
Direct Visibility of Point Sets
Sagi Katz∗

Technion – Israel Inst. of Technology
Ayellet Tal†

Technion – Israel Inst. of Technology
Ronen Basri‡

Weizmann Inst. of Science

Abstract

This paper proposes a simple and fast operator, the “Hidden” Point
Removal operator, which determines the visible points in a point
cloud, as viewed from a given viewpoint. Visibility is determined
without reconstructing a surface or estimating normals. It is shown
that extracting the points that reside on the convex hull of a trans-
formed point cloud, amounts to determining the visible points. This
operator is general – it can be applied to point clouds at various di-
mensions, on both sparse and dense point clouds, and on viewpoints
internal as well as external to the cloud. It is demonstrated that the
operator is useful in visualizing point clouds, in view-dependent
reconstruction and in shadow casting.

Keywords: Point-based graphics, visibility, visualizing point sets

1 Introduction

In the last decade, an alternative to meshes, in the form of a point-
based representation (a point cloud), has gained increasing popular-
ity [Rusinkiewicz and Levoy 2000; Pauly and Gross 2001; Zwicker
et al. 2002; Alexa et al. 2003; Fleishman et al. 2003; Alexa et al.
2004; Kobbelt and Botsch 2004]. Point clouds are 3D positions,
possibly associated with additional information, such as colors and
normals, and can be considered a sampling of a continuous surface.
This representation is extremely simple and flexible. Moreover, it
offers the additional advantage of avoiding connectivity informa-
tion and topological consistency.

This paper investigates visibility of point clouds. One way to com-
pute visibility of a point cloud is to reconstruct the surface [Hoppe
et al. 1992; Bernardini et al. 1999; Curless and Levoy 1996; Carr
et al. 2001; Amenta et al. 2001; Amenta et al. 2002; Amenta and
Kil 2004; Fleishman et al. 2005] and determine visibility on the re-
constructed triangular mesh. Reconstruction, however, is a difficult
problem, both theoretically and implementation-wise, which often
requires additional information, such as normals and sufficiently
dense input.

The key question that this paper attempts to answer is how the visi-
bility information can be directly extracted from a point cloud. Ev-
idently, points cannot occlude one another (unless they accidentally
fall along the same ray from the viewpoint), and therefore no point
is actually hidden. However, once a surface is reconstructed from
the points, it is certainly possible to determine which of the points

∗e-mail: sagikatz@techunix.technion.ac.il
†e-mail: ayellet@ee.technion.ac.il
‡e-mail: ronen.basri@weizmann.ac.il

Figure 1: Input to the operator – Are the objects looking forwards
or backwards?

are visible. This implies that a point cloud inherently contains in-
formation from which it is possible to extract the visibility of the
points. The challenge is to skip the full reconstruction.

Suppose that we are given a point cloud depicting an object, such
as the statue of David or the bunny in Figure 1. If all the points are
drawn, it is difficult to determine whether these objects are look-
ing forwards or backwards. This paper describes an operator that
computes the visibility directly from a point cloud. For instance,
after applying the operator on the point clouds of Figure 1, it can
be seen in Figure 2 that David (/bunny) is looking backwards. The
points need not be associated with normal information and need not
be sampled densely.

We show that the operator proposed in this paper is simple and fast.
It can be described in just a handful of Matlab lines and its asymp-
totic complexity is O(n logn), where n is the number of points in
the point cloud. Moreover, it can calculate visibility for dense as
well as sparse point clouds, for which reconstruction or other meth-
ods, might be difficult. In addition, the correctness of the operator
is proved in the limit and theoretical guarantees are provided for
finite sampling.

Other benefits of the operator are that it does not depend on the
screen resolution (since it operates in object space); a change in
camera rotation or field of view does not require re-calculation of
visibility; it works in various dimensions; and the viewpoint can be
positioned either within or outside the point cloud.

Calculating visibility directly from a point cloud is an interesting
problem in its own right. However, it can be utilized in a variety
of applications. We show that it can be used to visualize point sets.
Moreover, without additional cost, it can produce a view-dependent
“quick-and-dirty” reconstruction online. Finally, realistic shadow
casting can be achieved in object space in interactive time.

Figure 2: Output of the operator - They are heading backwards!

The contribution made in this paper is thus twofold: First, the paper
presents a general, fast, and simple operator for determining visi-
bility of points in various dimensions and proves some theoretical
guarantees. Second, the paper demonstrates the utility of the oper-
ator in visualizing point clouds, in view-dependent reconstruction,
and in shadow casting.

The rest of the paper is structured as follows. Section 2 briefly
discusses related work. Section 3 describes the proposed operator.
Section 4 proves some properties of the operator. Section 5 dis-
cusses implementation and demonstrates results and applications.
Section 6 concludes the paper.

2 Related work
Visibility determination has been a basic problem in computer
graphics from its early days [Appel 1968; Sutherland et al. 1974;
Funkhouser et al. 1992; Greene et al. 1993; Bittner and Wonka
2003; Cohen-Or et al. 2003; Leyvand et al. 2003]. It is important in
a variety of applications, including rendering, animation and sim-
ulation, security, and robotics. However, while most of the work
in computer graphics determines the visibility between polygons,
the purpose here is quite different. Our operator intends to find the
points that would be visible, if the surface they are sampled from,
existed.

Though computing the correct visibility is useful in various applica-
tions, in point-based representations it has been addressed mainly
within rendering, where it is considered a major challenge [Sainz
et al. 2004]. Here, visibility computation is usually performed
during ray tracing [Wald and Seidel 2005]. Since both rays and
points are singular primitives, this requires the algorithm to either
trace “thick” rays [Schaufler and Jensen 2000] or use “finite-area”
points [Rusinkiewicz and Levoy 2000; Dutré et al. 2000; Zwicker
et al. 2001; Wu and Kobbelt 2004; Guennebaud et al. 2004; Guen-
nebaud et al. 2004]. The most common approaches splat the points
into a Z-buffer [Sainz and Pajarola 2004; Dachsbacher et al. 2003].

