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ABSTRACT 
With the growing popularity of big-data applications, Data Center 

Networks increasingly carry larger and longer traffic flows. As a 

result of this increased flow granularity, static routing cannot 

efficiently load-balance traffic, resulting in an increased network 

contention and a reduced throughput. Unfortunately, while 

adaptive routing can solve this load-balancing problem, network 

designers refrain from using it, because it also creates out-of-order 

packet delivery that can significantly degrade the reliable 

transport performance of the longer flows.   

In this paper, we show that by throttling each flow bandwidth to 

half of the network link capacity, a distributed-adaptive-routing 

algorithm is able to converge to a non-blocking routing 

assignment within a few iterations, causing minimal out-of-order 

packet delivery. We present a Markov chain model for 

distributed-adaptive-routing in the context of Clos networks that 

provides an approximation for the expected convergence time. 

This model predicts that for full-link-bandwidth traffic, the 

convergence time is exponential with the network size, so out-of-

order packet delivery is unavoidable for long messages. However, 

with half-rate traffic, the algorithm converges within a few 

iterations and exhibits weak dependency on the network size. 

Therefore, we show that distributed-adaptive-routing may be used 

to provide a scalable and non-blocking routing even for long 

flows on a rearrangeably-non-blocking Clos network under half-

rate conditions. The proposed model is evaluated and 

approximately fits the abstract system simulation model. 

Hardware implementation guidelines are provided and evaluated 

using a detailed flit-level InfiniBand simulation model. These 

results directly apply to adaptive-routing systems designed and 

deployed in various fields.   

Categories and Subject Descriptors 

C2.1 [Computer Communication Networks]: Network 

Architecture and Design – Data Center Networks’ Adaptive 

Routing.  

General Terms 

Algorithms, Management, Performance, Design. 

Keywords 

Data Center Networks, Big-Data, Adaptive Routing. 

1. INTRODUCTION 

1.1 Background 
Nearly all currently-deployed state-of-the-art Data Center 

Networks (DCNs) rely on layer-3 Equal Cost Multipath 

(ECMP) routing to evenly distribute traffic and utilize the 

aggregated bandwidth provided by the multi-tier network 

[2]. ECMP routing is deterministic and static, because it is 

based on constant hash functions of the flow‟s identifier. 

The obtained bandwidth from these techniques is close to 

the network cross-bisectional-bandwidth as long as flow 

granularity is small, i.e. the routing algorithm spreads many 

flows that are short and/or long but low-bandwidth.  

In recent years a new challenge has emerged for DCNs:  

support “big-data” applications like MapReduce [18][30]. 

In measurements conducted on the Shuffle and Data-

Spreading stages of MapReduce applications, it was shown 

that up to 50% of the run time may be consumed by these 

stages [7]. In fact, these stages transmit the intermediate 

computation results with sizes up to 10‟s of gigabytes 

between each pair of servers participating in the 

computation. Therefore, the long and high-bandwidth flows 

characterizing these phases break the nice traffic spreading 

provided by the ECMP hash functions. For static routing 

there are always adversary patterns exhibiting high link 

over-subscription [28]. The probability of over-subscription 

follows the balls-and-bins max-load distribution. The 

contending flows result in a low effective bandwidth [6].  

Adaptive routing can provide a solution to this contention 

problem [25][26]. In fact, adaptive routing can reach 

efficient traffic spreading in the DCN, even when flow 

granularity is high. Furthermore, when using adaptive 

routing, switches need to know little about the global state 

of the network or about the states of other switches. 

Unfortunately, adaptive routing can also cause high out-of-

order packet delivery in long flows, which greatly degrades 

window-based transport protocols like TCP, and can result 

in a significant degradation of throughput and latency 

[23][31]. Due to this limitation, adaptive routing is often 

considered irrelevant for DCNs running big-data 

applications.1 

In this paper, our goal is to determine conditions under 

which a distributed adaptive routing DCN algorithm can 

cause minimal out-of-order packet delivery in big-data 

applications, while achieving high throughput. 

                                                           
1 Although new reliable transports may be designed to tolerate 

some out-of-order delivery, they are limited by a basic tradeoff 

between the allowed out-of-order window size and the resources 

required to maintain it.   

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full 

citation on the first page. To copy otherwise, or republish, to post on servers or to 

redistribute to lists, requires prior specific permission and/or a fee. 

ANCS‟12, October 29–30, 2012, Austin, Texas, USA. 

Copyright 2012 ACM  978-1-4503-1685-9/12/10... $15.00. 



1.2 Related Work 
The network contention caused by a relatively small 

number of high-bandwidth flows is also a long outstanding 

problem of static routing in High Performance Computing 

(HPC) clusters. The scientific applications run on these 

clusters resemble big-data applications, because most 

parallel scientific applications are coded according to the 

BSP model [11], where computation and communication 

are separated into non-overlapping phases [16]. Under such 

a model, network contention directly impacts the overall 

program runtime since the slowest flow dictates the length 

of the entire communication phase [17][32]. For these 

reasons, efforts have been made to provide adaptive-

routing, together with heuristics and mechanisms to 

improve both throughput and latency [20][22]. Most 

commercial interconnection networks like Cray 

BlackWidow[27], IBM BlueGene [1] and the InfiniBand- 

based Mellanox InfiniScale switch devices [5] provide 

adaptive routing. The most scalable systems are designed 

such that each switch knows little or nothing about the 

traffic or queues of the other elements in the network. Such 

systems are thus denoted oblivious-adaptive-routing. 

