
Frame-Aggregated Concurrent Matching Switch

Bill Lin
University of California, San Diego,

La Jolla, CA 92093–0407, USA
billlin@ece.ucsd.edu

Isaac Keslassy
∗

Technion – Israel Institute of Technology,
Haifa 32000, Israel

isaac@ee.technion.ac.il

ABSTRACT
Network operators need high-capacity router architectures
that can offer scalability, provide throughput and perfor-
mance guarantees, and maintain packet ordering. However,
previous router architectures based on centralized crossbar-
based architectures cannot scale to fast line rates and high
port counts. Recently, a new scalable router architecture
called the Concurrent Matching Switch (CMS) [5] was intro-
duced that offers scalability by utilizing a fully distributed
architecture based on two identical stages of fixed config-
uration meshes. It has been shown that fixed configura-
tion meshes can be scaled to very fast line rates and high
port counts via optical implementations. It has also been
shown that the CMS architecture can achieve 100% through-
put and packet ordering with only sequential hardware and
O(1) amortized time complexity operations at each linecard.
However, no delay performance guarantees have been shown
for CMS.

In this paper, we demonstrate a general delay performance
guarantee for CMS. Based on this guarantee, we propose
a novel frame-based CMS architecture that can achieve a
performance guarantee of O(N log N) average packet delay,
where N is the number of switch ports, while retaining scal-
ability, throughput guarantees, packet ordering, and O(1)
time complexity. This architecture improves upon the best
previously-known average delay bound of O(N2) given these
switch properties. We further introduce several alternative
frame-based CMS architectures.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Packet-switching networks; C.2.6
[Computer-Communication Networks]: Internetwork-
ing—Routers

∗Supported in part by an Alon Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’07, December 3–4, 2007, Orlando, Florida, USA.
Copyright 2007 ACM 978-1-59593-945-6/07/0012 ...$5.00.

General Terms
Algorithms, Performance, Design.

Keywords
Concurrent Matching Switch, Frame Scheduling, Packet
Switching, 100% Throughput, Load-Balanced Router.

1. INTRODUCTION

1.1 Motivation
Network operators need high capacity router architectures

that can offer scalability, provide throughput and perfor-
mance guarantees, and maintain packet ordering. However,
previous crossbar-based router architectures with central-
ized scheduling and arbitrary per-packet dynamic switch
configurations cannot scale to fast line rates and high port
counts. Recently, a new scalable router architecture called
the Concurrent Matching Switch (CMS) was introduced that
can meet the requirements of scalability, throughput guar-
antees, low average packet delays, and packet ordering. This
router architecture belongs to a class of scalable switch ar-
chitectures that are based on two identical stages of fixed
configuration uniform meshes for routing packets, including
various versions of the load-balanced routers [1, 2, 3, 4].

Figure 1 shows a diagram of the CMS architecture, which
consists of 3 stages of linecards that are sandwiched between
two identical stages of fixed configuration uniform meshes.
These fixed configuration meshes are the same ones used in
load-balanced routers, which have been shown to be scalable
to very high capacities and line rates [3]. The first mesh con-
nects the first stage of input linecards to the center stage of
intermediate input linecards, and the second mesh connects
the center stage of intermediate input linecards to the final
stage of output linecards. These fixed configuration meshes
implement deterministic interconnection patterns that are
independent of packet arrivals. Thus, there is no need for ar-
bitrary per-packet dynamic switching configurations, which
can be extremely difficult to achieve at high-speeds. Fixed
configuration meshes are particularly amenable to scalable
implementations with optics, as exemplified by the 100 Tb/s
reference design described in [3]. That reference design was
based on a fixed hierarchical mesh of optical channels that
interconnects N = 640 linecards, each operating at a rate of
R = 160 Gb/s.

To ensure 100% throughput guarantee and packet or-
dering, the CMS architecture uses a fully distributed

Linecards

1

2

N

Linecards

1

2

N

Linecards

1

2

N

. .
 .

.

. .
 .

.

. .
 .

.

...

VOQs Xik request matrix L j

4 1 … 3

(a) (b)

0 6 … 2

5 3 … 0
:

Figure 1: The Concurrent Matching Switch archi-
tecture. (a) Input linecard. (b) Intermediate input
linecard.

contention-resolution mechanism. In particular, packets are
buffered at the input linecards in virtual output queues. In-
stead of load-balancing packets, a CMS load-balances re-
quest tokens to each intermediate input linecard where each
intermediate input linecard concurrently solves a matching
problem based only on its local token count. By each inter-
mediate input linecard solving a local matching problem in
parallel, each intermediate input linecard independently se-
lects a virtual output queue from each input linecard to ser-
vice such that the packets selected can traverse the two fixed
configuration meshes in parallel without conflicts. Packets
from selected virtual output queues in turn depart in order
from the input linecards, through the intermediate input
linecards, and finally through the output linecards.

Each intermediate input linecard has N time slots to per-
form each matching, so the complexity of existing match-
ing algorithms can be amortized by a factor of N . The ex-
changes of tokens and packets occur over the two fixed uni-
form meshes without the need for arbitrary dynamic switch
configurations, and all queueing and decision-making func-
tions are performed locally at each linecard using only local
state information.

In [5], it was shown that 100% throughput can be guar-
anteed in a CMS architecture by using any stable matching
algorithm at the intermediate input linecards. In particular,
it was shown that a class of stable randomized matching al-
gorithms [6, 7] with O(N) operations can be amortized to
O(1) time complexity using only sequential hardware and
local state information at each linecard.

