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Abstract

This paper addressesthe problem of decomposinga
polyhedal surfaceinto “meaningful” patches. We de-
scribetwo decompositioralgorithms— floodingcorvex de-
compositionand wateisheddecompositionand show ex-
perimentalresults. Moreover, we discussthree applica-
tionswhich canhighly benefitfrom surfacedecomposition.
Theseapplicationsincludecontent-basedetrieval of three-
dimensionalmodels,metamorphosi®f three-dimensional
modelsandsimplification.

Keywords: Polyhedal surfacedecompositionretrieval
of three-dimensionamodels, metamorphosissimplifica-
tion.

1 Intr oduction

Decompositiorof polyhedranto solidshasbeenalively
topic of researclin computationabeometry |t is generally
the casethat a decompositiorinto corvex solidsis sought
(e.0,[2,3,6,9, 11,12, 23)), sincecorvex shapesreconsid-
eredusefulfor representationnanipulatiorandrendering.
Most algorithmsproposedare hardto implementand de-
bug andthey all suffer a quadraticblow-up, whichis often
prohibitivein practice.

Realapplicationsftendo notneedto partitionthe poly-
hedronitself but only its boundary Althoughnot asversa-
tile assoliddecompositiondyoundarydecompositionbave
severaladwantagesincluding simplicity of implementation
andthe compleity of the outputwhich is alwayslinearin
size. This paperaddressethe problemof decomposing
polyhedralsurfaceinto patches.

We discussa couple of algorithmsfor decomposing
polyhedralsurfaces: a flooding corvex decompositioral-
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gorithmanda watershedegmentatioralgorithm. We also
shav someresultsof applyingthetwo algorithmsandillus-
tratetheir utility. We shavedin [10] thatthe minimization
problemof surfacedecompositioris NP-complete. Thus,
heuristicsarenecessaryFloodingheuristicsreferto thein-
crementaktrat@y of startingfrom anodein thedualgraph
and traversingthis graph, collecting facesalong the way
aslong asthey do not violate a pre-definedproperty(i.e.,
convexity). Watershedsegmentationalgorithmssegmenta
givenobjectinto "catchmentbasins”or "watersheds[19].

A main emphasif the currentwork is the applicabil-
ity of surface decomposition. In the past, major candi-
date applicationsmentionedwere collision detectionand
rendering,both can greatly benefitfrom the corvexity of
the patches.In this paperwe look at otherapplications-
oneswhich do not take advantageof corvexity perse,but
ratherbenefitfrom the decompositioritself (which aswe
will shav neednot necessarilype corvex).

More specifically the principle that underliesthis work
is thatgiven an object, its patchesandthe way they relate
to eachothercharacteriz¢his objectandportrayits distinc-
tive features.This is supportedoy obsenationsthatthe vi-
sualsystemtendsto sggmentcomplex objectsat regionsof
matchedconcaities [8]. Thus,the applicationsve choose
to explore are onesthat take advantageof the structureof
thedecomposition.

The first applicationwe experimentedwith is search-
ing a databas®f three-dimensionahodels(e.g.,givenin
VRML) for objectssimilarto agivenmodel.As VRML ob-
jectsarebecomingmore popularon the World-Wide Web,
this problemis expectedto have mary usesin computa-
tionalbiology, CAD, e-commercetc. Sincesimilarobjects
have similar decompositionghe structureof the decompo-
sition canbe usedin the matchingalgorithm. We ran our
searchalgorithmon a databaseontaining388 VRML ob-
jectsandachievedgoodresults.

The second application concerns metamorphosisof
three-dimensionahodels. The ideahereis to decompose
the given modelscompatibly and to morph eachpair of
compatiblgpatchesThisalgorithmhasacoupleof benefits.
First,thereis noneedo make any assumptiomegardingthe



topologyof the givenmodel.Any “polygon soup”’modelis

valid. Secondsincesimilar objectshave similar decompo-
sitions themorphsequencenaintaingheoveralldistinctive
featureof themodels.Similar objectsareimportantto han-
dle correctlybecaus¢hesearetheobjectsourvisualsystem
is mostsensitve to. Most automaticcorrespondencalgo-
rithms either ignore similarity betweenmodelsor require
thatthe end—usecarefullyspecifieghe correspondence.

The final application is simplification of three-
dimensionalmodels. Given a model of n faceswe gen-
erateanothemmodelof mary fewer facesthat captureshe
characteristic®f the original model. The ideais to adda
pre-processingtepin which themodelis decomposethto
patchesandto apply a simplification schemeonly within
the patchesthusmaintainingthe distinctive featuresof the
model.

Section2 discusseslgorithmsfor surfacedecomposi-
tion. Sections3-5 presentthe applicationsin detail. In
particular databaseetrieval, metamorphosiand simplifi-
cationaredescribedn Sections3, 4 and5, respectiely. We
concludein Section6.