Mechanisms to enhance the adaptive-routing hardware in 

switches by relying on a complete or partial view of the 

entire network state were also proposed [15][26]. 

Nevertheless, to maintain scalability, even when complex 

feedback mechanisms are suggested, the self-routing 

principle, where each switch makes its own independent 

decisions, is maintained in most published works.  

One of the key drawbacks of adaptive routing is the 

resulting out-of-order packet delivery produced by the 

modification of the forwarding path of different packets of 

the same message [12]. To overcome the out-of-order 

delivery, which greatly degrades TCP (or any other packet 

window-based transport protocol), some studies propose 

the use of re-order input-buffers and limit the number of in-

flight packets to control their cost [25][23]. However, 

limiting the number of in-flight packets degrades 

bandwidth, increases latency, and requires additional 

hardware buffers.  

Another challenge for adaptive routing is that previous 

network states cannot be used for deciding about the new 

routing when the entire traffic pattern changes 

synchronously. Unfortunately, this is the exact behavior of 

BSP model programs as well as for the shuffle stages of a 

MapReduce. 

Adaptive-routing stability was studied in the context of the 

Internet [3][10]. In these studies, a centralized adaptive-

routing algorithm is employed to optimize the network 

performance for some figure of merit. The computed 

routing slowly changes when compared to the traffic 

message times. The stability of such systems is then 

defined as the ability to avoid fluctuations in routing 

assignments when a computed routing is applied. Thus, 

adaptive-routing stability is different from our definition of 

adaptive-routing convergence, i.e. the ability of the system 

 to reach a non-blocking routing assignment for any given 

traffic permutation.  

We limit our discussion to Clos and folded-Clos networks 

(also known as fat trees), which are the most commonly 

used topologies for DCNs. Routing in Clos networks was 

mostly studied in the context of systems where a 

centralized control unit allocates virtual circuits to injected 

flows [19] (see Figure 1(a)).  Consequently, the network‟s 

topological properties that support strict sense non-blocking 

(SNB), rearangeable non-blocking (RNB) and wide-sense 

non-blocking (WSNB) [4] were defined. When packet 

switching was proposed as an alternative to virtual circuits, 

Clos research focused on the properties obtained for multi-

rate traffic injected into a network of multiple-capacity 

links [9][24]. In Clos networks, the term n-rate represents 

the number of different ratios of the traffic bandwidth to the 

system link capacity [24].  

The centralized controller approach used for Clos routing 

does not scale with the cluster size, and therefore can 

hardly apply to our DCNs: To estimate the time available 

for the central controller for handling a single flow, 

consider a DCN of 10K nodes each running 10 VMs. An 

optimistically long flow length of 64KB on 40Gbps link 

provides 12.8usec flow lifetime. Further, if we assume 

communication is only 10% of application runtime; the 

flows arrival rate is 1/128usec on average. Under the above 

conditions the central routing unit has to handle a request 

rate of ~1G[req/sec] which allows roughly 2 operations per 

request on 2GHz CPU. Even a parallel routing algorithm 

will have to use more than a single OP for handling a 

request.  

  
(a)                                  (b) 

Figure 1: Centralized Routing versus Self Routing: 

 (a) In a centrally controlled Clos, input switches 

request an output-port assignment for each arriving 

flow from the central controller. (b) In a distributed 

adaptive routing system, a Self Routing unit within 

each input switch provides that decision in an 

autonomic manner. 
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For this reason, a distributed adaptive routing approach was 

also proposed in Clos networks, and denoted as “self-

routing” [8]. In this approach, each switch can make its 

own routing decisions such that no central control unit is 

required (see Figure 1(b)). The self-routing study [8] was 

mainly focused on reducing the non-scalable overhead of 

the central routing controller. A probability analysis 

conducted by [33] on some specific self-routing Clos 

systems also provides an upper-bound on the number of 

contending flows (with high probability), and thus provides 

an upper-bound for the expected network queue length and 

service time. Our work is different as it shows that under 

some conditions, adaptive-routing can actually converge 

into a non-blocking routing assignment where no 

networking queuing is formed.  

1.3 Contributions 
To the best of our knowledge, no work in the literature 

examines the conditions under which adaptive routing 

converges to a non-blocking forwarding assignment; and in 

case of convergence, we also know of no result on its 

convergence speed. 

By analyzing convergence time, we are able to show that 

under some traffic conditions the adaptive-routing can 

converge to a non-blocking routing assignment within a 

very short time. After this convergence time, there is no 

out-of-order delivery and no network contention. Indeed, 

there will be some performance degradation due to re-

transmission of the first few packets of the message. 

However, even for 256KB messages, re-transmission 

would introduce very small bandwidth degradation for the 

entire flow.  