Using these stable randomized matching algorithms, low
average packet delays can be empirically achieved. However,
no theoretical delay bounds have ever been shown for these
randomized scheduling algorithms in the CMS architecture.
In this paper, we will demonstrate such delay bounds in

the CMS architecture. To do so, we will use the frame-
based scheduling algorithm introduced in [8] for crossbar
switches, which works by scheduling packets in frames of T
consecutive time slots. We propose to extend this frame-
based scheduling method to the CMS architecture.

1.2 Summary and Contributions of the Paper
In this paper, we first show that the fair-frame schedul-

ing algorithm can be improved to O(N log log N) amortized
complexity per time slot by formulating the matrix decom-
position problem as an edge coloring problem [9]. This result
is applicable to the conventional crossbar scheduling prob-
lem as well.

We next show that the fair-frame scheduling algorithm,
and our improved edge coloring version, can both be di-
rectly applied to the CMS architecture, since the CMS ar-
chitecture can use any stable scheduling algorithm at the in-
termediate input linecards. Because the matching problem
is load-balanced across N parallel schedulers, the amortized
time complexities of the fair-frame scheduling algorithm and
our improved version are O(

√
N log N) and O(log log N),

respectively. We also show that the average packet delay
of the CMS architecture with these scheduling algorithms
is O(N log N) under any admissible Bernoulli i.i.d. traffic.
More broadly, we present a general delay bound for the CMS
architecture under different scheduling algorithms.

Finally, we show that the matrix decomposition step is
unnecessary if we modify the CMS architecture to operate
in a frame-aggregated manner. Rather than returning grant
tokens one at a time, we propose to modify the CMS archi-
tecture so that up to T grant tokens are returned together
from each intermediate linecard to each input linecard, and
each input linecard sends in return up to T packets to the
corresponding intermediate linecard, from where the pack-
ets depart through the second switching stage to their final
outputs. By eliminating the need for matrix decomposition,
the time complexity of our Frame-Aggregated CMS archi-
tecture reduces to just O(1) at each linecard, thus achieving
100% throughput, packet ordering, O(1) complexity, as well
as O(N log N) delay bounds under any admissible Bernoulli
i.i.d. traffic. Note that to the best of our knowledge, given
packet ordering and constant time complexity, no architec-
ture could previously guarantee an average delay bound un-
der O(N2) (which was provided in [3]).

1.3 Organization of the Paper
The rest of the paper is organized as follows. We first pro-

vide background reminders on the basic CMS architecture
and the fair-frame switch scheduling algorithm in Section 2.
Then, we present general delay bounds in the CMS architec-
ture in Section 3. In Section 4, we describe an asymptotically
more efficient version of the fair-frame scheduling algorithm
by means of edge coloring, and we show how both the fair-
frame scheduling algorithm and the new edge-coloring frame
decomposition algorithm can be applied to the basic CMS
architecture to achieve O(N log N) delay. In Section 5, we
describe a modified frame-based CMS architecture, called
a Frame-Aggregated CMS, that avoids the need for matrix
decomposition, which enables it to achieve O(1) time com-
plexity. In Section 6, we present simulation results for our
various frame-based schemes. Finally, we conclude the paper
in Section 7.

2. BACKGROUND
In this section, we provide several background reminders

needed to understand the paper. We first start with a high-
level summary of the CMS architecture [5], which forms
the basis of the architecture used in this paper. Then,
we summarize the fair-frame scheduling algorithm presented
in [8] in the context of crossbar switching, which can achieve
O(log N) average packet delay with a scheduling complexity
of O(N1.5 log N). In this paper, we will use algorithms based
on the fair-frame scheduling algorithm in order to improve
the CMS architecture by providing better delay guarantees
and lower complexity.

Note that throughout this paper, unless mentioned other-
wise, we assume that packets have a fixed length and time
is slotted.

2.1 The Basic CMS Architecture
The CMS architecture consists of three linecard stages

that are interconnected by two fixed uniform meshes, ex-
actly like the load-balanced switch architecture described
in [1, 2, 3]. The CMS architecture is depicted in Figure 1.
Intuitively, it is based on the notion that each of the N in-
termediate input linecards sees 1/N th of the traffic and be-
haves as an autonomous switch scheduler for this part of the
traffic. More precisely, a high-level overview of the switch
operation is as follows:

1. In the basic load-balanced switch architecture pro-
posed in [1], incoming packets are uniformly load-
balanced across the N intermediate input linecards
at the center stage where packets are buffered. In-
stead, in the CMS architecture, incoming packets are
mainly buffered in virtual output queues at each input
linecard. Specifically, each input linecard i maintains
N virtual output queues, Xi1, . . ., XiN , one per out-
put destination, as shown in Figure 1(a). Incoming
packets to input i destined for output k are buffered
at their virtual output queue Xik immediately upon
arrival.

2. Instead of spreading packets across the center stage,
a key idea in the CMS architecture is to first spread
request tokens to the intermediate input linecards at
the center stage instead of actual packets. Each re-
quest token acts as a placeholder. The actual packets
are transferred later, based on matching decisions that
are made by the intermediate input linecards. Specifi-
cally, each input linecard is periodically connected to a
given intermediate input linecard every N time-slots.
For each incoming packet to input i destined for out-
put k, a request token r(i, k) is immediately gener-
ated and sent to the intermediate input linecard that
is currently connected to the input. In other words,
the input linecard load-balances request tokens among
intermediate linecards in a cyclical way that is influ-
enced by the arrival time of each packet.