This paper attempts to solve the problem of visibility regardless of
rendering. Moreover, the aim is to avoid the two assumptions that
are made in most rendering papers – that the points satisfy sam-
pling criteria, such as the Nyquist condition, and that the points are

associated with normals (or that the normals can be estimated). In
a couple of recent works, it becomes evident that it is important to
be able to handle point clouds that are not well sampled and are
not interpreted in any way (such as by meshing or estimating nor-
mals) [Wimmer and Scheiblauer 2006; Co 2006]. Finally, we wish
to support visibility calculation by rigorous theoretical guarantees.

Another related, yet distinct problem is surface reconstruction from
point clouds, which has received considerable attention. Differ-
ent approaches have been proposed, such as representations by
implicit functions [Hoppe et al. 1992; Carr et al. 2001; Ohtake
et al. 2003], by Moving Least Squares [Alexa et al. 2003; Fleish-
man et al. 2005], employing Voronoi/Delaunay techniques [Amenta
et al. 2002; Amenta et al. 2001; Mederos et al. 2005], and oth-
ers. Some of the methods are supported by theoretical results,
e.g. [Amenta et al. 2001], while others sacrifice theory and instead,
optimize for high speed, e.g. [Ohtake et al. 2003].

The current paper attempts to determine visibility, while skipping
the reconstruction phase. Nevertheless, we will show that our algo-
rithm can be used for view-dependent reconstruction. In this case,
both speed and theoretical support can be achieved.

3 The HPR operator

Given a set of points P = {pi|1 ≤ i ≤ n} ⊂ ℜD, which is consid-
ered a sampling of a continuous surface S, and a viewpoint (camera
position) C, our goal is to determine ∀pi ∈ P whether pi is visible
from C.

Straightforward solutions are bound to fail. Calculating the line-
of-sight from C to pi is not helpful, because, except for degenerate
cases, a point is always visible. We therefore need to define when
a point is considered visible. Obviously, a sensible criterion of vis-
ibility must relate to the density of the sampling. Suppose that P is
a ρ-sample of S, i.e., if we surround each sample point pi ∈ P by
an open ball of radius ρ , the surface S will be completely contained
within the union of these balls. A simple definition of visibility then
implies that pi is visible if it does not become occluded by another
point when we perturb its position anywhere within the ball. While
this definition works well for surfaces that are perpendicular to the
line of sight, it fails when the surface is oblique, since in this case,
a small perturbation could make a point occluded by another point
from the same surface (e.g., when the surface is planar). We could
overcome this if we knew the normal to the surface at each point,
but we want to avoid estimating the normal.

We seek an operator that has the following properties:

1. Correctness: in the limit, as the density ρ → 0, a point pi on
S should be marked visible by the operator, if and only if it is
indeed visible.

2. The operator should handle oblique surfaces, while avoiding
to compute the surface normals locally.

3. The asymptotic complexity and the running time should be
reasonable, even in software.

This section introduces an operator, denoted as the hidden point
removal (HPR) operator, which satisfies the above requirements
(proved in the next section). The operator consists of two steps:
inversion and convex hull construction, discussed below.

1. Inversion: Given P and C, we associate with P a coordinate
system, in which the viewpoint C is placed at the origin. We seek a
function that maps a point pi ∈ P along the ray from C to pi and is
monotonically decreasing in ||pi||. (|| · || is a norm.)

There are various ways to perform inversion. Here, we focus on
spherical flipping, which was first presented in [Katz et al. 2005] in
a different context. Consider a D-dimensional sphere with radius R,
centered at the origin (C), and constrained to include all the points
in P. Spherical flipping reflects a point pi ∈ P with respect to the
sphere by applying the following equation:

p̂i = f (pi) = pi +2(R−||pi||)
pi

||pi||
. (1)

Intuitively, spherical flipping reflects every point pi internal to the
sphere along the ray from C to pi to its image outside the sphere, as
illustrated in Figure 3.

Figure 3: HPR Operator – Left: spherical flipping (in red) of a 2D
curve (in blue) using a sphere (in green) centered at the view point
(in magenta). Right: back projection of the convex hull. Note that
this image is used only for illustration; in practice, R is much larger.

Note that there are other possible inversion functions. For instance,
a function that seems to achieve roughly the same effect, is given by
the following expression, where γ > 1 is a parameter and ||pi||< 1:

f̃ (pi) =
pi

||pi||γ
.

2. Convex hull construction: Denote by P̂ the transformed point
cloud of P: P̂ = { p̂i = f (pi)|pi ∈ P}. Calculate the convex hull of
P̂
⋃
{C}, i.e., the set that contains the transformed point cloud and

the center of the sphere.

The main result of the paper is that extracting the points that reside
on the convex hull of P̂

⋃
{C} amounts to determining the visible

points. (The inclusion of C is important since points on the back
side of the object may otherwise lie on the convex hull, when C is
external to P.) We state this as a definition and explain the intuition
hereafter. In the next section we prove some properties.

Definition 3.1 A point pi ∈ P is marked visible from C if its in-
verted point p̂i lies on the convex hull of P̂

⋃
{C}.

The HPR operator can be applied in any dimension. However, it
is best understood in 2D. Consider a point pi ∈ P. Without loss of
generality, pi lies on the X-axis. Using a polar coordinate system
(r,θ), we can write pi = (ri,0), where ri is the distance of pi from
C, and the angle with the X-axis is 0. Consider the straight line L̂
that passes through p̂i and creates an angle β with the X-axis, as
shown in Figure 4.

We wish to find the curve L = (r(α),α), which is the source of L̂,
i.e., the curve that is transformed to L̂ by spherical flipping. Using
the Law of Sines we get:

2R− ri
sin(π −α −β)

=
2R− r(α)

sinβ
. (2)

Figure 4: L is transformed to L̂ by spherical flipping.