To reach the above conclusion we have developed 

approximated Markov process models for Clos self-

adaptive-routing system. The importance of these 

approximated models is the insight they provide about the 

speed of convergence. These models predict the extreme 

difference between convergence time of oblivious-self-

routing Clos with flows of full link capacity, and flows of 

half the link capacity. These models are then compared to 

simulation. We define a set of features that are practical to 

implement and provide converging oblivious-adaptive-

routing system. The proposed hardware is then evaluated 

by simulation. We claim the following contributions:   

 We present an approximate Markov chain model for a 

three-level Clos network to evaluate the convergence rate 

of the adaptive-routing process. 

 Based on this model, we provide a lower bound on the 

convergence time for the case where the bandwidth of 

each flow equals the link capacity. The convergence time 

under such conditions for rearrangeably-non-blocking 

Clos networks is more than exponential with the number 

of input switches, so it typically does not converge within 

any practical message size. 

 Conversely, for the case where each flow bandwidth 

equals half the link capacity, the model shows fast 

convergence with weak dependency on the network size. 

Under these conditions, adaptive routing causes very 

little out-of-order packet delivery.  

 We propose a set of system features that provide an 

oblivious-adaptive-routing. A detailed simulation model 

of InfiniBand hardware, enhanced with these 

mechanisms, confirms the above results.  

The rest of the paper is organized as follows: Section 2 

provides a description of an oblivious-self-routing system 

Section 3 analyzes that system using a Markov chain model 

for predicting the convergence time. Section 4 discusses 

implementation guidelines for adaptive routing system and 

Section 5 provides an evaluation of both the model and the 

proposed implementation. A discussion and conclusions are 

presented in Section 6. 

2. A DISTRIBUTED ADAPTIVE-ROUTING 

SYSTEM MODEL 
In this section, we introduce and define our architecture 

model and adaptive routing algorithm, before analyzing 

their performance in the next section.  

As illustrated in Figure 2, consider a 1-rate and uniform 

symmetrical Clos network. Assume that it has r input (and 

output) switches, of n x m ports each, and denote it as 

CLOS(n, r, m). Further assume that all links have an equal 

capacity, and that all flows have an equal bandwidth 

demand, such that this bandwidth equals     of the link 

capacity. For instance,     means that each flow 

bandwidth requires half of the link capacity. 

Assume that the network carries a full-permutation traffic 

pattern, i.e. each source sends a continuous flow of data to 

a single destination, and each destination receives data 

from a single source. When more than   flows are routed 

through a link, we declare these flows as bad flows, and 

that link as a bad link. We declare the routing as a good 

routing if there are no bad links in the system.  

We now want to define the adaptive-routing algorithm. 

There are many different adaptive-routing systems defined 

in studies and implemented by hardware, as described in 

the related work section of the introduction. Most of these 

systems are hard to model mathematically. Some use 

complex criteria for selecting output ports, some use state 

history, and some even rely on the distribution of the global 

network state. Since we seek to learn about the conditions 

under which convergence is fast enough to support big-data 

applications, we want to define an adaptive-routing system 

that is simple enough to be modeled.  

Assume that the adaptive-routing system behaves as 

follows: At      a new full-permutation traffic pattern is 

applied at the input switches. Each input switch assigns an 

output port to each of its flows (on Clos and folded Clos 

topologies this output port defines the complete route to the  



destination). The output port assignment performed by the 

input switches is semi-random as a reasonable approach for 

spreading their traffic with no global knowledge about the 

flows in other switches. The assignment is termed semi-

random since, as input switches do know their own flows, 

they never assign more than   flows to any of their outputs. 

This means that bad links are only possible between the 

middle and output switches where flows from multiple 

input switches may congest.  

Once the initial routing is defined, the system iterates 

synchronously through the following phases. Each iteration 

takes exactly one time unit. In the middle of the  th
 iteration 

at        , each output switch selects a random bad 

flow that belongs to its input link with the largest number 

of flows. It then sends to the input switch at the origin of 

this bad flow a request to change its routing. The 

notification process and the change of routing happen 

before the end of the iteration period      , when the 

operation repeats itself. The system keeps adapting routes 

until no more bad links exist.  

When an input switch receives a bad-flow notification, it 

moves that flow to a new randomly-selected output port. If 

that new port is already full, the input switch swaps the 

moved flow with another flow on that output port to avoid 

congestion. As a result, the swapped flow may cause a new 

oversubscription on some middle-switch-to-output-switch 

link.  

In the above model the middle switches do not perform any 

adaptive routing. All input switches are active at the 

beginning of each iteration period, and all output switches 

at the middle of each iteration period. Packets continuously 

flow through the network during the routing adaptation in 

order to provide the switches with the information about 

the flows routed through their links. 

3. ANALYSIS 
This section presents Markov chain models for the 

convergence time of the system presented in Section  2. 

Even for that simple system, an accurate model is hard to 

provide since the system state should represent all the flows 

on every link. Since the size of the Markov model grows 

exponentially with the number of flows and the number of 

links, we must provide an approximation instead.  

The first model below takes the unrealistic but simplifying 

assumption that each output switch may be treated as an 

independent system. Due to the interdependency of the 

output-switch convergence times, as imposed by the input 

switches, this model is only useful to describe the 

convergence process of a single output switch.  