3. When a request token r(i, k) is received at an interme-
diate input linecard j, the corresponding token counter
at intermediate input j gets incremented. Specifically,
each intermediate input linecard j maintains a request
matrix Lj = (ljik), as shown in Figure 1(b). Each entry

ljik corresponds to a counter that maintains the num-
ber of request tokens at intermediate linecard j from
input i to output k that has not yet been granted.

4. Each intermediate input linecard then concurrently,
and independently, solves a matching problem based
on its own request matrix that it maintains locally. It
does not need any global state information or any vir-
tual token count information from any other intermedi-
ate input linecard. Any bipartite matching algorithm
may be used with the CMS architecture to perform this
matching step, leveraging the well-developed body of
work in this area. Each intermediate input linecard has
N time slots to perform each matching step, and thus
the algorithmic complexity of the matching algorithm
used may be amortized by a factor of N .

5. Based on the result of the matching step, each inter-
mediate input j sends at most one grant token g(i, j, k)
to each input i over the first mesh. The grant token
indicates that the request matrix entry ljik is positive
and that the corresponding virtual output queue Xik

has been matched. In other words, the grant token in-
dicates that there was a demand and that the demand
has been answered. In addition, each matrix entry lji,k
for which a grant token is generated is decremented.

6. In response to the grant token g(i, j, k) received, each
input i then sends the packet at the head of the cor-
responding virtual output queue Xik to intermediate
input j over the first mesh. Note that this packet is not
necessarily the one that sent the request token which
triggered the grant token g(i, j, k), even though it is
guaranteed that to each grant token corresponds at
least one packet waiting to depart; in fact, in order to
maintain packet ordering, tokens are formally associ-
ated to queues, not to specific packets. Next, the (up
to) N packets sent by the inputs are then temporarily
stored in a set of coordination packet buffers at each
intermediate input on their path to the outputs. As
soon as the packets are fully received, each of the the
intermediate input linecards j forwards them over the
second mesh to the output linecards.

7. Finally, packets are received at output linecard k where
they depart immediately from the router.

Using the above operation, the CMS architecture guarantees
packet ordering. Moreover, it is proved to be strongly stable
as long as a strongly stable matching algorithm is used for
Step 4 above. In particular, for any admissible Bernoulli
i.i.d. arrival traffic, CMS guarantees that the number of
packets queued in the switch is not expected to grow to in-
finity. The proof relies on the interesting fact that the token
traffic received by any intermediate input during N time-
slots has the same distribution as the packet traffic received
by the router during a single time-slot. Incidentally, note
that the periodic token allocation scheme described in Step
2 is vulnerable to adversarial traffic patterns. If arriving
traffic is not Bernoulli i.i.d., a random non-periodic token
allocation will be preferred.

As described in [5], the two stages of uniform meshes used
in the CMS architecture can be replaced by a single mesh,
and the 3 logical linecards (input, intermediate input, and

output) can be combined into a single physical linecard. Us-
ing a single combined mesh, each pair of combined linecards
are interconnected by two fixed rate data channels and two
fixed rate control channels. Each data channel operates at a
fixed rate of R/N , where R is the external line rate to each
switch port. The two control channels are used to trans-
fer the request and grant tokens. Each control channel only
needs to operate at a rate of εR/N , where ε is the ratio of the
token size to the fixed packet size, typically only about 1-2%.
Combining all four channels together, each pair of combined
linecards are interconnected with a combined bandwidth of
2(1 + ε)R/N .

2.2 Fair-Frame Scheduling Algorithm
The main idea of the fair-frame scheduling algorithm pro-

posed in [8] is the following. Given some random (Poisson or
Bernoulli i.i.d.) packet arrivals, there exists an integer frame
size of T consecutive time slots such that the probability of
oversubscription at any output is negligible. It was shown
in [8] that, for a specified demand load upper-bound ρ and
a switch size N , logarithmic average delay can be achieved
if we choose the minimum frame size

T =

‰
log(2N/δ)

log(1/γ)

ı
, (1)

where γ = ρe1−ρ, and the probability of overflow δ satisfies

δ (1/ρ + N + NρT) < 1. (2)

It was also shown that δ = O(1/N2) can be chosen such that
T remains O(log N).

Let L(f) be the arrival matrix under random input for
frame f of T consecutive time slots. The fair-frame schedul-
ing algorithm works by scheduling L(f) on a frame-by-frame
basis as follows:

1. In the first frame, the initial permutation matrices are
chosen at random.

2. In the (f + 1)th frame, the maximum row and column
sum T ∗ is computed for the previously arrived frame
L(f).

3. If T ∗ ≤ T , then L(f) is augmented with null packets
to form L̃(f) so that all row and column sums are T ∗.
Otherwise, any arriving packet that exceeds T pack-
ets to an output is stripped off from L(f) to overflow
queues to form L̃(f).

4. L̃(f) is scheduled during frame (f + 1) by means of
maximum size matching at each time slot, which is
guaranteed to clear L̃(f) in T ∗ time slots.

5. If T ∗ < T , uniform random scheduling is performed
on the remaining slots to serve the overflow queues.
Repeat from Step 2.

The main complexity is in Step 4, where the complexity
of maximum matching is O(M

√
N) [10], with M being the

number of non-zero entries in L̃(f), which is O(N log N)
since T is O(log N). Therefore, the complexity of Step 4 is
O(N1.5 log N). Two optimizations to the above algorithm
were outlined in [8]. First, in Step 3, instead of augmenting
L̃(f) with null packets, it can be augmented with packets
from the overflow queues. Second, in Step 5, if T ∗ < T , and

the overflow queues are empty, then dynamic frame sizing
can be employed by starting immediately on the next frame.