Consequently,

L = (r(α),α) = (2R+
(ri −2R)sinβ

sin(α +β)
,α). (3)

L passes through both pi and C. In Cartesian coordinates L is ex-
pressed by a quartic polynomial in x and y. Figure 5 illustrates
how the shape of L changes as a function of angle β . The region
bounded by L and the X-axis gets smaller as β gets larger.

0 5 10 15
0

2

4

6

8

10

12

61

67

73

79

84
90

9699
116

133

Figure 5: The shape of L for different values of β (in degrees),
where pi = (10,0), R = 30.

L and the X-axis define the empty region associated with pi. “How
much” pi is visible, depends on the size of the region. The larger
the size, the “more visible” pi is. The important property of HPR
is that this size is adaptively determined by pi’s neighboring points,
as explained below.

For every given point pi, there exist two special points on either
side of P, p j and pk ∈ P. The region bounded between the curves
in Eq. 3, L j = (r j(α j),α j) from pi through p j and Lk = (rk(αk),αk)
from pi through pk, is the largest possible empty region, as demon-
strated in Figure 6.

From Equation 3, it can be deduced that the largest region corre-
sponds to the smallest β . This means that β j and βk that correspond
to the largest possible empty region, are the smallest possible for pi.
Note that β j and βk can be extracted from Equation 3.

For pi to be visible, the sum of β j and βk should satisfy β j + βk ≤
const (i.e., a large empty region is associated with pi). In effect, this

(a) pi is visible

(b) pi is hidden

Figure 6: The empty gray region between L j and Lk, as defined by
the values of β j +βk.

condition defines a threshold on the size of the region for which the
point is considered visible.

Setting const = π means that computationally there is no need to
find for each point the neighboring points p j and pk that maximize
the empty region size. Instead, it suffices to calculate the convex
hull of P̂

⋃
{C}. This is so because point p̂i is on the convex hull of

P̂
⋃
{C} if and only if all the points of P̂

⋃
{C} reside to one side of

the half-spaces defined by p̂i, p̂ j and p̂i, p̂k. In our case, since the
region between L j and Lk is empty, the region on the far side of L̂ j
and L̂k must be empty (the gray regions in Figure 6).

This observation is important computationally and is the reason
why the HPR operator is so efficient. Without the computation of
the convex hull, p j and pk would have to be found ∀pi ∈ P, mak-
ing the algorithm quadratic (and in 3D even cubic, although it can
potentially be sped up by using fast nearest neighbor techniques).
Instead, all that needs to be done is to compute the convex hull and
consider a point pi visible if p̂i is on the convex hull of P̂. Thus,
the HPR operator defines both the shape and the size of the empty
region, ∀pi ∈ P.

The above explanation can be extended to 3D. In this case, the
empty region between pi and C is defined by a 3D surface enclosing
a volume, rather than a curve (L j ∪Lk) enclosing an area. Also, in
3D, instead of using two neighboring points, at least three neighbor-
ing points define the surface enclosing the empty volume. However,
our solution that uses the convex hull remains the same.

It is worth mentioning that even though π is a constant threshold,
the threshold for visibility can be indirectly modified by changing
R, the radius of the sphere. A larger R relaxes the visibility condi-
tion and more points are considered visible. Moreover, in the gen-
eral case, when different families of inversion functions are used,
the above explanation will remain the same, while the shape of L
will change.

4 Properties of the HPR operator

This section presents and proves some properties of the operator. It
addresses the theoretical guarantees of the operator, the factors that
influence the choice of the parameter R, and the complexity. While
we focus here on a particular inversion function spherical flipping,
similar results can be derived for other, related families of inversion.
The theorems and lemmas are stated and explained in the section,
while the proofs can be found in the Appendix.

Throughout the section we use the notion of density, which is for-
mulated below.

Definition 4.1 sample density (density): A sample P ⊆ S is a
ρ−sample from surface S if ∀q ∈ S ∃p ∈ P s.t. |q− p| < ρ .

The first issue concerns the correctness of the operator in the case
that the surface itself is given (i.e., P is a 0-sample of S). It is
shown below that in this case, every point marked as visible by the
operator (Definition 3.1), is indeed visible. Moreover, in the limit,
when R → ∞, every visible point will be marked visible.

The next issue relates R to the local curvature that permits visibil-
ity. This provides a local analysis of visibility, in which we consider
occlusion by (infinitesimally) close points on the surface, while dis-
regarding occlusions by remote points. Specifically, it is shown that
given R, all the convex points, as well as concave points with suf-
ficiently small curvature, may be marked visible by our operator.
This implies in particular correctness for convex surface patches
and for slanted planar surfaces at any value of R.

The third issue regards theoretical guarantees when the given set of
points P is a ρ-sample of S with ρ > 0. Since in this case it can
no longer be true that every point marked by the operator as visible
is indeed visible, a more realistic visibility is defined, denoted as
ε−visibility.

Definition 4.2 ε−visible: A point p ∈ P is ε−visible if ∃q ∈ ℜD

s.t. |q− p| < ε and q is visible from C. In other words, moving p in
a distance shorter than ε will make it visible.

It is proved that for every R, there exists an ε for which every point
that the operator marks is ε−visible. Moreover, with certain re-
strictions, for every ε > 0, there exists a choice of R that guarantees
ε−visibility.

Finally, the section discusses the choice of R and the complexity of
the operator.
Correctness when ρ = 0: The next two lemmas assume that the
input to the operator is a surface S, a viewpoint C, and a radius R. It
is further assumed that there exists a gap T between the viewpoint
and the object: T = inf{‖p−C‖|p ∈ S} > 0. (This assumption is
essential because points that are very close to C may occlude ex-
tremely large sections of the space.) Let V ⊆ S be the set of visible
points from C and HR ⊆ S be the set of points marked visible by the
operator. The two lemmas imply that the operator is conservative
and converges to the correct solution as R approaches infinity.

Lemma 4.1 HR ⊆ V , i.e., every point marked visible by the HPR
operator is indeed visible from C.

