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Abstract—Many graph layouts include very dense areas, mak- a combination of a Voronoi diagram and a force-directed type
ing the layout difficult to understand. In this paper, we propose approach [4]-[6] in order to disperse nodes clustered together.
atechnlqu_e for modifying an existing I_ayogt in order_ to reduce Merrick and Gudmundsson [7] modify the layout based on
the clutter in dense areas. A physically-inspired evolution process, properties of the structure of the underlying graph. However,

based on a modified heat equation is used to create an improved th lqorith I h that ith tati I
layout density image, making better use of available screen space. ese algorithms employ schemes that are either computationally

Using results from optimal mass transport problems, a warp €xpensive or perform local improvements to the graph. In contrast,
to the improved density image is computed. The graph nodes the algorithm in this paper is able to operate on large graphs,
are displaced according to the warp. The warp maintains the making a more global enhancement to the layout.

overall structure of the graph, thus limiting disturbances to the Instead of operating on the abstract graph representation, the
mental map, while reducing the clutter in dense areas of the algorithm proposed in this paper operates on an image of the

layout. The complexity of the algorithm depends mainly on the . - L . oo
resolution of the image visualizing the graph and is linear in the density of the input layout. The density image is modified,

size of the graph. This allows scaling the computation according Making use of low-density regions in order to reduce the visual
to required running times. It is demonstrated how the algorithm ~ complexity in high-density regions of the layout. A physically-
can be significantly accelerated using a graphics processing unit inspired evolution of the density image using a modified heat
(GPU), resulting in the ability to handle large graphs in a matter  diffusion process is used to create the target density image. Given
of seconds. Results on several layout algorithms and applications yhe target density, a warp of the 2D layout is computed, in which
are demonstrated. dense regions are allowed to expand and make use of available
Index Terms—Graph layout, graph visualization, GPU, screen space. The warp is computed using results from optimal

anisotropic heat equation, mass transport. mass transport problems [8]-[10]. The evolution process attempts
to retain the overall structure of the input graph, limiting potential
I. INTRODUCTION disturbances to the user’s mental map as outlined in Misue et

Graph drawing addresses the problem of constructing ged- [11].
metric representations of graphs [1], [2]. It has applications This paper makes a couple of contributions. First, a new
in a variety of areas, including software engineering, softwagdgorithm for uncluttering graph layouts in a mental-map pre-
visualization , social networks and biology . A variety of graplserving fashion is presented. Second, a method for accelerating
layout algorithms exist. Each of these algorithms is suited for difte computation of the target density, which is the most time-
ferent applications. A few examples include hierarchical, plan@gnsuming stage of the algorithm, using a graphics processing
circular, orthogonal, and force directed layout [1], [2]. unit (GPU), is described. Several examples, using various layout

Graph layouts often contain a highly varying local densityalgorithms and applications, are provided to demonstrate the
While some regions in the generated layouts are sparse capabilities of the algorithm.
even empty, others are very dense, containing many close-by or
oygrl_apping edges and nodes. This results in low efficiency in Il. RELATED WORK
utilizing the available screen space.

Instead of developing a new layout algorithm, this paper This work is related to three sub-fields: algorithms for graph
describes an algorithm that can improve a given graph layodficluttering, node overlap removal in graph drawing, and applica-
This allows the user to select a layout algorithm that is suitdns in areas outside of graph drawing. In this section we discuss
for the application at hand. The clutter in the layout can then h@lated work in these fields.
reduced by our algorithm, resulting in a layout with a smaller node Several papers have addressed the graph uncluttering problem.
density in the high-density regions of the original layout. Thikyons et al. [3] attempt to more evenly distribute the nodes while
is achieved while preserving the overall structure of the grapfaintaining the user's mental map of the original layout. Two al-
Figure 1(a) shows an example of a cluttered layout. The laycgfrithms are presented. The first uses a Voronoi diagram in order
is difficult to read and the available screen space is not us&dmove nodes. The second algorithm repositions nodes inside a
effectively. Figure 1(b) shows the enhanced layout. Note how tkegion defined by a Voronoi diagram, according to the forces
screen space is more efficiently used, allowing more details @ting on them, defined using a force-directed approach [4]-
the graph to become visible. [6]. Using a Voronoi diagram performs only local enhancements,

Some research has addressed the problem of reducing Whéch may not be sufficient in order to reduce clutter in dense
visual clutter of graph layouts in the past. Lyons et al. [3] usereas of the graph.