3. DELAY BOUNDS
In [5], it was shown that any scheduling algorithm can

be used with the CMS architecture, and that a CMS is
strongly stable if the corresponding scheduling algorithm
used is strongly stable. This section expands the theoret-
ical results in [5] by analyzing the delay of a CMS.

Let’s first formally define strong stability. Assume that
the packet arrival process to each input is Bernoulli i.i.d.,
and that the probability that a packet arrives to input i
for output k at any time-slot is provided by a traffic matrix
Λ = (λik). Further, assume that the arrival matrix is strictly
doubly sub-stochastic (admissible), i.e., there exists some
demand load ρ < 1 such that for all i, k,

NX
i=1

λik ≤ ρ,
NX

k=1

λik ≤ ρ. (3)

We can now introduce the definition of strong stability.

Definition 1 (Strong Stability). A switch is said
to be strongly stable if under the Bernoulli i.i.d. admissible
packet arrival process defined above, the number of packets
queued in the switch is not expected to grow to infinity, i.e.,

lim sup
n→∞

E

2
4X

i,k

Xik(n)

3
5 < ∞. (4)

A matching algorithm for a crossbar switch that can achieve
strong stability is also said to be strongly stable.

The following theorem establishes the average delay of a
CMS with a strongly stable matching algorithm.

Theorem 1. Given an admissible Bernoulli i.i.d. arrival
process, let σ be a strongly stable matching algorithm with
average packet delay (waiting time) of Wσ in a single switch.
Then a CMS using σ is also strongly stable, with an average
delay of O(NWσ).

Proof. The strong stability was proved in [5], so let’s
now prove the delay part (note that the delay result implies
the strong stability as well, and thus is a stronger result).
First, we will define a new internal time reference for the
intermediate input linecards. At each intermediate input j,
tokens can only be received and granted (respectively pack-
ets can only arrive and depart) every N time-slots. There-
fore, at each intermediate input, we will cut time into frames
of N time-slots. As detailed in the proof of strong stabil-
ity [5], the intermediate input linecard operates at every
frame in CMS with algorithm σ as it would have at ev-
ery time-slot in a single switch with the same algorithm σ.
Therefore, under the same arrival pattern of request tokens
in CMS (respectively of packets in a single switch), it takes
the same number of frames for grant requests to exit inter-
mediate input linecards (respectively the same number of
time-slots for packets to exit the single switch) under the
same algorithm σ. In addition, in both cases, the traffic
arrival matrix is indeed the same, and therefore all traffic
arrival characteristics of this Bernoulli i.i.d. traffic are the
same as well. Therefore, if the average packet waiting time
is defined as Wσ time-slots in the single switch, it will be

exactly Wσ frames in the intermediate input linecard, corre-
sponding to N ·Wσ time-slots. Further, the additional fixed
propagation times in the CMS architecture are all in O(N)
(request tokens take a bounded time to arrive to the inter-
mediate input linecards, grant tokens to arrive to the inputs,
and finally packets to travel through the meshes). Finally,
Wσ ≥ 1 (assuming the scheduling result comes at least one
time-slot after the packet arrivals), therefore the total delay
is N · Wσ + O(N) = O(N · Wσ).

Incidentally, it is worth noting that under admissible
Bernoulli i.i.d. traffic, given some fixed load, the average de-
lay of output-queued switches is known to be constant, inde-
pendent of N [8]. Further, using a speedup of two, matching
algorithms that can emulate output-queued switches have
been shown [11]. Therefore, a corollary of Theorem 1 is that
using a speedup of two, CMS can achieve an O(N) average
packet delay.

4. FRAME-BASED SCHEDULING
In this section, we first show that the CMS architec-

ture can implement the fair-frame scheduling algorithm to
achieve O(N log N) average delay with O(

√
N log N) amor-

tized time complexity. Then, we improve on the time com-
plexity by proposing an alternative frame decomposition for-
mulation based on edge coloring that can achieve the same
logarithmic delay bound, but with a lower O(log log N) com-
plexity.

4.1 Frame Scheduling for CMS
As proved in [5], any scheduling algorithm can be used

with the CMS architecture — and for any strongly sta-
ble scheduling algorithm, the corresponding CMS is also
strongly stable. Further, it has been shown in [8] that the
fair-frame scheduling algorithm is strongly stable. There-
fore, a CMS based on the fair-frame scheduling algorithm is
strongly stable as well. We next analyze the average packet
delay of the CMS architecture using fair-frame scheduling.

Theorem 2. CMS achieves O(N log N) average delay
using fair-frame scheduling.

Proof. Follows from Theorem 1. Note that due to the
Θ(N log N) frame length, this is also a lower bound for non-
trivial traffic patterns.

Theorem 3. The amortized time complexity of CMS us-
ing fair-frame scheduling at each linecard is O(

√
N log N).

Proof. It was shown in [5] that the complexity of
any scheduling algorithm is amortized by a factor of
N . Given that the complexity of fair-frame scheduling is
O(N1.5 log N), it follows that the amortized complexity of
CMS using fair-frame scheduling is O(

√
N log N) at each

linecard.

4.2 Frame Decomposition via Edge Coloring
In this section, our objective is to provide the same de-

lay guarantees as with the above fair-frame scheduling al-
gorithm, but with a smaller complexity. The key idea is
that we replace the on-the-fly maximum matches done in
Step 4 of the fair-frame scheduling (section 2.2) by using
edge coloring. We will first apply the results to the typical

single-crossbar switch case, and then expand them to the
CMS architecture.