2 Surface Decomposition

GivenS, apolyhedralurfacewith n verticesthegoalis
to decomposé into & disjointpatchesSy, - - - S of agiven
property whoseuniongivessS.

In the sequelwe presenttwo algorithms. The first
decomposesS into corvex patches[10, 13]. We have
shawvn in [10] thatin this case,the minimization problem
is NP-complete.Neverthelesghe family of greedyflood-
ing heuristicsachievesgoodresults. The secondalgorithm
is a watersheddecompositioralgorithmwhich is inspired
from segmentationalgorithmsusedin image processing
anddoesnot necessarilgecompos¢he modelinto convex
patcheg26, 19].

Convex decomposition— flooding algorithm: A poly-
hedral surface is called corvex if it lies entirely on the
boundaryof its corvex hull. Let G be the dual graph of
the polyhedralsurface S, wherenodesrepresenfacesand
arcsjoin nodesassociatedvith adjacentfaces. The class
of greedyfloodingheuristicsefersto theincrementaktrat-
egy of startingfrom somenodeandtraversingG, collecting
facesaslong asthey form a corvex patch. Whentraversal
cannotbe continuedbecausecorvexity is violated, a new
patchis started andthetraversalis resumed.

Heuristicsin this classvary accordingto the methodof
traversalused. The simplestheuristicsuse either a DFS
traversalor a BFStraversal. Note thatthe floodingscheme
canbe appliedusingdifferentpropertiesof the surfaceand
is notlimited to corvexity.

In thecaseof corvexity, thetraversalof apatchcannote
continuedf eitheralocal failure or aglobalfailure occurs.
A localfailuremeanghatanedgeatwhichafaceis attached
to the patchis concare. A global failure meansthat even
thoughthe patchis locally corvex everywhere somefaces
donotresideontheboundarytheconvex hull of thevertices
of thepatch.

For someapplicationsit is vital to get only a handful
of patches.However, whenthe given modelis large, it is
oftenthe casethattherearemary “small” concaities, i.e.
local failuresby very small angles. The resultof flooding
modelshaving mary small concaities is a decomposition
into mary smallpatcheseachconsistof afew faces.

We proposetwo ways to get over this problem. First,
theusercansetaparametet, andananglelessor equalto
IT + e betweeradjacenfacesis consideredorvex. Obvi-
ously, theresultingpatcheswill not necessarilyoe corvex.
However, aswe will see,meaningfuldecompositionsvill
beattained.

Second,we add a post-processingtepin which small
patcheg(area-wise)are memgeswith larger ones,thusde-
creasinghe overall numberof patches A userdefinedpa-
rametersg, is introduced. Let A be the total areaof the
givenobject. A patchis consideregmallif its surfacearea
is lessthang x A.

The post-processingstep proceedsas follows. The
patchesarefirst sortedby their surfacearea. Startingfrom
the smallestpatch,every small patchis consideredn turn.
A smallpatchis memgedwith its neighborhaving thelargest
surface area, regardlessof whetherthis patch should be
memgedaswell. We will shav in the sequelthatthe above
post-processingtephighly improvesthe quality of there-
sultingdecomposition.

An alternatve, faster post-processingtepwill be de-
scribedin Section3, for a specificapplicationwherethis
new methodis appropriate.

Watershed decomposition algorithm: The watershed
segmentationalgorithmwasfirst proposedor image seg-
mentation[26)]. Let A(x,y) : M — R beaheightfunction
definedovertheimagedomainM. A catchmenbasinis the
setof pointswhosepathof steepestiescenendsn thesame
local minimum of h. Notethatvariousheightfunctionsh
canbe usedwithin this generalframenork. After locating
the local minima of h, the algorithmassociatesatchment
basinswith theminima.

The algorithm proceedsas follows. First, all the local
minima are found and labeled. Then, the flat areasare
found. Flat areascanbe eitherminimaor plateaus.In the
first case,the areasare labeledand treatedlik e the local
minima found in the first step. At this point, the steepest
gradientdescentis usedto loop throughthe plateausand
allow eachoneto descendintil alabeledregionis encoun-



(a) Applying [19] to
auniformtriangulation

(b) Applying [19] to
anon-uniformtriangulation

(c) Applying the new algorithmto
anon-uniformtriangulation

Figure 1. The Steps Model

tered. Theremainingunlabeledverticessimilarly descend
until joining labeledregions. Theideais thatof following a
dropof water“downhill”.

A majorproblemwith thisalgorithmis thatit resultswith
over sggmentation.To handleit, a post-processingiemging
stepis appliedwhereregionswhosewatershedlepthsare
belov a certainthresholdarememed.

This basicalgorithmhasbeenextendedio handlethree-
dimensionalpolyhedralmodels[19]. The major issueis
how to choosehe heightfunction. In [19], the heightfunc-
tion is definedover the polyhedralmodel. It is proposedo
usevariouscurvatureestimationf the surfacedefinedat
eachvertex of themodel,asheightfunctions.

