of the 2nd ACM SIGOPS/EuroSys

European Conference on Computer Systems 2007

(New York, NY, USA, 2007), 59–72.

[19] Jajszczyk, A. 2003. Nonblocking, repackable, and

rearrangeable Clos networks: fifty years of the theory

evolution. Communications Magazine, IEEE. 41, 10

(2003), 28–33.

[20] Jiang, N. et al. 2009. Indirect adaptive routing on large

scale interconnection networks. ACM SIGARCH

Computer Architecture News. 37, (Jun. 2009), 220–

231.

[21] Karlin, S. and Taylor, H.M. 1998. An Introduction to

Stochastic Modeling, Third Edition. Academic Press.

[22] Kim, J. et al. 2006. Adaptive routing in high-radix clos

network. (2006), 92.

[23] Koibuchi, M. et al. 2005. Enforcing in-order packet

delivery in system area networks with adaptive

routing. Journal of Parallel and Distributed

Computing. 65, 10 (Oct. 2005), 1223–1236.

[24] Liew, S.C. et al. 1998. Blocking and nonblocking

multirate Clos switching networks. Networking,

IEEE/ACM Transactions on. 6, 3 (1998), 307–318.

[25] Martínez, J.C. et al. 2003. Supporting Fully Adaptive

Routing in InfiniBand Networks. Proceedings of the

17th International Symposium on Parallel and

Distributed Processing (Washington, DC, USA,

2003), 44.1–.

[26] Minkenberg, C. et al. 2009. Adaptive Routing in Data

Center Bridges. Proceedings of the 2009 17th IEEE

Symposium on High Performance Interconnects

(Washington, DC, USA, 2009), 33–41.

[27] Scott, S. et al. 2006. The BlackWidow High-Radix

Clos Network. Proceedings of the 33rd annual

international symposium on Computer Architecture

(Washington, DC, USA, 2006), 16–28.

[28] Towles, B. 2001. Finding Worst-case Permutations for

Oblivious Routing Algorithms.

[29] Varga, A. OMNET++. http://www.omnetpp.org.

[30] White, T. 2010. Hadoop: The Definitive Guide.

O‟Reilly Media, Inc.

[31] Wu, W. et al. 2009. Sorting Reordered Packets with

Interrupt Coalescing. Computer Networks. 53, 15 (Oct.

2009), 2646–2662.

[32] Xin Yuan 2011. On Nonblocking Folded-Clos

Networks in Computer Communication Environments.

Parallel & Distributed Processing Symposium

(IPDPS), 2011 IEEE International (May. 2011), 188–

196.

[33] Youssef, A. 1993. Randomized self-routing algorithms

for Clos networks. Computers & Electrical

Engineering. 19, 6 (Nov. 1993), 419–429.

[34] Zahavi, E. Fat-Trees Routing and Node Ordering

Providing Contention Free Traffic for MPI Global

Collectives. Journal of Parallel and Distributed

Computing. Communication Arch for Scalable

Systems.

[35] Zahavi, E. InfiniBand(TM) Macro Simulation Model.

http://www.omnetpp.org/omnetpp/doc_details/2070-

infiniband.

[36] IEEE Std 802.1Qau-2010 (Amendment to IEEE Std

802.1Q-2005) DOI: 10.1109/IEEESTD.2010.5454063,

2010 , Page(s): c1- 119.