Our objective is to perform a frame decomposition of L̃(f)
into a sequence of T ∗ permutation matrices. However, in-
stead of scheduling L̃(f) during frame (f + 1) by means of
maximum matching, the actual sequencing of the permuta-
tion matrices derived for L̃(f) is not carried out until during
frame (f + 2). This way, the frame decomposition of L̃(f)
by means of edge coloring can be performed during frame
(f + 1), thus amortizing its time complexity over several
time-slot.

Theorem 4. The complexity of decomposing L̃(f) in a
single-crossbar switch is O(N log log N).

Proof. A bipartite graph can be constructed from L̃(f).
The complexity of edge coloring is O(E log D) [9] where E
is the number of edges and D is the maximum degree. Since
the maximum row or column sum in L̃(f) is bounded by T ,
E is bounded by NT and D is bounded by T . Therefore,
the edge coloring of L̃(f) can be performed in O(NT log T).
Since we have T time slots to do the decomposition, then
the amortized complexity reduces to O(N log T). It follows
that the complexity of decomposing L̃(f) is O(N log log N)
since is T is O(log N).

The O(N log log N) complexity improves upon the
O(N1.5 log N) complexity at the expense of one frame de-
lay, but the average delay remains logarithmic. We can now
state that in a typical single-crossbar switch, the edge col-
oring frame decomposition will achieve the same asymptotic
average delay as the fair-frame decomposition algorithm,
with a smaller complexity.

Theorem 5. The edge coloring frame decomposition al-
gorithm can achieve O(log N) average delay in a single-
crossbar switch.

Proof. Given that L̃(f) is augmented with null packets
such that all row and column sums are T ∗, it is well known
that edge coloring produces a sequence of exactly T ∗ maxi-
mum matchings. Conversely, any sequence of T ∗ maximum
matchings of L̃(f) is a valid edge coloring of L̃(f). Let SEC

be a switch that uses edge coloring frame decomposition.
Let SF F be the same switch using the fair-frame schedul-
ing algorithm instead, and let ŜF F correspond to the switch
SF F with its inputs delayed by a fixed delay of T . Since
the scheduling of L̃(f) occurs during frame (f + 2) with
edge coloring frame decomposition instead of during frame
(f + 1) with on-the-fly maximum matching, it is easy to see

that the output behavior of SEC is identical to that of ŜF F .
Given that SF F has been proven to achieve O(log N) average

delay, it follows that ŜF F also achieves O(log N) average de-
lay since the fixed delay on the inputs is also T = O(log N).
Therefore, SEC achieves O(log N) average delay.

It is easy to see that the two optimizations proposed in [8]
can also be similarly applied with our edge coloring frame
decomposition algorithm, namely L̃(f) can be augmented
with packets from the overflow queues, and, after the decom-
position of a frame, we can start decomposing immediately
the next completed frame via edge coloring. Moreover, with
edge coloring, there is no need to augment L̃(f) with null
packets.

We can now apply the edge coloring results to the CMS
architecture. We will show that CMS using edge color-
ing frame decomposition achieves the same O(N log N) av-
erage delay, but a smaller amortized time complexity of
O(log log N) instead of O(

√
N log N).

Theorem 6. CMS achieves an O(N log N) average delay
bound using edge coloring frame decomposition.

Proof. Follows from Theorem 1.

Theorem 7. The amortized time complexity of CMS us-
ing edge coloring frame decomposition at each linecard is
O(log log N).

Proof. Follows from Theorem 4.

5. FRAME-AGGREGATED CMS
In Section 4, we showed that the CMS architecture can

achieve O(N log N) average delay with O(
√

N log N) or
O(log log N) amortized time complexity per linecard if fair-
frame scheduling or the proposed edge coloring frame decom-
position algorithm is employed as the scheduling algorithm,
respectively. Although both fair-frame scheduling based on
maximum matching and edge coloring frame decomposition
have very low amortized time complexities, they nonetheless
require extra logic or software at each linecard to implement
these non-trivial algorithms. Our goal is to provide a simpler
algorithm that will still achieve strong stability, packet or-
dering, and an O(N log N) average delay, but with an O(1)
complexity and easy practical implementation.

To achieve O(1) complexity, we show in this section that
the matrix decomposition step used in fair-frame schedul-
ing can be eliminated if we modify the CMS architecture
to operate in a frame-aggregated manner. Rather than de-
composing L, and returning grant tokens one at a time, we
propose to modify the CMS architecture so that up to T
grant tokens are returned together from each intermediate
linecard to each input linecard, and the input linecard sends
in return up to T packets to the corresponding intermediate
linecard, from where the packets depart through the sec-
ond switching stage to their final outputs. By eliminating
the need for matrix decomposition, the complexity of our
Frame-Aggregated CMS (FA-CMS) architecture reduces to
just O(1) at each linecard, thus achieving 100% throughput,
packet ordering, O(1) complexity, as well as O(N log N) de-
lay bounds. We will first present an overview of the switch
operation of a FA-CMS. After, we will establish several im-
portant properties of the FA-CMS architecture.

5.1 Switch Operation
The FA-CMS architecture is depicted in Figure 2. It

is very similar to the basic CMS architecture, using the
same fixed rate uniform meshes, but with some differences
in the implementation of the input and intermediate input
linecards.

As in fair-frame scheduling, for a specified demand load
upper-bound ρ and a switch size N , we can use Equation (1)
to compute a minimum frame size T with the corresponding
overflow probability δ that satisfies Equation (2). Also as
in fair-frame scheduling, a frame f is defined to be T con-
secutive time slots. Here, we further define the notion of a

Linecards

1

2

N

Linecards

1

2

N

Linecards

1

2

N

. .
 .

.

. .
 .

.

. .
 .

.

...