A major problemwith this schemds that curvaturees-
timationsdefinedon meshverticesget differentvaluesde-
pendingon the numberof facesadjacento eachvertex. In
otherwords, the topologyof the model,andnot merelyits
geometry affectsthe final sggmentation. For instance,in
Figuresl(a)-(b),amodelof stepds triangulatedn two dif-
ferentways.In Figurel(a)all theinternalverticeshave the
sameheightfunctionvaluesandthusonly onepatchresults.
In Figure 1(b), the internal verticeshave different height
function values,resultingwith a decompositiorinto three
patchesThemostdisturbingvisualeffectof thisexampleis
thatadjacenplanarfacesendup in differentpatches.This
algorithmworks well for modelscreatedfrom rangedata,
however generaMWRML modelshave lesspleasingdecom-
positions.

To getover this problemwe proposeto definea height
function over the edgesof the polyhedralmesh. Let the
heightfunctionbeh = 1 — cos(a) wherea is thedihedral
angledefinedon this edge(the anglebetweerthefacesad-
jacentto theedge).Thebasicwatershedlgorithmcannow
be appliedto the edgeqratherthanto the vertices).To get
thefinal decompositiorof the surface,eachfaceis associ-

atedwith its edgewith thelowestheight. Thus,all adjacent
planarfacesendup in the samepatch. Moreover, theseflat
regionsareminima (having a heightfunctionvalue0).

The resultof runningthe watershedalgorithmwith the
above heightfunctiononthestepsmodelis demonstrateth
Figurel(c). Notethatin this case all the facesthatreside
on the sameplaneendup in the samepatch. Thus, every
stepis decomposednto two patches,one horizontaland
onevertical.

Finally, asimilar post-processingtepthatwasdescribed
for corvex decompositions appliedhereaswell. In other
words,smallpatchesaremeigedwith theirlargerneighbor
ing patchesthusreducingthe overall numberof outcome
patches.

We have testedvariousversionsof the above algorithms
on several objects. Figure 2 illustratestypical decomposi-
tions. It canbeseerthatourdecompositionéFigures?a(3)-
(4) and 2b(3)-(4)) outperformpreviously proposedalgo-
rithms, producing less patchesand resulting with more
meaningfulstructures. Note also that the two algorithms,
corvex decompositiorand watreshedlecompositiongen-
eratedifferent decompositiongven when the numberof
outputpatchess identical, asillustratedin Figures2a(3)-
(4).

In the following we discussa few applicationsof poly-
hedralsurfacedecomposition.

3 Application I: Content-BasedRetrieval

Givenadatabasef three-dimensionalbjectsin a stan-
dardrepresentationsuchas VRML, and one specificob-
ject O, thegoalis to retrieve objectssimilarto O from the
database.As VRML objectsare becomingmore popular
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(1) Original corvex decompositior{15 patches)| (2) Originalwatershediecompositior{62 patches)

§

(3) Our corvex decompositiorf6 patches) (4) Ourwatershedlecompositior{6 patches)

(a) Decompositionsof a rook
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(1) Original corvex decompositior{33 patches)| (2) Originalwatershediecompositiorf21 patches)
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(3) Our corvex decompositiorfs patches) (4) Ourwatershedlecompositior{3 patches)

(b) Decompositionsof a mushroom

Figure 2. Decompositions




on the World-Wide Web, theretrieval of three-dimensional
modelsis expectedto have mary applications.

Few papershave dealtwith shapebasedetrieval of gen-
eralpolyhedralmodels.In [7, 21, 22] histogramf proper
tiesof themodelsarebuilt andcomparedsometimesising
userdefinedweightfunctions.Propertiesisedincludenor
mals,anglesdistancedetweerpoints,colors,andmaterial.
In[14] shapenomentsareusedo representheobjectsand
retrieval is donewithin arelevancefeedbackramework.

We proposeherea differentapproachTheideais to de-
composezachthree-dimensionanodelinto a small num-
ber of meaningfulpatches.Then,the shapeof eachpatch
is evaluatedandthe relationsbetweenthe patchesare de-
termined.Eachsuchdecompositions representetyy a at-
tributed graph,which is viewed as a signatue associated
with eachVRML object. This is the sameideaasusing
a few key-wordsassociatedvith a documentasthe docu-
ments signature. When searchinga databasdor objects
similar to a given object, we are basically searchingfor
graphssimilarto agivengraph.

This approachs supportedy psycho-physicabbsena-
tions,noticingthatthevisualsystentendsto segmentcom-
plex objectsat regionsof deepconcaities [8]. It is thus
proposedhatrecognitionof imagescanbe doneby recog-
nizing the “componentsfoundby segmentationWe claim
here that similar ideascan be donein three dimensions,
wheresurfacedecompositiomeplacesmagesegmentation.
Moreover, the three-dimensiongbroblemseemsmorein-
formative thanits two-dimensionakounterpartfor a few
reasons. First, no effects of reflectionsand shadevs get
in the way of segmentation. Second,three dimensional
objectsare seen“wholly” anddo not suffer occlusionsor
self-occlusionsThird, recognizingthe shapeof eachcom-
ponent(or patch)is easiersincethereis no projectionin-
volved.