Merrick and Gudmundsson [7] propose a technique for enlarg-
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Fig. 1. Protein graph (V=30727, E=1206654). Fa)1® [12] layout. (b) Improved layout. Note how displacing nodes outwards allows more details to become
visible, especially in the center of the drawing. Also note that the overall structure of the graph is maintained.

using the algorithm of Shimizu and Inoue [13], which tries td@etween a small number of large, labeled nodes, our algorithm at-
minimize the change in the angles of the edges. Determining tigenpts to improve layouts of large, dense graphs in a mental-map
important nodes, calledode centralityis an expensive operation, preserving fashion. In addition, graph uncluttering attempts to
takingO(V -E) for V nodes and E edges. It is thus not scalable tmaintain the original structure of the graph, while overlap removal
large graphs. Centrality is determined according to graph-theoradimes not necessarily have this aim. Finally, while overlap removal
properties of the underlying graph, which do not take the actualgorithms guarantee a final drawing free of node overlaps, graph
layout into account. Therefore, the algorithm is not effective amncluttering algorithms do not necessarily guarantee this property.
uncluttering dense areas of the graph with non-central nodes. OuFigure 2 shows a comparison between the results of using
algorithm attempts to solve these problems. a node overlap removal algorithm [15] and using our graph
There are two related, yet distinct, problems to graph unclutncluttering algorithm. It can be seen that the overlap removal
tering: graph overlap removal and overlap removal in other fiel@gorithm not only modifies the structure of the graph, but also
such as map cartography. Hereafter we describe some reldgayes some dense areas (Figure 2(b)). Our uncluttering algorithm
work on these issues. improves the layout in a mental-map conserving manner by
While most graph drawing algorithms assume that nodes &§anding the graph to empty regions (Figure 2(c)).
dimensionless (e.g. point-sized), in practice nodes may be labeled?Verlap removal and graph uncluttering problems arise in other
and the labels may overlap. Several algorithms have been defi8llds outside of graph drawing. Deussen et al. [23] present
oped to remove overlaps between nodes. an extension of Lloyd’s method for distributing objects on the
Chuang et al. [14] use potential fields in order to removdlane in order to create stipple drawings. Chan et al. [24] use a

overlaps. Gansner and North [15] use an iterative Voronoi diagr&fNSity constrained minimization formulation in order to compute
method in order to tidy up the layout. Harel and Koren [16] us%verlap-_free placements for comzponent:_:, in |nteg_rat_ed circuits.
a combination of a Kamada Kawai [5] method and a modifidd@yashi et al. [25] present &0(n%) algorithm for finding the
spring method, which takes node shapes into account whEinimum area layout of a set of rectangles _that avoids inter-
calculating forces in order to converge to an overlap free |ay0l§@ctlons and preserves the orthogonal ordermg_ of th_e rectangles.
Marriott et al. [17] use a constrained optimization approach Map cartography attempts to create maps in which the size
in order to remove overlaps. Eades and Nikolov [18] remowd rgions is in proportion to their population or some other
overlaps using spring algorithms, followed by displacement @f@logous property. Gastner and Newman [26] perform diffusion
nodes in a way that preserves the mental map as measured byqﬁgder to create maps W!’]ICh have a uniform |nfo.rmat|on densﬂy.
orthogonal node ordering model. Huang et al. [19] discuss tfi&@€ré are a couple of differences between their work and this
force-transfer algorithm which pushes overlapping nodes awB§Per- First, in cartography an attempt to conserve the area is

from each other. Dwyer et al. [20] use a constraint optimizatigh@de, while our algorithm tries to use sparse or empty regions
problem for each dimension separately. of the screen. Second, while in [26] isotropic diffusion is used,

The graph uncluttering problem addressed in this paper is ﬁ@re anisotropic diffusion is used in order to avoid "collisions”

ferent from the node overlap removal problem. Overlap remo ?tween neighboring dense areas of the graph.