VOQs Xik request Lj()

4 1 … 3

(a) (b)

0 6 … 2

5 3 … 0
:

0 1 … 0
2 0 … 1

0 1 … 2
:

overflow j

Figure 2: The Frame-Aggregated Concurrent
Matching Switch architecture. (a) Input linecard.
(b) Intermediate input linecard.

superframe ϕ consisting of N consecutive frames or equiva-
lently NT consecutive time slots.

For the sake of simplicity, we will present the operations
of the FA-CMS architecture in terms of superframes. Specif-
ically, we will decompose the overall switch operation into
four consecutive phases, each taking a superframe to com-
plete: (1) packet arrival and transmission of request tokens,
(2) transmission of grant tokens, (3) transmission of pack-
ets through the first mesh, and (4) transmission of packets
through the second mesh. These phases are pipelined. They
are elaborated as follows:

1. Packet arrival and transmission of request tokens:

a. Incoming packets to input i destined for output k are
buffered at their virtual output queue Xik immediately
upon arrival, as shown in Figure 2(a). For each arriv-
ing packet, a request token is generated, as in the CMS
architecture.

b. In the current superframe ϕ, the request tokens gen-
erated at times equal to j modulo N are sent to the
jth intermediate input linecard. Thus, during a su-
perframe ϕ of duration NT , an intermediate input
linecard j receives at most T request tokens from each
input i, totaling at most NT request tokens from all
N inputs.

c. At each intermediate input linecard j, two matri-
ces are maintained. The first is the request matrix
Lj(ϕ) = (ljik), and the second is an overflow matrix

Ωj = (ωj
ik). For each request token r(i, k) received

during a superframe ϕ, intermediate input j incre-
ments the corresponding entry ljik in the request ma-
trix Lj(ϕ) if the corresponding kth column sum is less
than T . If the corresponding kth column sum has al-
ready reached T , then the corresponding entry ωj

ik in

the overflow matrix is incremented instead. A running
maximum row and column sum T ∗

j for Lj(ϕ) is up-
dated at intermediate input j during the superframe
ϕ each time a request matrix entry ljik is incremented.

d. By the end of the superframe ϕ, all request tokens are
guaranteed to have arrived at their destinated inter-
mediate input linecards using the corresponding εR/N
control channels. Since in the previous step, we have
already shifted all overflow increments to Ωj , we are
guaranteed that T ∗

j ≤ T at the end of the superframe.

2. Transmission of grant tokens:

a. At the beginning of the (ϕ + 1)th superframe, with
Lj(ϕ) and T ∗

j already determined at each intermedi-
ate input linecard, each intermediate input linecard
sends at most T ∗

j ≤ T grant tokens back to each in-
put linecard, totalling at most NT ∗

j grant tokens to
all N inputs. In particular, for each row i in the ma-
trix Lj(ϕ), for each non-zero entry ljik, ljik grant to-
kens g(i, j, k) are sent back to input linecard i. There-
fore, over a control channel with a fixed rate of εR/N
between each pair of intermediate input and input
linecards, the transmission of at most T ∗

j grant tokens
to each input linecard is guaranteed to complete after
NT ∗

j time slots.

b. If T ∗
j < T , then the corresponding intermediate input

j will choose V = T−T ∗
j permutation matrices, π1, . . .,

πV , uniformly at random. For each πv, if πv(i, k) = 1
and ωj

ik �= 0, it sends a grant token g(i, j, k) to input i.
Thus, with V permutation matrices, each intermediate
input linecard j will send at most V additional grant
tokens to each input. Therefore, again over a control
channel with a fixed rate of εR/N between each pair of
intermediate input and input linecards, the transmis-
sion of at most V grant tokens to each input linecard
is guaranteed to complete after NV time slots.

c. Therefore, in total, an intermediate input linecard j
will send at most T ∗

j + V = T ∗
j + (T − T ∗

j) = T grant
tokens to each input, NT grant tokens in total, and
their transfers are guaranteed to complete in NT ∗

j +

NV = NT time slots, or by the end of the (ϕ + 1)th

superframe.

3. Transmission of packets through the first mesh:

a. At the start of the (ϕ + 2)th superframe, in the first
frame, each input will first send up to T packets in
FIFO order from the corresponding VOQs to the first
intermediate input linecard, one per each grant to-
ken g(i, 1, k) received from the first intermediate input
linecard. Similarly, in the jth frame, each input will
send up to T packets in FIFO order from the corre-
sponding VOQs to the jth intermediate input linecard,
one per each grant token g(i, j, k) received from inter-
mediate input j.

b. By the end of the (ϕ + 2)th, all packets are guaran-
teed to arrive at the corresponding intermediate input
linecards using the corresponding R/N data channels.

c. Each intermediate input linecard j will receive at most
T packets from each input, totalling at most NT pack-
ets from all N inputs, and at most T packets among
these NT packets will be destined to each output.

d. Since packets are sent from each input in FIFO order
from the corresponding VOQs, packets from the same
VOQ at the same input linecard will arrive at the des-
tination intermediate input linecard in order.

4. Transmission of packets through the second mesh:

a. Finally, at the start of the (ϕ + 3)th superframe, in
the first frame, each intermediate input will send up
to T packets that it received from the previous phase
to the first output linecard in the order that they were
received. Similarly, in the jth frame, each intermedi-
ate input will send up to T packets to the jth output
linecard.

b. By the end of the (ϕ+3)th, all packets are guaranteed
to arrive at the corresponding output linecards using
the corresponding R/N data channels.

c. Finally, packets received at output linecard k depart
immediately from the router.