Ouralgorithmfor associating “signature”with athree-
dimensionaimodel proceedsn threesteps. First, the sur
faceis decomposedsdescribedn Section2. Secondeach
patchis recognizedsabasicshape Third, therelationships
betweerthe patchesaredeterminedanda graphrepresent-
ing the modelis constructed.Two pointsrequireexplana-
tion: how do we determinebasicshapesandwhat arethe
meaningfulrelationshipdetweerpatcheghatwe use.

We considerfour shapessbasic:asphereacylinder, a
coneandaplane.Givenapatch thegoalis to determindor
this patchon which type of basicshapet is morelikely to
reside.To doit, we samplethepatchandsolve anon-linear
least-squareproblem,which fits the samplepointsto the
equation®f eachbasicshape.The shapewith the minimal
fitting erroris choserasthe basicshapehegivenpatchhas
beendravn from.

Oncetheneighboringrelationshipdetweerthe patches
areidentified,we determingherelative sizeof neighboring

patchesAs obseredin [8], therelative sizeof the compo-
nentsis of a vital importance.For instance a smallsphere
adjacento abig cylinder belonggo a differentclassof ob-

jectsthanthatof abig sphereadjacento a smallcylinder.

To retrieve objectssimilar to a given object,we needto
comparesignatures.In our case,comparingsignaturess
relatedto graphisomorphism.The latter problemis a hard
problem(not known to bein NP-completg24]). It is thus
importantthat the surface decompositioralgorithmsused
do not producemary patches.Recallthatwe adjustedhe
decompositiomalgorithmsaccordingly by ignoring small
concaities in the caseof corvex decompositionand by
controllingthe depthconsideredor memging in the caseof
watershedegmentation.

Moreover, in both caseswe addeda post-processing
stepin which small patches(area-wise)are memged into
large patches.In fact, we caneven apply a simpler post-
processingstep. Ratherthan memging small patcheswith
large patcheswe canjust ignore, or eliminate, the small
patchesThisapproactis supportedy psycho-physicabb-
senationsthat“recognitioncanbe fastandaccurate’even
if “only two or threegeonsof a complex objectare visi-
ble” [8]. Thus,we canremove small patchesandnot con-
siderthemfor similarity atall. Ourexperimentdhave shavn
thatthisis a very goodoption.

For the latter post-processingtep, a patchis defined
smallif two conditionshold: (1) its surfaceareais lessthan
gxA, whereA isthesurfaceareaof thewholeobject,and(2)
aftereliminatingthe patch thesurfaceareaof theremainder
patchess greatetthanp x A. Bothp andq areuserdefined
parameters As before,the patchesarefirst sorted. Then,
smallpatchesareeliminatedin ascendingrderuntil either
conditionis not satisfied.

Attaining only a few patchesis vital, becauseonly
for small graphsthereare heuristicsthat solve sub-graph
isomorphism. In our case,we use the Graph Matching
Toolkit which finds subgraphisomorphismof attributed
graphg20].

To testour retrieval algorithm,we ranit on a database
consistingof 388 VRML objects. We experimentedwith
four versionsof the algorithm: (1) cornvex decomposition
with apost-processingtepin whichsmallpatchesreelim-
inated; (2) corvex decompositiorwith a post-processing
step in which small patchesare memged with neighbor
ing large ones;(3) watersheddecompositiorwith a post-
processingtepin which small patchesare eliminated;(4)
watersheddecompositionwith a post-processingtepin
which small patchesare meiged with neighboringlarge
ones. Tables1- 2 and Figures3— 4 demonstratesomeof
ourresults.

Table 1 shows the top 20 resultsof a searchfor objects
similarto acat,wherethegoodresultsareemphasizedThe
classof four-leggedanimalsconsistf 18 animals.As can



be seenall four algorithmsexhibit goodresults,retrieving

11 — 16 animals.Amongthefour algorithms thewatershed
algorithm,wheresmallpatchesarememedwith largerone,

achieredthebestresults.

Similar resultscanbe obseredin Table 2 which shovs
thetop 20 objectsretrievedwhensearchinghe databaséor
objectssimilar to a human. The classof humansconsists
of 19 members. Again, all four algorithmsexhibit good
results,finding 12 — 18 humans. Among the four algo-
rithms, the watershedalgorithm, where small patchesare
eliminated achiezedthebestresultyretrieving 18 humans).
However, the otherversionof the watershedalgorithm, as
well as corvex decompositiorwith merge, are almostas
good,retrieving 17 similar objects.

Figure4 demonstrateanimportantadvantageof our al-
gorithm. Sinceobjectsaredecomposehto their meaning-
ful partsprior to their comparisonsthe objectscanbe in
mary possiblepositionsandyet consideredimilar. For in-
stance the humancanbe sitting or standing,canfold her
legsandarmsor not etc. The graphs representinghe de-
compositionsare similar in all thesecases. This is to be
contrastedvith geometricsimilarity, wherea sitting figure
would beconsideredlissimilarto a standingone.