Lemma 4.2 limR−→∞ HR = V , i.e., assuming T > 0, when R → ∞,
the set of visible points marked by HPR is equal to the set of visible
points.
R and the local curvature: For a finite value of R, we can further
analyze which points will be marked visible by the HPR operator,
by considering the influence of the curvature on the results. We start
again with the intuition. It is straightforward to see that oblique
planar surfaces are correctly handled by the HPR operator, since
spherical flipping maps such surfaces to convex structures. Han-
dling concave sections of a surface, in contrast, is affected by the
local curvature. Below, we provide a derivation of the permissible
curvature as a function of the radius R, the distance r from the point
p to the viewpoint C, and the orientation of the convex hull through
p̂, β (Figure 4). The derivation is general, yet a particularly simple
expression is obtained when the tangent to a point is perpendicular
to the line of sight from this point.

Lemma 4.3 Let S be an infinitesimal surface patch around p. Then
p ∈ HR if and only if the curvature k at p satisfies:

k <
4R(2R− r)cot2 β +2Rr
(

4Rr−4R2 +
(r−2R)2

sin2 β

)3/2 .

In the case that β = π/2, which corresponds to the case that the
tangent to the surface at p is perpendicular to the line of sight,
k < 2R

r2 .

This implies in particular that convex shapes and slanted planes are
correctly handled for any choice of R, and that points on concave
sections of a surface are handled correctly as long as the curvature is
sufficiently low (except when remote sections of the surface happen
to fall close to the line of sight through those points). Note that
in higher dimensions all sectional curvatures must not exceed the
bound, i.e., this bound is on the maximal curvature. The case that
a patch is perpendicular to the line of sight also demonstrates that
the permissible curvature grows with R. Thus, as R increases, more
points become visible, until all (truly visible) points become visible
by the HPR operator.
Theoretical guarantees ρ > 0: In the rest of the section, it is
assumed that the given set of points P is a ρ-sample of S with ρ >
0. Recall that a point is ε−visible, if moving it by ε will make it
visible. Using this definition, it is possible to extend the correctness
lemmas stated above to the more practical case of the given data.

Assuming that the sample is sufficiently dense, we show that for
every R, there exists an ε , such that every point marked visible by
the operator is ε−visible. Moreover, for sufficiently large ε , there
exists R, such that every point marked visible by the operator is
ε-visible.

Let Vε ⊆ P be the set of ε-visible points from C (points visible in S).
As before, we assume that the distance of S to C is at least T > 0.

Theorem 4.4 Assume that the sample is sufficiently dense, then for
every R, there exists ε > 0 such that HR ⊆Vε .

Theorem 4.5 Assume that the sample is sufficiently dense, then for
sufficiently large ε > 0, there exists R > 0 such that HR ⊆Vε .

The proofs of these theorems imply that for a constant value of R,
as ρ decreases, a smaller value of ε is obtained.
Choosing R: The proofs of the above theorems show the rela-
tion between the density ρ , R, and ε-visibility. In particular, these
factors are essential for choosing a suitable R.

As R increases, more points pass the threshold of the convex hull
and hence are marked visible. For instance, as R → ∞, ri in Eq. 3

becomes negligible, β j,βk → π/2, and all the points are marked
visible. This is so because they are transformed by spherical flip-
ping to a sphere with an infinite radius and thus reside on the convex
hull. Therefore, a large R is suitable for dense point clouds, while a
small R is suitable for sparse clouds.

This is illustrated in Figure 7, where the percent of false positives
and false negatives are plotted as a function of log(R). With small
R, points visible in S may be marked non-visible by HPR, whereas
with large R, non-visible points may be marked visible. This is also
illustrated in Figure 8. A limitation of the algorithm is that even
when using the optimal R, a few misclassified points, mostly near
the silhouettes and deep concavities, might remain. However, the
number of such points decreases with ρ .

3 3.2 3.4 3.6 3.8 4
0

1

2

3

4

5

Er
ro

r %
Log(R)

All falses
false positive
false negative

Figure 7: False positives/negatives and their sum, of a specific
model (Bimba, 70K points). The automatically calculated R is
shown in brown.

The permissible curvature (Lemma 4.3) can be used to determine an
upper bound on R. Assume an object of thickness d is positioned
at a distance r from C. Consider the parabola y = r − (d/ρ2)x2,
whose apex is at the back of the object, which creates an opening
of 2ρ (the expected distance between two sample points) on the
frontal surface of the object. The curvature at the apex x = 0 is
2d/ρ2. Comparing this to the permissible curvature 2R/r2, it is
concluded that R can be bounded: R < dr2/ρ2.

In our experiments, R is determined automatically as follows. An
additional viewpoint, opposite to the current viewpoint on the line
connecting the original viewpoint to the object’s center of mass, is
set. Then, R is determined by maximizing the number of disjoint
points that are considered visible by both viewpoints. Gradient de-
scent optimization is used [Forsythe et al. 1977]. The intuition is
that no point should be visible simultaneously to both viewpoints.
Figure 7 illustrates that the computed R is very close to the optimum
(the minimum value of the blue curve).
Complexity: Finally, the operator presented is very efficient. Let
n be the number of points in the point cloud. The first stage of
the operator, spherical flipping, takes O(n). The second stage, con-
vex hull computation, takes O(n logn) for point sets in 2 and 3-
dimensions. Therefore, the asymptotic complexity of the operator
is O(n logn).

5 Implementation and applications

A major advantage of the HPR operator is that it is extremely simple
to implement. Algorithm 1 shows the Matlab code that implements
the HPR operator. (Matlab itself calls the Qhull algorithm [Barber

Figure 8: Top: The original point cloud (left) and the result us-
ing the automatically calculated R (log(R) = 3.77) (right). Bot-
tom: Results generated using smaller R (log(R) = 3) lead to an in-
creased number of false negatives (missing points below the chin),
while results generated using larger R (log(R) = 4) lead to an in-
creased number of false positives (excessive points at the bottom of
the chest).

et al. 1996].) The code is very simple and short and works for D-
dimensional point clouds. The only parameter that the operator gets
is used to compute radius R. This parameter can be either set by the
user, or R can be computed automatically, as discussed in Section 4.