Then, to better predict the convergence time, we present 

two other models, for full- and half-bandwidth flows. These 

models track the dependency between the output switches, 

and focus on the last stages of convergence when that inter-

dependency has its greatest impact.  Finally, in the 

evaluation section, we will use a simulation program that 

mimics the analyzed system behavior to evaluate these 

approximations. 
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Figure 3: (a) A balls-and-bins representation of the 

m output-switch input links as bins and the n flows 

as balls. The state variable e represents the total 

number of empty bins. (b) When a contending ball is 

requested to be moved in order to improve one 

output-switch state it may contend with another flow 

on the new input-switch output. Resolution of that 

contention may cause some induced move on another 

output-switch. For example: Balls are numbered by 

their source input switch. Output switch 2 requests 

to move ball 4 since it is a bad ball. Input switch 4 

moves that ball to middle switch 4. This move 

improves switch 2 situation. But since ball 4 of 

output switch 1 is previously routed from input 

switch 4 to middle switch 4, these two balls are 

contending and are swapped. This causes an induced 

move of ball 4 in output switch 1. 
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Figure 2: A Symmetrical Clos network CLOS(n, r, m):  

The top row consists of r crossbar switches of n x m 

ports, denoted as input switches. The middle row 

includes m crossbar switches of r x r ports. The bottom 

row consists of r crossbar switches of m x n ports, 

named output switches. 
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As shown in Figure 3(a), we propose a model to represent 

all the links that feed into the same output switch as a balls-

and-bins problem: each input link is considered as a bin, 

and each flow as a ball. We start with a random spreading 

of the   balls into the   bins, and want to obtain the 

expected time   at which there are at most   balls in each 

bin.   

Inspecting the changes to flows routed through the links 

feeding into a specific output switch, there are two 

processes that happen concurrently: an improvement 

process and an induced-move process. The improvement 

process results from the request of that output switch to 

move one of its worst-link bad flows, when that bad flow 

appears on a new link. In the balls-and-bins representation 

this would cause the movement of one of the worst bad-bin 

balls into some new bin (not necessarily an empty one). 

The induced-move process results from one of that output-

switch flows being involved in a flow-swap on some input-

switch. This change is denoted induced since the originator 

for the swap may be some other output switch. Figure 3(b) 

provides an example for how improvement in one output 

switch causes an induced move on the other. The 

distribution of induced moves on the different output 

switches resembles the random throw of   balls into   bins, 

where   is the number of output switches that have not 

reached their steady state. 

3.1 A Single Output-Switch Markov Chain 

Model for Full-Link Bandwidth per Flow 
This sub-section presents an approximate Markov chain 

model for a single output switch for the case of full-link 

bandwidth per flow (i.e.,    ). Based on the system 

symmetry, this model considers each output switch 

independently. To model the interactions between output 

switches, the model assumes that each time an output 

switch kicks some bad ball, an induced move will happen 

with probability of n/m.  

As depicted in Figure 4 we define a state variable e that 

represents the number of empty bins, and another state 

variable g that counts the number of good bins. So the 

Markov state for the single output switch can be 

represented using the pair (e, g).  To simplify the analysis, 

this model makes the following approximations, as further 

explained below: 1) Induced moves are evenly distributed 

over all output switches, such that all the   output-switch 

systems are identical and can be treated as uncorrelated. 2) 

When the number of bad bins is small compared to the 

number of bad balls, such that there are in average over 2.5 

bad balls per bad bin, the induced-move impact is modeled 

as if all bad bins have at least 3 balls. The concurrent 

processes that affect the state of the balls are:  

 

The improvement process: Each output switch selects one 

of the balls in one of the bins with the highest number of 

balls, and randomly places it into a bin. As long as there are 

any bins with at least 3 balls, it is guaranteed that the 

number of bad bins cannot decrease by this process (since 

the selected bin will only lose one ball). The probability for 

the selected ball to fall on an empty, good or bad bin 

depends on the number of such bins. 

The induced-move process: This process takes a random 

ball and randomly places it in some bin. The probability for  

such moves to occur depends on the number of empty links 

on the input switches. Since there are only   flows spread 

on   links, and the selection of the flow to be moved is 

random, the distribution of the moved flows to input 

switches should follow the distribution of throwing   balls 

into   bins. In order to avoid the complexity of using this 

distribution, the model takes the approximation of the 

average probability of an induced move, which is    .  

To predict if the induced move changes the number of good 

bins by +1, -1 or -2, we should have tracked the exact 

number of bins with 0, 1 and 2 balls. As shown in the 

example of Figure 4, if the moved ball is from bins with 

just 2 balls and it falls in an empty bin, g is increased by 2. 

But if the bad ball is from a bin with more than 2 balls, the 

number of good bins is only increased by 1. However, to 

compute using a Markov chain the number of bins with 2 

balls means we need to track the number of bins with 3 

balls, and so forth. If we define these   state variables, the 

state space explodes. As the distribution of the number of 

balls per bin is a sharp function, such that the probability 

drops significantly with the number of balls, we claim that 

a reasonable approximation is to assume that all the bad 

bins have the same number of balls. The output switch 

policy of re-routing a ball from the bin with the highest 

number of balls strengthens this assumption. 

 

 

 
Figure 4: An approximated model assuming an even 

distribution of bad balls in bad bins:  

In the shown case, the Improvement process must 

take one of the balls in the left-most bin, as it is the 

worst bin. The Induced-Move process may move any 

ball. In the shown case, if a bad ball is selected by 

the Induced-Move process from a bad bin with 2 

balls (i.e. bin 2, 3 or 4) and then falls on an empty 

bin, 2 good bins are created and g increases by 2. 