To conclude. the algorithmsare competitve and all of
them performwell. However, the Watershedalgorithmis
slightly better

4 Application Il: Metamorphosis

A commonapproacho find a correspondencketween
two given polyhedrafor metamorphosiss to look for a
commonembeddingf thetopologiesof the givenpolyhe-
dra. For instancejn [16] the polyhedraare projectedonto
the planeusingharmonicmapping. In [17], the polyhedra
areprojectedontothesurfaceof asphereln [27], thepoly-
hedraare projectedonto the surfacesof corvex polyhedra.
In all thesecasestheprojectionis donein orderto facilitate
themergeof the 1—skeletongraphsof the polyhedra.

This approachhasa couple of dravbacks. First, fine
correspondencis hardto achieve, sincethe projectionis
global. This canresultin visible artifactswhen features
in oneobjectaretransformednto completelydifferentfea-
tureson the other To overcomethis shortcomingit is pro-
posedn [1] thattheuserspecifiessomecorrespondindea-
ture pointsonthe polyhedras surfaces.Thealgorithmthen
tries to computean overlay of the two 1—skeletongraphs
of the polyhedra taking this correspondencmto account.
Computingthis overlay, however, is not always possible,
noris it easyto know in advancewhenthis is the case.In
addition, specifyingmary pointscanbecomea burdenon
the end—userandspecifyingonly a handfulof pointsis of-
teninsufficient.

The seconddisadwantageof the generalapproacthis the

necessanassumptiorthat the input modelsare polyhedra
(ratherthan“polygonsoups”),andoftenevengenuse poly-

hedra. This assumptiorcannotbe madefor arbitrarymod-

elsfoundin VRML librariesovertheweh Many objectsare
rarelytwo-manifoldsandoftenhave cracksandintersecting
triangles.

To overcometheseshortcomingswe proposeherea dif-
ferentsolutionfor finding a correspondenctor metamor
phosis. First, the given polyhedra$ surfacesare decom-
posedinto patches. The decompositionsare then trans-
formed so that their connectvity graphsbecomeisomor
phic. Finally, acommonparameterizatiois foundfor each
pair of correspondingpatchesThis parameterizatiors the
correspondencee areseeking.

Since the objectsare decomposedthey can have ary
topology They needneitherhave genuszero, nor evenbe
two-manifolds. Moreover, ratherthan carefully specifying
correspondingertices theboundariebetweerthe patches
areconsideredhe correspondindeatures.This guarantees
thatsimilarparts(e.g.,organs)retransformedo eachother
(i.e.,aheadis transformednto a headanda leg into aleg).

Note that after applying a surface decompositioralgo-
rithm, we gettwo setsof patchesvhosenumberis not nec-
essarilyequalandwhoseconnectity graphsarenotneces-
sarily isomorphic. We built atool that lets the usereasily
and quickly “fix” the resulting patch configuration. This
tool allows the userto divide patchesnto smallerpieces,
to unite existing patchesandto move facesfrom onepatch
to a neighboringpatch. Sinceusuallythereare not mary
patchesnvolved,very little manualwork is needed.

Oncethepolyhedraaredecomposeihto isomorphicsets
of patches,the problem of finding a global parameteri-
zationis broken down into finding a parameterizatioffior
eachpair of correspondingpatches.Variousparameteriza-
tion methodshave beendiscussedn the literature. They
include barycentricparameterizatiorfe.g.,[17, 27]), har
monic parameterizatiofiLl6] andshape-preservingarame-
terization[15]. In all thesecasestheboundaryverticesare
first placedon a two-dimensionapolygon. Only thencan
theinnerverticesbeplacedaccordingo thespecificmethod
used.

In Figure 5 we shov a few snapshotdfrom a movie
thatmorphsa cheetahinto a tiger. The imagesare shavn
alongwith the decompositionsThis examplehasbeense-
lected becausea cheetahand a tiger belongto the same
family of animalsandthusresemblesachother As such,
the viewer is morelikely to noticedeformationsn the se-
guence. This is exactly the caseour algorithmintendsto
handlewell. Whenthe modelsarealike, the algorithmcan
take adwantageof the similarity of their decompositions.
As canbeseentheintermediateesultslook very corvinc-
ing. In fact, in the movie, where more framesare used,
the gradualchangesare hardly noticeable. This movie, as