Algorithm 1 Matlab code for HPR
1: function visiblePtInds=HPR(p,C,param)
2: dim=size(p,2);
3: numPts=size(p,1);

% Move the points s.t. C is the origin
4: p=p-repmat(C,[numPts 1]);

% Calculate ||p||
5: normp=sqrt(dot(p,p,2));

% Sphere radius
6: R=repmat(max(normp)*(10ˆparam),[numPts 1]);

%Spherical flipping
7: P=p+2*repmat(R-normp,[1 dim]).*p./repmat(normp,[1 dim]);

%convex hull
8: visiblePtInds=unique(convhulln([P;zeros(1,dim)]));
9: visiblePtInds(visiblePtInds==numPts+1)=[];

Determining the visibility of point clouds can potentially be utilized
in visualization, reconstruction, shadow casting, rendering, camera
placement, etc. We illustrate the usefulness of the HPR operator
in three applications: visualization of point clouds, view-dependent
reconstruction, and shadow casting.

5.1 Visualizing point clouds

Visualizing the raw data is important during long scanning sessions,
in CAD, in simulations of scientific visualization, etc. Figures 9–10
show several results of the HPR operator, which is applied to well-
known scanned point clouds. The point sets are rendered before
and after applying the operator.

(a) dragon (437k points)

(c) Igea (non-uniform sampling, 33.6k points)

Figure 9: Point cloud visualization before (left) & after (right) HPR.

Before applying the operator, it is hard to distinguish between two
possible positions that produce very similar projections – looking
towards or away from the camera (up to small differences due to
perspective projection). This problem is resolved using HPR. For
instance, while the original point set of Igea shows both the scar and
the hairdo and it is hard to say whether the statue looks forwards or
away, after applying the HPR operator, only the scar shows and it
is obvious that Igea is looking towards the camera.

Figure 11 shows the result of the operator, when applied to sparse
point clouds. This result demonstrates well the strength of the op-
erator, where the alternative of fully reconstructing the surface for
determining visibility, might fail. Note, for instance, how only the
visible subset of each ring of points on the jet fighter is left when
the HPR is used.

The operator takes up to a few seconds to run on large models,
on Intel Core2, 2.14Ghz, 1Gb RAM. The calculation ranges be-
tween 23 milliseconds for the jet-fighter (2370 points), 1.3 seconds
for David (258K points), and 3.65 seconds for the oil pump (542k
points).

5.2 View-dependent reconstruction

Surface reconstruction from point clouds has received considerable
attention in recent years. It is described in a variety of papers,
and generates pretty results [Hoppe et al. 1992; Curless and Levoy

(a) carter (25k points)

(b) oil pump (542k points)

Figure 10: Point cloud visualization before (left) & after (right)
HPR.

(a) sparse block (2132 points)

(a) jet-fighter (2370 points)

(b) bottle (5540 points)

Figure 11: Visualization of sparse models before & after HPR.

1996; Bernardini et al. 1999; Amenta et al. 2001; Adamson and
Alexa 2003; Ohtake et al. 2003; Amenta and Kil 2004; Mederos
et al. 2005; Fleishman et al. 2005; Wald and Seidel 2005]. However,
the algorithms are often not simple to implement and both their run-
ning times and their asymptotic complexities might be high.

Instead of fully reconstructing the surface, we propose a view-
dependent on-the-fly reconstruction, which provides a “quick-and-
dirty” visualization of the surface from which the points are sam-
pled, as illustrated in Figures 12– 13.

Figure 12: “Quick-and-dirty” view-dependent reconstruction of
David (258K points) and the skeletal hand (327K points).

Figure 13: Two different view-dependent reconstruction of Bimba.

View-dependent reconstruction is performed by displaying not only
the points residing on the convex hull of P̂∪C, as described so far,
but also the triangles the convex hull consists of. Long artifact tri-
angles are eliminated using a threshold on the edge length, as illus-
trated in Figure 14. It is important to note that the reconstruction
does not increase the complexity of the algorithm, since the convex
hull is computed anyway.

Figure 14: Reconstruction before the removal of the artifact trian-
gles (with edges longer than 2.5% of the diameter). The blue point
is the viewpoint of Figure 13(a).

Placing additional viewpoints around the original viewpoint can im-
prove the results around the silhouettes. A point is then considered
visible when it is visible from either of the viewpoints.

Though the results are not full reconstructions, they certainly suf-
fice for quickly perceiving the surface the points represent, and
they are produced very efficiently. For comparison, the algorithm
of [Mederos et al. 2005] has O(n2) complexity and takes a minute
to run on a 180,000 point cloud on a 2.4GHz PC, while our algo-
rithm has O(n logn) complexity and takes less than a second to run
the same size point cloud on a 2.14Ghz Intel Core2. Similarly, ap-
plying MPU interpolation [Ohtake et al. 2003] to the Buddha point
cloud (543K) takes 6:53 minutes on a 1.6GHz mobile, while our
operator takes 4.15 seconds.

5.3 Shadow casting

Another application of the operator is shadow casting [Woo et al.
1990; Hasenfratz et al. 2003]. Using HPR, it is possible to demon-
strate realistic shadow casting for meshes, in interactive time, in
Matlab. The shadow casting is calculated in object space rather
than in screen space, thus it depends neither on screen resolution
nor on the z-buffer accuracy.

Given a mesh, shadow casting is computed by assigning the center
of the sphere C to the position of the light and applying HPR to the
mesh vertices. A brightness value is assigned to each mesh vertex
according to its calculated visibility. A visible vertex is given a high
brightness value and a non-visible vertex is given a low brightness
value. To produce soft shadows, these values are smoothed, such
that the brightness value is affected by the neighboring vertices. For
the final rendering, the brightness value is interpolated along the
faces. (Note though that only the vertices are used for calculating
the brightness values.)

Figure 15 shows a couple of results of shadow casting. In these
examples, specular lighting is turned off and a single light source
is used. There is no limitation, however, on the number of light
sources that can be used. Note that the method works even when
there are holes, where the light penetrates the holes.