Else if it is selected from the first bin and then falls 

on an empty bin, the first bin does not become good 

and g only increases by 1. 
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Table 1 Possible state changes with p=1 and their probability 

Process b-balls/ b-bins Who moves Move Where New State  Probability 

Induced 
Move 

Any case good ball empty bin e, g g/n*e/m*n/m=ge/m^2 

good ball  other good bin e+1, g-2 g/n*(g-1)/m*n/m = g(g-1)/m^2 

good ball same good bin e, g g/n*1/m*n/m=g/m^2 

good ball bad bin e+1, g-1 g/n*(m-g-e)/m*n/m = g(m-g-e)/m^2 

> 2.5 bad ball empty bin e-1, g+1 (n-g)/n*e/m*n/m=(n-g)e/m^2 

bad ball good bin e, g-1 (n-g)/n*g/m*n/m=(n-g)g/m^2 

bad ball bad bin e, g (n-g)/n*(m-g-e)/m*n/m=(n-g)(m-g-e)/m^2 

≤ 2.5 bad ball empty bin e-1, g+2 (n-g)/n*e/m*n/m = (n-g)e/m^2 

bad ball good bin e, g (n-g)/n*g/m*n/m= (n-g)g/m^2 

bad ball other bad bin e, g+1 (n-g)/n*(m-e-g-1)/m*n/m=(n-g)(m-e-g-1)/m^2 

bad ball same bad bin e, g (n-g)/n*1/m*n/m= (n-g) /m^2 

Improvement > 2 bad ball empty bin e-1, g+1 e/m 

bad ball good bin e, g-1 g/m 

bad ball bad bin e, g (m-e-g)/m 

≤ 2 bad ball empty bin e-1, g+2 e/m 

bad ball good bin e, g g/m 

bad ball same bad bin e, g 1/m 

bad ball other bad bin e, g+1 (m-e-g-1)/m 

Let us consider each state transition induced by the request 

of some other output switch to improve its state. The ball 

selected may be a good or bad ball, and we assume by 

symmetry that it may be moved into any bin with the same 

probability. The probability for a good ball to be selected is 

   . The probability for a bad ball is the complementary 

       . The possible moves and their respective 

probabilities are described in Table 1.  

The combined impact of the two processes is obtained by 

considering each possible pair of the Improve and Induced-

move state transitions, and adding their probability product 

to the Markov state transition matrix.  

3.2 Last-Step Model for Flows of Full Link 

Bandwidth  
A full model of the entire Markov matrix of all states of all 

output switches is infeasible due to its size. In order to 

obtain an upper bound approximation on the convergence 

time, we suggest inspecting the   output switches just 

before they reach convergence. We call this the Last-Step 

model.  

As we suspect that the long convergence times are a result 

of the induced moves forced by one output switch on 

another, we focus the model on the last steps of 

convergence. Only when all the output switches reach 

together their good state, they stop forcing each other back 

into bad states. The model only uses a single bad state that 

is closest to the good state. In that sense, it is an optimistic 

model, as a sequence of bad induced moves is not modeled 

and the output switch stays close to its good state. Yet, we 

will later show that it correctly models the exponential 

convergence time of our system. 

Figure 5(a) shows the Markov states of a single output 

switch. There are only two states for an output switch: 0 

(good) and 1 (bad). Only a single bad bin is possible one 

step away from the good state as shown on the balls-and-

bins systems drawn below the state graph. The probabilities 

for transition represent the improvement and induced move 

processes, but their values depend on the other output 

switches states. The Markov system contains   

approximated output switch sub-systems each with a single 

state variable which is either 1 (bad) or 0 (good) as shown 

in Figure 5(b). The system state is coded as a binary 

variable of   bits. Bit    represents the state of the   output 

switch. The resulting state space has    system states. The 

entire system has a single absorbing state which is when all 

the bits of the binary representation are 0. We can also 

assume all output switches start with some bad bins so the 

initial state value is     . The total number of induced 

moves denoted by   is the number of „1‟s in the state 

binary value.  Before the observing state is reached, the 

probability for each output switch to leave a good state   

equals the probability for one of the induced moves to 

throw a ball in that output switch. We assume the induced 

moves are equally spread, and thus 

      

            

The probability to improve a bad state is denoted   and is 

built from the impact of the two processes      and     . 

The improvement process always selects a bad ball and 

thus improvement depends on the number of empty bins.  

                 



 

For the induced move to improve we need to multiply the 

chance for induced move by the probability a bad ball will 

be selected and the probability the move will be into an 

empty bin: 

       
 

 
 
 

 
 
     

 
 

                           

        

To build the Markov state transitions matrix the present 

state is represented as a binary variable: 

                and the next state is represented as 

                

Define   as the number of digits   where        ,   

the number of digits j where        ,    the number of 

digits   where         and   the number of digits   

where        . The probability to move from   to   is 

given by: 

                

3.3 Last-Step Model for Flows of Half Link 

Bandwidth 
Unlike the Last-Step model for     that has just one 

absorbing state for the output switches, the case of two 

flows per link has several good states. As illustrated in 

Figure 6, to distinguish these states we introduce the 

following variables describing the ball distributions in each 

output switch: e, the number of empty bins; o, the number 

of bins with one ball; and t, the number of bins with two 

balls. 