attempts to compute a minimal displacement of nodes in order

to avoid overlaps, but may result in graphs that are still difficult Il. THE ALGORITHM

to comprehend since they include very dense areas. MoreoveiGiven Linitiar , Which is a straight-edge layout of an un-directed
while the algorithms discussed above deal with removing overlagsaph G = (V,E), the goal of the algorithm is to produce an



(a) Input layout (V=247, E=1230) (b) Removing node overlaps (c) Uncluttering using our algorithm

Fig. 2. Comparison between node overlap removal and graph uncluttering. (a) is a layout produceteatifgjl] of a reduced version of the bcsstk32

graph from [22]. In (b) the node overlap removal algorithm from [15] is used. Note that although the overlaps between nodes are eliminated, the structure
of the graph is not maintained and the center of the layout is cluttered. In (c) our algorithm is used. Note how the cluttered right side of the input layout is
expanded, thus increasing node separation, while the structure of the graph is maintained.

enhanced layout +jng. This layout should make better use oftomputed image is configurable by the user. While small grids
the available screen space by dispersing nodes from high denségtuce the running time of the algorithm, the quality of the results
regions to surrounding regions, while maintaining the structure oén suffer, especially for large, dense graphs. In our experience,
the original layout. The algorithm utilizes several key ideas. Firaising a resolution o257 by 257 pixels gave good results at a
for each pixel in the image of the layout, we compute the densitgasonable running time for a large variety of graphs, and thus was
of the information it contains. Second, we perform an evolutiomsed as the default. (Note that the multigrid algorithm requires a
process in order to improve this density, making use of unusesbolution equal té&- 2™+ 1 wherek, me N (see Section IV) [27].)
areas of the image and reducing the density in congested area#n our implementation, the density is computed using OpenGL
Third, a warp is computed between the initial and the improveshd the GPU. Since we are interested in identifying areas where
densities. This image warp is used to modify the graph layoséveral graph elements (i.e. nodes) occupy the same screen pixel
in a way that helps preserve the mental map, resulting in &re. overlap), we usbklendingin order to accumulate the density.
enhanced layout. Algorithm 1 gives an overview of the steps @his is achieved by using a rendering mode in which the color of
the algorithm. We elaborate on each of these steps below. different overlapping rendered primitives is accumulated. Thus,
pixels that contain more graph elements will have a higher value

Algorithm 1 Layout improvement algorithm in the density image. Anti-aliasing is used to render a smoother
input: Linitial, layout of a graph G=(V,E) image.
output: L¢ina, modified layout of G Note that in this paper density images are used to compute an
1) ComputeDinitial, the density image of the layolipitia - improved layout. However, there can be other uses of density
2) Calculate Dgmooth @ Smoothed density image dfiqiia, iMages. For instance, in [28] they have been used to aid in
using the heat equation. visualization.
3) CalculateDiarget, the target density image, using a modified Smoothing the density image (Step 2)in this step the image
heat evolution. Dinitiai is smoothed it in order to create the imdd@nooth This is a
4) Calculate an optimal mappingi between Dgmooth and —pre-processing phase that creates an input that is more suitable and
Drarget. hence improves the numerical stability of the warping algorithm
5) Calculatel ina by displacing nodes according to the mapin Step 4.
ping a. We base the smoothing algorithm on theat equation29].

This is a partial differential equation (PDE) that models the

Computing the density image of the layout (Step 1)The first vgriation qf thg temperature in a region over time. Intuitively,
step of the algorithm computes the denddyiis of the given t_hls PDE implies that the rate of _change in temperature_ over
layout Lintial, as illustrated in Figure 3(a) and (c). The intensitfi™me depends on the temperature difference between a point and
of each pixel in the density image is proportional to the numb&f N€ighbors. The PDE describes a diffusion process that can
of graph elements that cover the pixel. Using the density imaﬁausgd for smoothing. In addition, it has the desirable property
the cluttered areas of the graph, which we wish to visualize mdféft given a potentially discontinuous initial temperature, it very
clearly, can be identified. rap@ly becomes coptmuous. ] ) )

The density image can be computed using only the nodes o/Given a 2D domair we define the temperature in each point
both the nodes and edges of the graph. Our experiments indidf€ domain asi(x,y). The heat equation is
that using only the nodes produces better results. This is since du 9%2u  d%u
each edge has a rigid structure, while node concentrations consist 9t (W + Tyz)
of individual points which can be dispersed by our algorithm
to generate a more understandable layout. The resolution of thieered? is theLaplacianoperator and is a constant describing