Figure 16 compares the results of shadow casting, as achieved by
applying the HPR operator, to those computed exactly. In the latter
case (exact shadows), the intersection of a ray from the vertex to
the light source is calculated, for each vertex. If the ray intersects
the surface, the vertex is shadowed.

Figure 15: Shadow casting in software using HPR.

6 Conclusion

This paper proposes a simple and fast hidden point removal oper-
ator, which determines the visible points from a given viewpoint.
The operator is provably correct in the limit and theoretical guar-
antees are given for the finite-sampling case. It can be applied to
dense as well as sparse point clouds in various dimensions. The
operator can be easily implemented using existing libraries. It runs
in O(n logn), where n is the number of points in the point cloud.

The paper demonstrates that without additional cost, this operator
can be used not only for visualizing point clouds, but also for view-
dependent reconstruction and for shadow casting. We believe that
other applications may also benefit from the operator.

In the future, we intend to investigate visibility under motion. The
goal is to construct data structures that facilitate the computation of
visibility when a subset of the points changes or when the viewpoint
changes, e.g., by representing points according to their distance to
the convex hull. One possible direction is the use of kinetic convex
hulls [Abam and de Berg 2005].

Acknowledgments: The models of David, Bunny, and Dragon are
courtesy of the Digital Michelangelo Project 3D Model Repository
and the Stanford 3D Scanning Repository. The model of Igea is
courtesy of Cyberware. The models of Bimba, Fertility, Gargoyle,
Oil pump, and Carter are provided courtesy of INRIA, IMATI,
UU, VCG-ISTI, and ISTI by the AIM@SHAPE Shape Repository.
This research has been supported in part by the European Commu-
nity grant IST-2002-506766 Aim@Shape. The vision group at the
Weizmann Institute is supported in part by the Moross Foundation.
The graphics group at the Technion is supported by the Fund for the
Promotion of Research.

The technology described in this paper is patent pending.

References

ABAM, M., AND DE BERG, M. 2005. Kinetic sorting and kinetic
convex hulls. In Twenty-First Annual Symposium on Computa-
tional geometry, 190–197.

Figure 16: Comparison between the HPR approximation (left) and
the exact computation (right) of the lit vertices.

ADAMSON, A., AND ALEXA, M. 2003. Approximating and inter-
secting surfaces from points. In Eurographics/ACM SIGGRAPH
symposium on Geometry processing, 230–239.

ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN,
D., AND SILVA, C. 2003. Computing and rendering point set
surfaces. IEEE Trans. on Vis. and Computer Graphics 9, 1, 3–15.

ALEXA, M., GROSS, M., PAULY, M., PFISTER, H., STAM-
MINGER, M., AND ZWICKER, M. 2004. Point-based computer
graphics. In SIGGRAPH course notes.

AMENTA, N., AND KIL, Y. 2004. Defining point-set surfaces.
ACM Trans. Graph. 23, 3, 264–270.

AMENTA, N., CHOI, S., AND KOLLURI, R. 2001. The power
crust, unions of balls, and the medial axis transform. Int. J. of
Computational Geometry and its Applications 19, 2-3, 127–153.

AMENTA, N., CHOI, S., DEY, T. K., AND LEEKHA, N. 2002. A
simple algorithm for homeomorphic surface reconstruction. In
Int. J. Comput. Geom. Appl., vol. 12, 125–141.

APPEL, A. 1968. Some techniques for shading machine renderings
of solids. In AFIPS Spring Joint Computer Conf., vol. 32, 37–45.

BARBER, C. B., DOBKIN, D. P., AND HUHDANPAA, H. 1996.
The quickhull algorithm for convex hulls. ACM Trans. Math.
Softw. 22, 4, 469–483.

BERNARDINI, F., MITTLEMAN, J., RUSHMEIER, H., SILVA, C.,
AND TAUBIN, G. 1999. The ball-pivoting algorithm for surface
reconstruction. IEEE Transactions on Visualization and Com-
puter Graphics 5, 4.

BITTNER, J., AND WONKA, P. 2003. Visibility in computer graph-
ics. Environment and Planning B: Planning and Design 30, 5,
729–756.

CARR, J. C., BEATSON, R. K., CHERRIE, J. B., MITCHELL,
T. J., FRIGHT, W. R., MCCALLUM, B. C., AND EVANS, T. R.
2001. Reconstruction and representation of 3D objects with ra-
dial basis functions. In SIGGRAPH, 67–76.

CO, C. 2006. Meshless Methods for Volume Visualization. PhD
thesis, University of California, Davis.

COHEN-OR, D., CHRYSANTHOU, Y., SILVA, C., AND DURAND,
F. 2003. A survey of visibility for walkthrough applications.
IEEE Trans. on Vis. and Computer Graphics 9, 3, 412–431.

CURLESS, B., AND LEVOY, M. 1996. A volumetric method for
building complex models from range images. In SIGGRAPH,
ACM Press, New York, NY, USA, 303–312.

DACHSBACHER, C., VOGELGSANG, C., AND STAMMINGER, M.
2003. Sequential point trees. ACM Trans. Graph. 22, 3, 657–
662.

DE BERG, M., VAN KREVELD, M., OVERMARS, M., AND
SCHWARZKOPF, O. 1997. Computational geometry: algorithms
and applications. Springer-Verlag New York, Inc., NJ, USA.

DUTRÉ, P., TOLE, P., AND GREENBERG, D. 2000. Approximate
visibility for illumination computations using point clouds. Tech.
Rep. PCG-00-01, Cornell University, June.

FLEISHMAN, S., COHEN-OR, D., ALEXA, M., AND SILVA, C.
2003. Progressive point set surfaces. ACM Trans. Graph. 22, 4,
997–1011.

FLEISHMAN, S., COHEN-OR, D., AND SILVA, C. 2005. Robust
moving least-squares fitting with sharp features. ACM Trans.
Graph. 24, 3, 544–552.