5.2 Properties
We will now establish that the FA-CMS architecture guar-

antees packet ordering, strong stability under random in-
puts, and O(N log N) average delay. To do so, we will first
show that it can actually be emulated by a specific CMS
architecture with fair-frame scheduling.

Definition 2 (Emulation). A switch is said to emu-
late another switch if under identical inputs, the departure
times for identical packets are identical within some bound
independent of the traffic pattern.

Theorem 8. CMS with fair-frame scheduling can emu-
late FA-CMS.

Proof. As defined above, in both architectures, the same
request tokens are generated at the same time by the same
packets for the same intermediate inputs. Now, it is possible
to redefine the fair-frame scheduling in CMS to have it pro-
vide the same permutation matches as FA-CMS. (Note that
all results with the fair-frame scheduling do not assume any
specific maximum matching algorithm.) In the same way, it
is possible to redefine it to have it select the same request
tokens to mark as overhead. Thus, both architectures can
eventually generate the very same grant tokens to the very
same input linecards at the same times, and therefore the
inputs in both architectures will eventually decide to send
the same packets at the same time. Therefore, seen from the
inputs, the two CMS-based architectures behave in exactly
the same way, even though the algorithm is of course imple-
mented differently in both. Finally, there is now a difference
in the delays that packets need to reach the outputs and de-
part from the switch. Assuming the same implementation
of the control channels and of the meshes, CMS with fair-
frame scheduling only needs a propagation delay through
the 2 meshes of 2N , while FA-CMS has to wait for the su-
perframe boundaries to ensure ordering, and so it needs a

total delay bounded by 2(N+N ∗T) after receiving the grant
tokens. Therefore, while the difference could be large, it is
independent of the specific traffic pattern and is bounded by
2NT . Using Definition 2, CMS with fair-frame scheduling
emulates FA-CMS.

Theorem 9. FA-CMS guarantees packet ordering.

Proof. This result follows directly from the enforcement
of packet ordering throughput the switch, particularly in
Steps 3(a), 3(d), and 4(a). Of course, it follows also from
Theorem 8 providing emulation by CMS with fair-frame
scheduling, which guarantees packet ordering.

Theorem 10. FA-CMS is strongly stable.

Proof. Using Theorem 8, we know that FA-CMS can be
emulated by CMS with fair-frame scheduling; and CMS with
fair-frame scheduling is strongly stable [5].

Theorem 11. FA-CMS can achieve O(N log N) average
packet delay.

Proof. The proof of Theorem 8 shows that FA-CMS
can be emulated by CMS with fair-frame scheduling,
with a maximum difference in delay bounded by 2NT =
O(N log N). Further, CMS with fair-frame scheduling
achieves O(N log N) average packet delay by Theorem 2.
The result follows.

5.3 Complexity
We now show that the above FA-CMS switch operation

can be implemented with only O(1) time complexity at each
linecard. Therefore, FA-CMS reaches our goal of obtaining
a switch architecture that achieves 100% throughput, packet
ordering, O(1) complexity, and guaranteed delay bounds.

Theorem 12. The time complexity of the FA-CMS at
each linecard is O(1).

Proof. In phase 1, each input linecard only has to queue
at most one new packet at each time slot and generate at
most one corresponding request token that has to be for-
warded to an intermediate input linecard. Clearly this only
requires constant time operation. And at each intermediate
input linecard, it will receive at most one request token per
time slot. For each request token received, the updates to
Lj(ϕ), Ωj , and T ∗

j clearly also require only constant time.
In phase 2, the main source of efficiency is the fact that

we do not need to perform matrix decomposition by either
maximum matchings or edge coloring. We only need to gen-
erate grant tokens from Lj(ϕ) and Ωj that have already
been established in the previous superframe. Since each in-
termediate input linecard only needs to generate at most
one grant token per time slot, the processing by each in-
termediate input or input linecard is only constant time per
time slot. For Step 2(b), choosing a permutation matrix uni-
formly at random is clearly a constant time operation. And
since V = T − T ∗

j is bounded by T , we only need to choose
uniformly at random at most T permutation matrices, and
we have NT time slots to generate them.

Finally, for phase 3 and phase 4, each input, intermediate
input, or output linecard only has to receive at most one
packet and transfer at most one packet per time slot, and the
corresponding queueing operations take constant time.

Note that like in the basic CMS architecture, each linecard
only relies on its local state information to perform all of
its decision and queueing functions. Further, the number of
queues in each linecard is upper-bounded by O(N), and each
of these queues is in a simple FIFO mode, requiring low con-
trol complexity. In addition, the number of packet buffers
stored in these queues is upper-bounded by O(N log N) per
linecard, because each intermediate linecard can receive at
most NT packets from all inputs in each superframe, where
T is O(log N). Hence, the FA-CMS architecture is also
highly scalable.

6. SIMULATIONS
In this section, we demonstrate the performance of the

frame-based CMS architectures described in this paper. In
our simulations, we consider independent Bernoulli i.i.d. in-
puts with a port loading set to ρ = 0.7. For each switch size
N , a minimum frame size T is computed using Equation (1)
with the constraint that the corresponding overflow proba-
bility δ satisfies Equation (2). The results for both uniform
and non-uniform traffic are shown in Figure 3, plotting the
average packet delay in time-slots as a function of the switch
size N . Results shown for uniform input traffic correspond
to the case where λik = ρ/N for all input-output pairs. For
non-uniform input traffic, we consider a diagonal traffic pat-
tern in which λik = 2ρ/3 when i = k, and λik = ρ/3 when
((i − 1) mod N) + 1 = k.