= kJ%u, (1)



the rate of heat diffusion. In our cas&x,y) is set to the density more effective use of the screen space in the improved layout
Dinitial (X, y) computed in Step 1 and it is evolved to compute thifing.

smoother densitPsmoot{ X, Y). Appropriate boundary conditions To select the preferred directidies; at each time step and for
need to be set on the valueswofWe defineu =0 on the boundary each pixel of the current density image a ray-shooting process
0Q, corresponding to setting a zero density at the boundary ief performed. For locatiorix,y) in the density image, given a

the image of the layout. possible diffusion directior®, we calculate the following score
To solve this equation numerically it is necessary to discretize =l
the grid and use numerical approximations for derivatives [30]. scorgx,y, 0) :/ H(x+Icos8,y+Ising)dl,
1=0

This results in the following discrete approximation of Equation 1:
1 L L . e L . wherelnax corresponds to a point on the ray that is on the image

UL ) - L) L+l -2 (,)+u(i-17j) boundary. The intuition behind this formula is that we sum up
dt (dx)? the amount of material we encounter when traveling in direction

Jrl(ut(i, j+1)—2ut(i,j)+ut(i,j—1) @) 6 from (x,y) up to the boundary of the density image. In discrete

(dy)2 ’ form, the score is
whereut(i, j) is the value of the density at grid point (i,j) at time 1=Imax] .
stept, dx anddy are the grid dimensions in the x and y directions, scorex,y,0) = I% H(x+Icosf,y+Ising). 4)

respectivelydt is the time step and®(x,y) = Dintitial (X,Y). Thus, _ o

given the density at every grid point at tintewe are able to The final advancement direction is

compute the density at time+ 1. Figure 3 (c) and (d) shows _ .

the smoothing performed by the heat equation. The Laplacian Bhes(x.) 722?0311?{500“()(’% o), )

operator on the right-hand side of Equation 2 can be represented . .
by the following template [30]: which corresponds to the direction in which the least amount of

material is encountered, hence making the best use of available

0 1 0O screen space (since we disperse the material to the emptiest
Pr| 1 -4 1 3 i
~ ) (3) regions).
0 1 0 Since there are potentially several nodes located in the same

which describes how the values in each grid point are updat@¥€l of the density imageu, it is required to use sub-pixel

taking its neighbors into consideration. accuracy in the sampling performed in Equation 4. This is
It should be noted that it is possible to perform the smoothirfgficiently handled by using bilinear interpolation for sampling

by performing a convolution with the heat kernel. The iterativ¥- Us!ng_hlgher fidelity ke_rnels is also possible, but would result

formulation discussed here serves as a basis for the anisotrdpi@ Significant decrease in performance. o

case discussed in Step 3. Given 6yt for every pixel in the current density image, we

The algorithm uses several parameters. We use a square Eﬁalve.the den;ity according' to quation 1 but replage the
and therefore setix— dy— 1. Using k= 1 in the heat equa- isotropic Laplacian operator in Matrix 3 with the following

tion results in a reasonable diffusion rate. In order to maintafiitisotropic operator:

numerical stability, it is required to hawdt < %M [31]. 0 1+ Sin(Bpesy) 0

We usedt = 0.23. Thirty iterations of Equation 2 are run. Thismgnisotropicz 1+ co Bhest) -4 1—coq Bhesy)
number represents a tradeoff. If too few iterations are used, the 0 1— sin(Byes)) 0

smoothing will not be sufficient for Step 4. If too many iterations 6)

are used, the image will be too smooth, potentially reducing tfAde intuition behind this operator is that the averaging performed
displacements computed in Step 4. depends on the directiof,eg;, resulting in a new density that is