It can be shown that for a state to be good the following 

should be met: 

           

 

               

Or:  

              

                   

As we are interested in an upper bound for the number of 

iterations to convergence (for the     case only) we pick 

the worst absorbing state that is the state with highest   

probability shown in Figure 7(a). For that state:  

    
 

 

 

 
   

  

 

     

 
   

 

  
         

 
 

  
       

So the maximal   is obtained for the maximal       : 
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Consider the improvement probability for the bad state 

closest to the worst B good state as shown in Figure 7(b). 

The probability   is then a combination of the probability 

 
(a) 

 
 (b) 

Figure 7: (a) The absorbing state with maximal B 

and (b) its neighbor “bad” state. The moved ball is 

shadowed. 
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Figure 6: For p=2 we introduce new state variables: 

e=empty, o=one, t=two. 
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Figure 5: Approximated Last Step model of a single 

output-switch: (a) A single bad state implies a lower 

bound on convergence time as it does not let the bad 

state degrade further than the last step.  

(b) The set of r state pairs describes the entire 

system. 
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of the improvement process and for the induced move to 

actually improve the state. We can see that: 

       
    

 
     

     

 
 

        
 

 

    

 
 

The probability for induced moves with     has to take 

into account the probability for a ball to move without 

requiring a swap. To that end we could use the balls-and-

bins distribution to predict the probability for a bin to have 

more than two balls.  

The construction of the Markov state transition matrix 

follows the same procedure as in Section  3.2.  

4. IMPLEMENTATION GUIDELINES 
This section discusses the feature set required for the 

implementation of an oblivious-adaptive-routing system. 

To meet the required behavior described in Section 2, the 

switches need to extend the deterministic routing and 

provide random assignment of output ports for flows. 

Reassignment of a flow output port is only allowed on 

input switches and is triggered either when receiving an 

Explicit Adaptation Request (EAR) from an output switch, 

or when congestion is observed on the previously assigned 

output port. A timer is used to throttle the number of 

reassignments in the latter case to avoid multiple 

reassignments before the congestion is relieved.  

To enable an efficient hardware implementation, the 

proposed mechanisms differs from the model described in 

Section  2 in several aspects. The first difference is that a 

real system does not likely count “flows” assuming they are 

all of the same bandwidth. Instead, it makes more sense to 

evaluate a transmit-port congestion, in mechanisms similar 

to those proposed by the IEEE 802.1Qau known as QCN 

[36].  

The second aspect is about concurrency of bad flow re-

routes: congestion-based bad link detection means that the 

knowledge about bad links is not available at the receiving 

switch (output switch in our model) but in the middle 

switch. In the model used in previous sections the output 

switch requires this information in order to choose a single 

worst bad flow to be re-routed. Selecting the worst bad link 

implies the existence of a protocol for each middle switch 

to notify the output switches to which it connects about bad 

links and their severity. To avoid the latency and 

complexity of such a protocol, the proposed 

implementation does not enforce a single bad flow 

transition per output switch per iteration. Instead, the 

responsibility for requesting re-routing of bad flows is 

given to the middle switches that use the same QCN-like 

monitoring to detect congestion. When congestion is 

detected, the middle switches send EAR requests to the 

relevant input switches. These notifications do require a 

special signaling protocol to be delivered.  

The algorithms for EAR generation and forwarding, as well 

as for determining when to adapt to output congestion, are 

depicted in Figure 8.  

5. EVALUATION 
Evaluation of the worst convergence time using simulations 

relies on the ability to check many permutations. As the 

number of possible permutations is extremely large, it is 

important to focus on the permutations that are presumed to 

have the worst convergence time, or at least a large one. 

These so-called worst permutations are derived by 

contrasting them to the set of permutations that are fastest 

to converge. The fastest converging permutations have all 

flows originating on the same input switch destined to the 

same output switch. For such permutations it is enough that 

each input switch spreads its own outputs to avoid bad links 

and provide good routing. Such assignment is possible if 

       (this is also the rearangeable non-blocking 

condition for 1-rate Clos with   flows per link). Intuitively, 

a permutation where each output switch is fed by flows 

from different input switches will be the hardest to 

converge as it will require the most synchronization 

between the input switches that actually do not talk to each 

other.  

 

Randomize a random or worst permutation as dst[src]  

MiddleSwitch[src, dst] = mod(src,n) for each (src, dst) pair 

Iterations = 0 

While any bad link (depends on P) 

 Iterations++ 

 Randomly select one (src, dst) from the worst link for  

        each out-switch 

  For each bad (src, dst) selected, in random order 

   Randomly select the new middle switch 

 Move the (src, dst) to the new middle switch 

 Optionally swap with other (src, dst) going  

           through the same link 

Report Iterations 

Figure 9: Distributed Adaptive Routing Simulation 

Main Loop  

On Flits Queue or De-Queue (numFlits, TP, RP, to DEST) 

 Update the number of flits queued for the Transmit Port (TP) 