Corvex decomp.gliminate | Corvex decomp.memge || Watershealecomp.gliminate || Watershedlecomp.memge
Rank || Object Distance Object Distance Object Distance Object Distance
1. Cat2 0.00 Cat2 0.00 Cat2 0.00 Cat2 0.00
2. Calf 0.40 Cowl 0.44 Calf 2.11 Horse2 1.98
3. Cowl 1.69 Calf 0.47 Horse2 2.87 Tiger3 2.52
4, Tiger2 241 Pump 1.67 Cow?2 4.02 Camel2 3.76
5. DogStl 2.48 Tiger2 2.03 Tiger3 4.54 Calf 3.91
6. DogSt2 412 DogsSt2 3.36 Shuttle 4.62 Cow 4.09
7. Chicken 4.68 DogsStl 3.61 Camel2 4.78 Cow2 411
8. Knifepr 4.76 Goat2 3.67 P51 4.87 Fontanin 4.39
9. Part02 4.82 Rocktshp 3.88 Cow 4.89 Cowl 4.63
10. Cow2 4.87 Horse2 4.22 Pump 5.02 Goat2 4.81
11. Horsel 4.92 Chicken 4.67 Deer 5.15 DogSt2 5.09
12. Ship2 5.30 Cow2 4.72 Camell 5.71 Camell 5.13
13. Shulttle 5.39 Camel2 4.85 Goat2 5.72 P51 5.66
14. Knifecl 5.55 Part01 4.87 Cowl 6.23 Shulttle 5.78
15. Horse2 5.72 Pumpl 4.94 TennisSh 6.26 Deer 5.97
16. Pump 6.14 Camell 5.09 Donkey 6.68 Dogstl 6.81
17. Camel2 6.19 Cow 5.15 HorseR 7.58 Tiger2 7.20
18. Sandall 6.21 Sandall 5.17 DogSt2 7.70 Excalibe 7.24
19. HorseR 6.28 Shuttle 5.24 Pumpl 7.78 HorseR 7.46
20. Fontanin 6.49 Horsel 531 Fontanin 7.96 Donkey 7.48

Table 1. Retrieval of top 20 objects similar to Cat2
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Figure 3. Retrieval of top 20 objects similar to Cat2 — watershed, merging patc hes




Corvex decomp.gliminate | Corvex decomp.memge || Watershealecomp.gliminate || Watershedlecomp.memge
Rank || Object Distance Object Distance Object Distance Object Distance
1. Woman2 0.00 Woman2 0.00 Woman2 0.00 Woman2 0.00
2. Woman7 0.02 Woman8 0.20 Woman4 0.00 Child7y 0.32
3. Woman4 0.22 Man7 0.43 Woman6 0.00 Woman7 0.60
4. Woman5 0.30 Woman3 0.47 Woman3 0.06 Manl 0.61
5. Woman6 0.37 Man3 0.48 Woman5 0.06 Man4 0.61
6. Man5 0.37 Woman6 0.52 Woman7 0.06 Man5 0.62
7. Woman3 0.52 Man6 0.64 Man3 0.15 Woman5 0.64
8. Cat2 0.97 Man4 0.65 Man5 0.15 Child9y 0.78
9. Reel 1.42 Man5 0.66 Woman8 0.16 Cat2 0.93
10. Woman8 1.50 Woman5 0.67 Manl1 0.16 Child3y 1.02
11. Man7 1.71 Child3y 0.76 Man6 0.16 Child5y 1.02
12. Flintcar 2.21 Childsy 1.01 Man4 0.17 Woman6 1.14
13. DogsSt4 2.52 Billboar 1.65 Man7 0.18 Man7 1.15
14, Toydog 2.59 Child9y 1.89 Child3y 0.48 Man6 1.15
15. Tabasco 2.80 Woman4 1.91 Child9y 0.80 Woman4 1.55
16. Chairll 2.99 Newtable 3.08 Child5y 0.98 Woman8 1.55
17. Man3 3.14 Stool2 3.09 Man2 1.62 Woman3 1.55
18. Ofbldng1 3.16 Woman7 3.12 Toydog 1.86 Child12y 1.72
19. Man4 3.20 Manl 3.23 Cat2 2.02 DogSt4 1.81
20. Man6 3.22 Child12y 3.27 Child12y 2.16 Manhand 2.11

Figure 4. Retrieval of top 20 objects similar to Woman2 — watershed, eliminating small patc hes

Table 2. Retrieval of top 20 objects similar to Woman2
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Figure 5. Metamorphosis of a cheetah and atiger
9




well asotherscreatedby the algorithm, can be found in
http://www.ee.technion.ac.ilayellet/Morph-mwies.

5 Application Ill: Simplification

Polygonalsurfacesimplificationseekdo reducethesize
of three-dimensionahodelsin orderto speedup rendering
or otherthree-dimensionalpplicationd18].

Decimationis one of the commonsimplificationtech-
nigues[25]. The mainideais to iteratively remove ver
tices and re-triangulatethe resultingholes, thus reducing
the numberof verticesandfacesof the model. This oper
ationis repeatediuntil a desiredsimplificationis achiesed.
Decimationhasa few desirableproperties. |t is generally
fast; it is topologytolerant;andit works on non-manifold
modelswhich arecommonon the World-Wide Weh

Decimation techniques need to handle two sub-
problems.First, a criterionfor selectingcandidatevertices
for removal shouldbe determined.Seconda triangulation
schemeshouldbe selectedandappliedto the holes.