FORSYTHE, G., MALCOLM, M., AND MOLER, C. 1977. Com-
puter Methods for Mathematical Computations. Prentice Hall.

FUNKHOUSER, T., SQUIN, C., AND TELLER, S. 1992. Man-
agement of large amounts of data in interactive building walk-
throughs. Symposium on Interactive 3D Graphics 25, 2, 11–20.

GREENE, N., KASS, M., AND MILLER, G. 1993. Hierarchical
z-buffer visibility. In SIGGRAPH, 231–238.

GUENNEBAUD, G., BARTHE, L., AND PAULIN, M. 2004. De-
ferred splatting. Comput. Graph. Forum 23, 3, 653–660.

HASENFRATZ, J.-M., LAPIERRE, M., HOLZSCHUCH, N., AND
SILLION, F. 2003. A survey of real-time soft shadows algo-
rithms. In Eurographics State-of-the-Art Reports.

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND
STUETZLE, W. 1992. Surface reconstruction from unorganized
points. Computer Graphics 26, 2, 71–78.

KATZ, S., LEIFMAN, G., AND TAL, A. 2005. Mesh segmentation
using feature point and core extraction. The Visual Computer 21,
8-10, 865–875.

KOBBELT, L., AND BOTSCH, M. 2004. A survey of point-based
techniques in computer graphics. Computers & Graphics 28, 6
(December), 801–814.

LEYVAND, T., SORKINE, O., AND COHEN-OR, D. 2003. Ray
space factorization for from-region visibility. ACM Transactions
on Graphics (TOG) 22, 3, 595–604.

MEDEROS, B., AMENTA, N., VEHLO, L., AND DE FIGUEIREDO,
L. 2005. Surface reconstruction from noisy point clouds. In
Eurographics Symposium on Geometry Processing, 53–62.

OHTAKE, Y., BELYAEV, A., ALEXA, M., TURK, G., AND SEI-
DEL, H.-P. 2003. Multi-level partition of unity implicits. ACM
Trans. Graph. 22, 3, 463–470.

PAULY, M., AND GROSS, M. 2001. Spectral processing of point-
sampled geometry. In SIGGRAPH, 379–386.

RUSINKIEWICZ, S., AND LEVOY, M. 2000. Qsplat: A multireso-
lution point rendering system for large meshes. In SIGGRAPH,
343–352.

SAINZ, M., AND PAJAROLA, R. 2004. Point-based rendering
techniques. Computers & Graphics 28, 6, 869–879.

SAINZ, M., PAJAROLA, R., AND LARIO, R. 2004. Points
reloaded: Point-based rendering revisited. In Symposium on
Point-Based Graphics, 121–128.

SCHAUFLER, G., AND JENSEN, H. 2000. Ray tracing point sam-
pled geometry. In Eurographics Workshop on Rendering Tech-
niques, 319–328.

SUTHERLAND, E., SPROULL, R., AND SCHUMACKER, R. 1974.
A characterization of ten hidden-surface algorithms. ACM Com-
put. Surv. 6, 1, 1–55.

WALD, I., AND SEIDEL, H.-P. 2005. Interactive ray tracing
of point-based models. In Eurographics Symposium on Point-
Based Graphics, 1–8.

WIMMER, M., AND SCHEIBLAUER, C. 2006. Instant points: Fast
rendering of unprocessed point clouds. In Proceedings Sympo-
sium on Point-Based Graphics 2006, 129–136.

WOO, A., POULIN, P., AND FOURNIER, A. 1990. A survey of
shadow algorithms. IEEE Comput. Graph. Appl. 10, 6, 13–32.

WU, J., AND KOBBELT, L. 2004. Optimized sub-sampling of
point sets for surface splatting. Computer Graphics Forum 23,
643–652.

ZWICKER, M., PFISTER, H., VAN BAAR, J., AND GROSS, M.
2001. Surface splatting. In SIGGRAPH, 371–378.

ZWICKER, M., PAULY, M., KNOLL, O., AND GROSS, M. 2002.
Pointshop 3D: an interactive system for point-based surface edit-
ing. ACM Trans. Graph. 21, 3, 322–329.

A Proofs of the operator’s properties

This appendix provides the proofs of the properties of the operator.

Lemma 4.1 HR ⊆ V , i.e., every point marked visible by the HPR
operator is indeed visible from C.

Proof: Let p ∈ HR. Suppose, by way of contradiction, that p 6∈ V .
Then, the ray from C to p passes through some point p′ ∈ S that
hides p. After inversion, p′ will be farther away than p from C on
this ray, since flipping is strictly monotonically decreasing along
each ray from C. Thus, p is internal to the convex hull. 2

Lemma 4.2 limR−→∞ HR = V , i.e., assuming T = inf{‖p−C‖|p ∈
S} > 0, when R → ∞, the set of visible points marked by HPR is
equal to the set of visible points.

Proof: One side of the equality was proved in Lemma 4.1. To prove
the other side, we will show that if p ∈ V , then p ∈ limR−→∞ HR.
Without loss of generality, let p = (r,0) (in spherical coordinates),
i.e., p lies on the X−axis. Recall that we assume that ∀q = (rq,θ)∈
S, r,rq ≥ T .

Then, applying spherical flipping to p and another arbitrary point
q∈ S, we get f (p) = (2R−r,0) and f (q) = (2R−rq,θ), (θ 6= 0). To
show that p ∈ limR−→∞ HR, we will show that there exists R0 such
that ∀R > R0, f (q) is on one side of a line through f (p), ∀q ∈ S.
The line we choose is x = 2R− r, which is parallel to the y−axis.

Now, the x coordinate of f (q) is qx = (2R − rq)cosθ , but since
rq > T , then qx < (2R − T)cosθ . For sufficiently large R this
quantity satisfies (2R − T)cosθ < 2R − r. This happens when
2R(1− cosθ) > r−T cosθ , i.e., R > r−T cosθ

2(1−cosθ)
, which holds since

both the numerator and the denominator are positive. 2

Lemma 4.3 Let S be an infinitesimal surface patch around p. Then
p ∈ HR if and only if the curvature k at p satisfies:

k <
4R(2R− r)cot2 β +2Rr
(

4Rr−4R2 +
(r−2R)2

sin2 β

)3/2 .