We first show in Figure 3(a) the performance of the frame-
aggregated CMS architecture described in Section 5. This
architecture has the advantage that it only requires O(1)
complexity without the need for any scheduling or decom-
position algorithm. Also shown on Figure 3(a) is the plot
of the analytical O(N log N) delay bound proved in Theo-
rem 11. As can be seen in the figure, the delay results for the
frame-aggregated CMS architecture fall within this bound.

We next show in Figure 3(b) the performance of the CMS
architecture [5] using the fair-frame scheduling algorithm [8]
and dynamic frame sizing, as described in Section 4.1. The
figure illustrates that the delay for the non-uniform traffic
case is slightly better than the uniform traffic case. In both
cases, it can be seen that the delay results follow the same
asymptotic profile as in Figure 3(a).

Note that the delay is longer in Figure 3(a) compared
to Figure 3(b) for two reasons. First, because of the de-
lay incurred by the aggregation of superframes between the
two switch stages, as noted for instance in the proof of the
emulation theorem (Theorem 8), since FA-CMS works us-
ing superframes, while CMS with the fair-frame schedul-
ing algorithm can switch packets at the intermediate input
linecards as soon as they arrive. More significantly, the fair-
frame scheduling algorithm was implemented using dynamic
frame sizing, yielding frame sizes that were typically smaller
on average than the analytical results by a factor of up to
10.

7. CONCLUSIONS
In this paper, we presented a general delay bound for the

previously proposed CMS architecture [5], and we showed
that the fair-frame scheduling algorithm proposed in [8]
can be combined with the CMS architecture to achieve
O(N log N) average delay. We also showed an improved

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 100 200 300 400 500 600 700 800 900 1000
Switch Size N

Av
er

ag
e

D
el

ay

Analytical Bound
Uniform
Non-Uniform

(a) Frame-Aggregated CMS.

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

0 100 200 300 400 500 600 700 800 900 1000
Switch Size N

A
ve

ra
ge

 D
el

ay

Uniform
Non-Uniform

(b) CMS with Fair Frame Scheduling.

Figure 3: Simulation results with uniform and non-
uniform traffic, ρ = 0.7.

formulation of the fair-frame scheduling algorithm by re-
placing the maximum matching step with an edge coloring
frame decomposition step, which reduced the complexity of
the algorithm from O(N1.5 log N) to O(N log log N). This
result is applicable to the conventional crossbar scheduling
problem as well. When used in conjunction with the CMS
architecture, these complexities are amortized by a factor of
N to O(

√
N log N) and O(log log N), respectively. Finally,

we showed that an O(N log N) average delay can be achieved
with a modified version of the basic CMS architecture with-
out having to perform either fair-frame scheduling or edge
coloring frame decomposition. Instead, we modify the basic
CMS architecture to operate in a frame-aggregated man-
ner. By eliminating the need for any matching algorithm,
the time complexity of our Frame-Aggregated CMS archi-
tecture then reduces to just O(1) at each linecard. In sum-
mary, using our proposed Frame-Aggregated CMS architec-
ture, we achieve an O(N log N) average delay bound, as well
as a 100% throughput guarantee, packet ordering, and O(1)
complexity, thus improving on the best previously-known
average delay bound of O(N2) given these switch proper-
ties.

8. REFERENCES
[1] C. S. Chang, D. S. Lee, Y. S. Jou, “Load balanced

Birkhoff-von Neumann switches, Part I: one-stage
buffering,” Computer Communications, vol. 25, pp.
611-622, 2002.

[2] C. S. Chang, D. S. Lee, C. M. Lien, “Load balanced
Birkhoff-von Neumann switches, Part II: multi-stage
buffering,” Computer Communications, vol. 25, pp.
623-634, 2002.

[3] I. Keslassy, S. T. Chuang, K. Yu, D. Miller,
M. Horowitz, O. Solgaard, and N. McKeown, “Scaling
Internet routers using optics,” ACM SIGCOMM,
Karlsruhe, Germany, 2003.

[4] B. Lin, I. Keslassy, “A scalable switch for service
guarantees,” Proceedings of the 13th IEEE Symposium
on High-Performance Interconnects, Aug 17-19, 2005.

[5] B. Lin, I. Keslassy, “The concurrent matching switch
architecture,” IEEE INFOCOM, Barcelona, Spain,
April 2006.

[6] L. Tassiulas, “Linear complexity algorithms for
maximum throughput in radio networks and input
queued switches,” IEEE INFOCOM, vol. 2, pp.
533-539, New York, 1998.

[7] P. Giaccone, B. Prabhakar, D. Shah, “Randomized
scheduling algorithms for input-queued switches,”
IEEE Journal of Selected Areas in Communication,
vol. 21, no. 4, pp. 642-655, May 2003.

[8] M. J. Neely, E. Modiano, Y.-S. Cheng, “Logarithmic
delay for N x N packet switches under the crossbar
constraint,” IEEE Transactions on Networking, vol.
15, no. 3, pp. 657-668, June 2007.

[9] R. Cole, K. Ost, S. Schirra, “Edge-coloring bipartite
multigraphs in O(E log D) time,” Combinatorica, vol.
21, no. 1, pp. 5-12, 2001.

[10] J. Hopcroft, R. Karp, “An n5/2 algorithm for
maximum matchings in bipartite graphs,” SIAM J.
Computing, pp. 225-231, December 1973.

[11] S. T. Chuang, A. Goel, N. McKeown, B. Prabhakar,
“Matching output queueing with a combined input
output queued switch,” IEEE Journal on Selected
Areas in Communications, vol. 17, no. 6, pp.
1030-1039, 1999.