In thecurrentwork we build uponthegeneratlecimation
technigue Themaindepartureof our approackrom previ-
ouswork is thatwe solvetheabove sub-problem# ashape
dependentnanner More specifically in a pre-processing
stepthe given modelis decomposednto patchesas de-
scribedin Section2. Now, decimationis appliedwithin the
patche®nly, thusmaintainingthedistinctive featuresf the
model,whicharerepresentetly the patchgraphstructure.

Pickingavertex for removal is donein [25] by choosing
the vertex whosedistanceto a planewhich is the average
planeof the neighboringoolygonsis minimal. We suggest,
insteadto selecta vertex whosedistanceto the shapeit re-
sideson is minimal. Recallthat eachpatchis taggedas
somebasicshapethuswe canremove a vertex whosedis-
tanceto thatshapes minimal. For instancejf the patchis
determinedo resideon a sphereS(C,, Cy, R) with acen-
ter (C,, Cy) andaradiusR, thevertex for removal will be
suchthatits distanceto S is minimal amongall the inter-
nal verticesof the patch. Note that this schemedeviates
form previousschemedn two mannersFirst, sincesimpli-
fication is doneonly within a patch,verticeswhich reside
on curveswhich “characterize’the model(i.e., the curves
of the boundarief the patcheskannotbe selected.As a
result,theoverallstructureof themodelis maintained Sec-
ond, the criterion for vertex selectionaimsat maintaining
theglobalshapeof eachpatch.

The secondsub-problenof decimationis the triangula-
tion of the resultinghole. In general,two familiesof al-
gorithmshave beenused. The first stratgy projectsthe
polygonto two dimensionsg¢onstructatriangulationin the
plane(i.e., by Delaunaytriangulation) andmapsthis trian-
gulationbackto threedimensions. The advantageof this
strat@y is its efficiengy. The drawvbackis thatit is not al-
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ways feasible. The other stratgyy finds a triangulationin
threedimensionausing dynamicprogramming4]. Flexi-
bility is themainadwantageof dynamicprogrammingsince
mary optimizationfunctionscanbeusedwithin thegeneral
algorithm.A commonoptimizationfunctionis aminimiza-
tion of thesurfaceared5]. Fortheshape-dependestheme
that we are pursuing,the distancefrom the optimal basic
shapecanbe utilized. For instancejf the patchis tagged
asa sphereS(C,, Cy, R), the optimizationfunction used
within dynamic programmingminimizes shapedistortion
of the simplified patchto S. The optimizationfunctionwe
useis basicallya Hausdorf distanceof the simplified patch
to thebasicshape.
F(Shape, Sur face) =

max min  dist(v,w)

veEShape weSurface

wherev, w arepointsonthethebasicshapeandonthesim-
plified surface respectiely.

To demonstrate¢he resultsof the algorithm,we shav in
Figure6 the simplificationof a horsemodel, startingwith
amodelcontaining39697facesin Figure6(a),andending
with amodelsimplifiedto 20%of theoriginal size. Thelat-
ter modelcontains7936facesandis shavn in Figure 6(f).
Theoriginal modelis decomposeihto 104 patchegon av-
erage381facegerpatch),eachdravnin adifferentcolor.
Notethatthedecompositiomloesnotchangehroughouthe
simplificationprocess.

6 Conclusion

This paperhasaddressethe problemof decomposing
polyhedralsurfaceinto patches.The mainideathatunder
liesthiswork is thatdecompositiomesultswith theinherent
componentsf themodel.Variousapplicationsantake ad-
vantageof the structureof thedecompositiomatherthanof
theshapeof the patchesaswasproposedn the past.

In particular we experimentedwith threeapplications
of polyhedralsurfacedecomposition.The first application
is a retrieval of three-dimensionainodelsbasedon shape
similarity. We achiezedgoodresultsrunningour algorithm
onadatabasef 388 VRML objects.

The secondapplication concernscorrespondencedor
metamorphosi®f three-dimensionamodels. Our algo-
rithm handlesthe problemof lack of fine correspondence
andgetsover the restrictionson the allowed topologiesof
the given models. The ideais to decomposéhe objects
compatibly and then parameterizeeach patch separately
We have shawvn thatvery pleasingmorphsequenceareob-
tained.

The final applicationdealswith simplificationof three-
dimensionamodels.Usingdecimatioronly within a patch,
allows usto achieve a large degreeof simplificationwhile
maintainingthe distinctive featuresof the givenmodel.



(e) 30%(11905faces) (f) 20%(7936faces)

Figure 6. Simplification - from 39697 faces to 7936 faces
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We considera coupleof directionsfor future research.

First, we are looking at other decompositioralgorithms.
Secondwe are consideringfurther applicationsof surface
decomposition.Possibleapplicationsancludecollision de-
tection, surface re-parameterizatioand model modifica-
tion.