 If enough time from port change for this flow and TP is congested 

  If switch is a middle switch 

   Send EAR though the Receive Port (RP) flits were received on 

  Else 

  If TP is an up-going-port adapt the output port for DEST 

   Possibly swap another DEST if the new output-port is busy 

 

On Receiving an EAR (RP, DEST) 

 If RP is an up-going-port adapt the output port for DEST 

  Possibly swap another DEST if the new output-port is busy 

  

Figure 8: Packet Forwarding Module Algorithms on the 

queueing of new flits on a Transmit Queue and on 

receiving an Explicit Adaptive Routing Request 



 

5.1 Analyzed System Simulation Model 
A dedicated simulation program was written to model the 

system described in Section  2. The data structure used is a 

simple matrix  [   ]  where             represents the 

source and destination for each flow and  [   ] denotes 

the middle switch assigned to that flow. The simulation 

algorithm is depicted in Figure 9. The program optionally 

starts from a fully randomized permutation or one that 

meets the condition of a worst permutation. Each point of 

simulation result is obtained by simulating a batch of 1000 

permutations and then continues to simulate new batches 

until the average number of iterations required to converge 

changes by less than 1%. 

The models of Sections  3.1,  3.2 and  3.3 were coded in 

matlab2, to form an observable Markov chain matrix 

following the theory presented in [21].  

 

                                                           
2 The presented Matlab-based evaluation is limited by the 

exponential state space nature of Markov representations and 

the capacity of our version of Matlab 

The first comparison made is for the RNB topologies of the 

p=1 case. The number of iterations to reach convergence is 

provided in Figure 10(a). As expected, the Independent 

output switch model of Section  3.1 is greatly optimistic, 

while the Last-Step model of Section  3.2 is closer to the 

simulated results. The Last-Step model is pessimistic for 

very small n as it assumes all output switches start in a bad 

state, which is not the case for very small n.  

For the SNB case in Figure 10(b), it can be seen that the 

simulation predicts convergence times many orders of 

magnitude smaller than the RNB case but still mostly 

above 10. The Independent output-switch model is very 

optimistic, and the Last-Step model is pessimistic, probably 

due to its assumption that all output switches start at a bad 

state. For SNB, due to the over provisioning of the 

network, there are many chances that some output switches 

will start in a good state. Also note that the change of 

slopes on the simulation curve may be attributed to the 

change between even and odd port numbers, and how 

routing in Clos best fits even number of ports.  

To strengthen the point that the systems are dependent we 

show the dependency of the convergence time in the 

number of parallel output switches in Figure 11. The 

convergence is plotted for different values of   and a fixed 

      . It can be observed that the dependency on   is 

exponential. The Last-Step model shows a lower slope, 

which we suspect is a result of the approximation of using a 

single bad state. Note that the Independent model does not 

depend on   at all, which exhibits yet another limitation of 

this model. 

The Last-Step Markov model of Section  3.3 for the case of 

half-link capacity flows was simulated on RNB topology 

and the number of iterations to convergence is provided in 

Figure 12. The number of iterations required to reach 

convergence is shown to be very small even for large 

values of  . As can also be seen the Markov model is 

optimistic for larger networks. We attribute this behavior to 

the approximation used by this model which defines a 

single bad state for each output-switch sub-system. 

 
Figure 11: The dependency of the number of 

iterations to convergence on r for a constant m=n=6. 
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(a) 

 
(b) 

Figure 10: Expected Convergence Time predicted 

by the single-output-switch, the p=1 last-step model 

compared to simulated results of worst 

permutations as a function of (a) the m=n=r of RNB 

and (b) m=2n=2r SNB topologies. 
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5.2 Implementable System Simulation Model 
A large compute cluster would have been the obvious 

choice for the evaluation of an implemented adaptive 

routing system. However, hardware that implements our 

proposed Explicit Adaptation Request messaging described 

above was not available to us. 

Instead, we have used a well-known flit level simulator for 

InfiniBand that accurately models flow dynamics, network 

queuing and arbitration. These simulators are described in 

the following sections. 

The OMNet++ [29] based InfiniBand flit-level simulation 

model [35] is commonly used for predicting bandwidth and 

latency for InfiniBand networks [34][13][14]. In order to 

evaluate the proposed implementation guidelines presented 

in Section 4, a new packet-forwarding module was added to 

the switches. This module implements all the algorithms to 

detect link capacity overflow, provide flow re-route, swap 

output ports and introduce a signaling protocol to carry the 

Explicit Adaptation Requests (EAR) between switches. 

The overhead and timing of the EAR protocol is accurately 

modeled by encapsulating EARs as 8-byte messages 

similarly to the flow-control packets of the InfiniBand, and 

sending them through the regular packet send queues. 

The simulations performed are of two topologies 

containing 1152 hosts: The rearrangeably non-blocking 

(RNB) topology is a folded CLOS(24, 48, 24) equivalent to 

XGFT(2; 24,48; 1,24) fat-tree topology. The strictly non-

blocking topology (SNB) has double the number of middle 

switches, i.e. is a folded CLOS(24, 48, 48) equivalent to 

XGFT(2; 24,48; 1,48) fat-tree. The SNB topology is 

simulated to provide a fair comparison to the half-flows 

case as it provides double the links. The model assumes a 

link capacity of 40Gbps and hosts may send data at that 

speed or be throttled to 20Gbps +/- 0.8Gbps. 