In the case that β = π/2, which corresponds to the case that the
tangent to the surface at p is perpendicular to the line of sight,
k < 2R/r2.

Proof: Let p̂ = f (p) = (x̂, ŷ) denote the spherical image of p and
L̂ be the line through p̂ along the convex hull. WLOG, we define
a coordinate system as follows (Figure 17): The vantage point C is
at the origin; the Y -axis is parallel to L̂; and the X-axis is directed
perpendicular to the Y -axis. p is given by (x,y) in Euclidean co-
ordinates and (r,θ) in polar coordinates. Further, θ = tan−1(y/x),
therefore θ = β −π/2. Finally, we can relate these quantities by

(x,y) = (2Rcosθ − x̂,2Rsinθ − x̂ tanθ).

Figure 17: The figure shows line L̂ parallel to the Y -axis and its
flipped source L through p. The curvature kL of L at p is the maxi-
mal curvature beyond which p is marked invisible by HPR.

We are interested in curve L, which is the flip source of L̂ and its
curvature kL. p will be marked visible if the curvature k of S at p
is smaller than kL and marked hidden otherwise. Varying x and y
along L, and taking their derivatives with respect to θ yields:

ẋ = −2Rsinθ ,

ẏ = 2Rcosθ −
x̂

cos2 θ
,

ẍ = −2Rcosθ ,

ÿ = −2Rsinθ −
2x̂sinθ
cos3 θ

.

Using the standard formula for curvature:

kL =
ẋÿ− ẏẍ

(ẋ2 + ẏ2)3/2 =
4R2 + 4Rx̂sin2 θ

cos3 θ − 2Rx̂
cosθ

(4R2 − 4Rx̂
cosθ + x̂2

cos4 θ)3/2
.

Expressing this in terms of r and β , using the identities

β =
π
2 +θ ,

x = r cosθ = r sinβ ,

y = r sinθ = −r cosβ ,

x̂ = 2Rcosθ − x = (2R− r)sinβ ,

we obtain

kL =
4R(2R− r)cot2 β +2Rr
(

4Rr−4R2 +
(r−2R)2

sin2 β

)3/2 .

In the special case that β = π/2 this simplifies to kL = 2R
r2 . 2

Theorem 4.4 Assume that the sample is sufficiently dense, then for
every R, there exists ε > 0 such that HR ⊆Vε .

Proof: To prove the theorem, we should find ε > 0 for which if a
point p /∈ Vε , then p /∈ HR. Denote the distance from p to C by r,
and assume that the sample is sufficiently dense with

ρ <
T
2

√
r
R (1− r

4R).

Assume p /∈ Vε . As illustrated in Figure 18, consider the two rays
from C whose angle from pC is ±α with sinα = 2ρ/T.

We first show that the region between the two rays and the (ε −ρ)-
circle around p contains two sample points, q′1 and q′2, on either
sides of the line pC, and then prove that p̂ must lie inside the trian-
gle 4(C, q̂1, q̂2).

To show this, we consider two other rays from C whose angle from
pC is ±α/2. Since p /∈Vε (i.e., p lies in a completely hidden circle),
S must intersect these two rays at some points between C and the
ε-circle around p. This in turn implies that we can find two sample
points q′1 and q′2 within distance ρ from the two intersection points.

We next show that p̂ must lie inside the triangle 4(C, q̂′1, q̂′2). De-
note by q1 and q2 the intersection points of the two rays from C
whose angle from pC is α with the (ε −ρ)-circle around p. It can
be readily shown that if p̂ lies inside 4(C, q̂1, q̂2), then it must also
lie inside 4(C, q̂′1q̂′2) (by noticing that since the circular arc from
q1 to q2 is concave, its flipped image must be convex).

Let K be the distance from C to qi (i = 1,2). The distance from C
to q̂i is thus 2R−K, and p̂ lies inside 4(C, q̂1, q̂2) if

(2R−K)cosα > 2R− r.

This implies that

1 = sin2 α + cos2 α >
4ρ2

T 2 +
(2R− r)2

(2R−K)2 ,

from which we obtain that

0 < K < 2R−
2R− r√
1− 4ρ2

T 2

.

This relation can be used to determine ε . We compose r from two
segments whose length is determined by the Pythagorean relation:

√
K2(1− 4ρ2

T 2)+

√
(ε −ρ)2 −

4ρ2K2

T 2 < r.

Consequently,

(ε −ρ)2 >

(
r−
√

K2(1− 4ρ2

T 2)

)2

+
4ρ2K2

T 2

and thus

ε > ρ +

√√√√
(

r−
√

K2(1− 4ρ2

T 2)

)2

+
4ρ2K2

T 2 .2

Figure 18: Geometric setup for Theorems 4.4 and 4.5. The exis-
tence of sample points q′1 and q′2 inside the triangle 4(C,q1,q2)
guarantees that p will belong to HR.

Theorem 4.5 Assume that the sample is sufficiently dense, then for
sufficiently large ε > 0, there exists R > 0 such that HR ⊆Vε .

Proof: The proof is similar to the previous theorem. Denote by
α the angle, sinα = 2ρ/T . Consider the rays from C that form
an angle ±α with the line pC. Denote by K the distance from C
to the intersections of these rays with the (ε − ρ)-circle around p
(q1 and q2). (Note that ε must be sufficiently large, or the sample
be sufficiently dense, for these intersections to exist.) It is now
possible to show that if p /∈Vε and we select R that satisfies

(2R−K)cosα > 2R− r,

then p /∈ HR. Therefore,

R <
r−K cosα

2(1− cosα)
,

with cosα =
√

1−4ρ2/T 2. Note also that we require ε to be suf-
ficiently large so that r > K(1− cosα). However, as we increase
the density of the sample we can use smaller values of ε . 2