Acknowledgments:

We would like to thankVadim Rogolfor implementingthe
simplificationalgorithm.

References

[1] Alexa, M. Merging Polyhedial Shapesvith Scatteed
Featues Thevisualcomputer16(1),2000,38—46,.

Aronov, B., Sharit M. Castlesin the air revisited
Disc. Comput.Geom12(1994),119-150.

(2]

[3] Bajaj,C.L., Dey, T.K. Corvex decompositionsf poly-
hedma and robustnessSIAM J. Comput.,21 (1992),
339-364.

[4] BarequetG., Shapiro,D., Tal, A. Multi-Level Sensi-
tive Reconstructiorof Polyhedial Surfacesrom Par-

allel Slices The Visual Computey Vol. 16, No. 2,

March2000,116-133.

[5] BarequetG. andShari; M. Piecavise-linearinterpo-
lation betweerpolygonalslices ComputenVisionand
ImageUnderstandingyol. 63(2), pp.251-272March
1996

[6] Bern, M. Compatibletetrahedrlizations Proc. 9th
Ann. ACM Symp.Comput.Geom.(1993),281—-288.
[7] Besl P. Trianglesas a primary representationOb-

jectRecognitiorin ComputeVision,LNCS994:191—
206.

[8] Biederman). Visual ObjectReca@nition, In An Invi-

tationto Cognitive Science)ol. 2: Visual Cognition.
S.Kosslyn,D. OshersonEds.MIT Presspp.121-65,
1995.

[9] Chazelle B. Corvex partitions of polyhede: a lower
bound and worst-caseoptimal algorithm SIAM J.
Comput.,13(1984),488-507.

[10] Chazelle,B., Dobkin, D.P, Shouraboural., Tal, A.
Strategiesfor Polyhedial SurfaceDecomposition/An
ExperimentalStudy ComputationalGeometry: The-
ory andApplications,7(4-5): 327-342,1997.

12

[11] Chazelle,B., Palios, L. Triangulating a noncorvex
polytope Disc. Comput.Geom. 5 (1990),505-526.

[12] ChazelleB., Palios, L. Decompositioralgorithmsin
geometry in Algebraic Geometryand its Applica-
tions, C. Bajaj, Ed., Chap.27 SpringefVerlag,1994,
pp.419-447.

[13] ChazelleB., Palios,L. Decomposinghe boundaryof

a noncoivex polytope Proc.3rd Scandingian Work-

shopon Algorithm Theory(1992),364—-375.

Elad,M., Tal, A. andAr, S.ContentBBasedretriesal of
VRMLObjects AnlterativeandInteractiveAppoach
EG Multimedia, Septembe2001.

[14]

[15] Floater M.S. Parameterizatiorand smoothapproxi-
mationof surfacetriangulations ComputeAided Ge-
ometricDesign14 (1997)231-250.

[16] Kanai,T., Suzuki,H., Kimura, F. 3D geometricmeta-
morphosisbasedon harmonicmaps Proceeding®f
Pacific Graphics97, 97—-104,October1997.

[17] Kent, J.R.,Parent,R.E., Carlson,W.E. Shapetrans-
formationfor polyhedal objects ComputelGraphics,
26(2):47-54,July 1992.

[18] Lueblke,D.P. A Developers Surve of PolygonalSim-
plification Algorithms IEEE ComputerGraphicsand
Applications,Vol. 21 No. 3 (2001),24-35.

[19] ManganA.P., Whitaker, R.T. Partitioning 3D Surface
MeshedJsing WatershedSementation IEEE Trans-
actionson VisualizationandComputerGraphics Vol.

5No. 4 (1999),308-321.

[20] MessmerB.T. GMT - Graph Matching Toolkit, PhD
Thesis Universityof Bern,1995.

[21] OsadaR., FunkhouselT., ChazelleB. and Dobkin,
D.P. Matching 3D Modelswith ShapeDistributions,
ShapeModelingInternationalMay, 2001.

[22] PaquetE. andRioux M. A ContentBasedSeach En-

ginefor VRMLDatabasesProceedingsf IEEE Con-

ferenceon ComputeVision andPatternRecognition,

1998.

[23] Ruppert,J., Seidel, R. On the difficulty of triangu-

lating three-dimensionahon-covex polyheds, Disc.

Comput.Geom.,7 (1992),227-253.

[24] Schoning,U. Graph isomorphismis in the low hi-

erarchy, Journalof Computerand SystemSciences,

37:312-3231988.



[25] SchroederW.J.,Zamge,J.A.,LorensenW.E. Decima-
tion of Triangle MeshesComputerGraphics,Volume
25,No. 3, (Proc.SIGGRAPH92), July, 1992.

[26] Serra,J.P Image Analysisand MathematicalMor-
pholagy, London: AcademicPress1982.

[27] ShapiroA., Tal, A. Polyhedon Realizatiorfor Shape
Transformation TheVisualComputer14 (8-9): 429—
444,Decembef 998

13