The traffic pattern applied to the system is a sequence of 

random permutations. In each permutation each host sends 

data to a single random destination and receives data from a 

single random source. The hosts progress through their 

sequence of destinations in an asynchronous fashion 

sending 256KB to each destination.  

The simulation tracks the number of routing changes 

performed by each switch in periods of 10µsec as well as 

the final throughput at each of the network egress ports. 

The ratio of packets delivered out-of-order to those 

provided in-order is also measured. Another measured 

variable is the out-of-order packet window size, defined as 

the gap in the number of packets, as observed by the 

receiving host. This variable is a clear indication for the 

feasibility of implementing a re-order buffer. The 

bandwidth, latency and out-of-order percent and window 

size results are represented in Table 2. The values are taken 

as average, max or min value over all receivers of the 

average or max value measured on each receiving host. For 

example, the min of average throughput means that each 

egress port throughput is averaged over time, and the 

reported number is the minimal values over all the egress 

ports. To establish a fair comparison we focus on the 

results of the two cases when only half of the network 

resources are used: SNB 40Gbps (first data column) and 

RNB 19.2Gbps (third data column).  

It is shown that although the bandwidth provided by the 

SNB     case is higher, any transport that would require 

retransmission due to out-of-order delivery would actually 

fail to work on the SNB     case since only one of three 

packets is provided in order (ratio of ~2). The latency of 

the network is also impacted by not reaching a steady state, 

thus showing a much longer latency. 

The routing convergence provided by the     case is 

most visible when inspecting the number of routing 

changes per 10μsec. Figure 13 shows on each line the 

number of adaptations conducted by a specific switch in 

each 10µsec period for (a) SNB 40Gbps, (b) RNB 

20.8Gbps during a single permutation. It can be observed 

that routing is constantly changing for the SNB 40Gbps and 

the RNB 20.8Gbps cases. A long sequence of 256KB 

message permutations on RNB 19.2Gbps is shown in 

Figure 13(c). It can be observed that adaptive-routing 

reaches a non-blocking assignment for all permutations in 

less than 80µsec. 

 

Table 1 Simulation results for a 1152-hosts cluster  

Parameter SNB Full 
BW:  
40Gbps 

RNB Full 
BW: 
40Gbps 

RNB Half 
BW: 
19.2Gbps 

Avg-of-Avg Throughput 37.7Gbps 23.0Gbps 18.9Gbps 
Min-of-Avg Throughput 36.5Gbps 20.7Gbps 18.9Gbps 
Avg-of-Avg Network 
Latency 

17.0µsec 32µsec 5.8µsec 

Max-of-Max Network 
Latency 

877µsec 656µsec 11.7µsec 

Avg-of-Avg Out-of-order 
/ In-order Ratio 

 1.87  5.2  0.0023  

Max-of-Avg Out-of-
order / In-order Ratio 

3.25  7.4 0.0072  

Avg-of-Avg Out-of-order 
Window 

6.9pkts 5.1pkts 2.3pkts 

Max-of-Avg Out-of-
order Window 

8.9pkts 5.7pkts 5.0pkts 

 

 
Figure 12: Comparison of time to convergence for 

Clos(n=m=r) with half rate flows (p=2) cases using 

Last Step Model and a dedicated simulation model. 
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6. DISCUSSION AND CONCLUSIONS 
In this paper we find sufficient conditions allowing 

distributed oblivious-adaptive-routing to converge to a non-

blocking routing assignment within a very short time, thus 

making it a viable solution for adaptive routing for 

medium-to-long messages on fat-trees.  

Convergence is shown to require flows that do not exceed 

half of the link capacity, which raises the question of 

whether it is worth to pay that high price. Note that actually 

in our proposed Adaptive Routing only the edge links of 

the network are operated at half the core network link 

bandwidth. Many of the network links do route more than 

one flow and thus utilize the full link capacity. Alternative 

approaches to deal with the contention caused by high-

volume correlated flows may seem cheaper but they are not 

scalable. They propose the introduction of a centralized 

traffic engineering engine that can throttle traffic as 

necessary or perform re-routes. However, as the number of 

flows correlates to the number of cluster nodes, a central 

unit is likely to become a bottleneck. Other attempts [26] to 

provide adaptive routing based on protocols that convey the 

system state to each switch are also not scalable due to the 

state size on every switch, the number of messages to 

provide state updates and the synchronous change of traffic 

which makes previous states irrelevant. 

The developed approximate model provides the insight that 

the origin of the long convergence time is the 

interdependency of re-route events on the different output 

switches, as imposed by the topology. It was shown that the 

time it takes to converge to a non-blocking routing is 

exponential with the number of input or output switches. 

For that reason, the probability of creating bad links on a 

single output switch has a major impact on the convergence 

time. For rearangeable-non-blocking CLOS, limiting the 

traffic flows to half or less of the link bandwidth reduces 

this probability for creating bad links to less than 0.5, and 

therefore provides fast convergence.  

Finally, we propose a simple system architecture for the 

signaling needed for adaptation, and simulate it to show 

how it converges within 20-80μsec on a 1152-host network. 

The insights provided by this research should help in 

providing self-routing solution to long messages in data-

center applications of various fields. 
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