Calculating the target density image (Step 3):Although biased in the required direction.
the algorithm in Step 2 has the advantage of creating a moredn summary, in this step, starting with= Djnitial , We iteratively
uniform, evenly distributed density, it has the disadvantage theampute Equation 5 and updateusing the anisotropic Laplacian
the diffusion process takes into account only local properties bfatrix 6, resulting inDiarget.
the density, as governed by the heat equation. This is not desirablen our implementation we calculate the best diffusion direction
in our case since it may lead to cases of "collisions” betwedar 64 angles symmetrically distributed over the possible advance-
close-by high density regions. We would like to take the topologyent directions (i.e[0, 271). Five iterations of the heat equation
of the given graph density into consideration when calculatirgyolution (using Matrix 6) are performed between recalculations
an alternative, more uniform density with lower maximal valuesf the best direction (Equation 5). This is a tradeoff between
corresponding to a less cluttered layout. The goal of this stepdemputation speed and accuracy, which our experiments show
to computeDiarget, Which is an improved density image, givenproduces good results. A total of 60 iterations of the heat equation
Dinitial - evolution are performed. This number is used in order to ensure
Creating an improved, shape-aware density image is achievbdt the evolution of the target densiyarget continues for more
by modifying the evolution described by the heat equation (Equiterations than the evolution &smeoth DoiNg so allows the warp
tion 1). Instead of performing isotropic diffusion as governed bgomputed in Step 4 to expand the layout to unused portions of
the discrete Lapalcian operator (shown in Matrix 3), we modifthe screen.
the direction of the diffusion according to the shape of the densityComputing an optimal warp (Step 4): After computing
image. The diffusion is performed in a direction that makes use Dfmooth and Diarget in the previous steps, we are now ready to
empty and low-density regions of the image. This allows makirpmpute a wargli = (u1(x,y),U2(X,y)) that maps locatior(x,y)



(a) Input layoutLnitia for the 3elt graph, V=4720 E=13722 (b) Output grapfhal

(c) Initial density Dinitiai (Step 1)  (d) Smoothed densilsmooth (Step 2)  (e) Target densiiiarget (Step 3)

() x-component of the wargi (Step 4) (g) y-component of the watp(Step 4)

Fig. 3. Algorithm steps. Higher intensity represents higher values. Values are scaled to improve contrast.

in Dsmooth t0 location (ug(X,y), u2(X,y)) in Drarget. Using G, we  not the image of the layout.
are able to modify the layout, as discussed in Step 5, in order toThe optimal warpingi= (u1(x,y),Ux(x,y)) gives for each pixel
computeL ¢ipg . in the input density a destination position in the image. Using the

The warp procedure is based on the algorithm of Haker W@'P, new node p.ositions are cornputed using an iFerative process.
al. [9], which is shown to compute a warp that minimize§1ven & noden with current position(xn,yn) (initialized to the
displacements. In our case this helps maintain the overall structfR{€ Position irLiniia), its updated position is set to
of the graph, thus helping preserve the mental map . The key idea
of the algorithm is to iteratively converge to an optimal mapping

pdated__ 7
by using a gradient descent technique. More details are given in Yn = Y+ (U20%, Yn) = ¥n)- )

Section IV. The number of repetitions of Equation 7 is controlled by the
Computing the final layout (Step 5): In the final stage of user. Performing more iterations results in a larger displacement,
the algorithm, the positions of the nodes are modified in ordegpresenting a tradeoff between node separation and preserving
to create the output layout¢ina. Given the optimal warping the structure of the graph. The constantwhose default value
0= (u1(x,y),u2(x,y)) that was computed in Step 4, which isis 0.5 is used to scale the displacement.
defined over a discreet, regular grid, this step computes then order to compute the value of the functions and u, at
updated positions of each node in the graph, which are ndhe non-integral node coordinaté€s,,yn) bilinear interpolation
integral. Note that this stage modifies the node coordinates dadused. Using an interpolation method with sub-pixel accuracy

u

andated: Xn+ @ (Uz(Xn, Yn) — Xn)



helps increase the separation between close-by nodes in the inpdlany mappinggi that satisfy Equation 10 exist. We would like

layout. to choose an optimal one for our application. We use the squared
Complexity: Step 1 requires traversing the nodes and edgk$ Monge-Kantorovich distance, defined as follows

of the graph, which iO(E +V) for a graph withE edges and

V nodes. In addition it requires rasterizing the nodes and edges, d3(Lo, p1) = _inf //Hﬁ(x,y)f xy)|Pto(x,y)dxdy  (11)

which is performed quickly on the GPU. Step 2 performs a fixed geMp

number of iterations, each of which tak€XP) for an image This distance places a penalty on the distance the inayves

containing P pixels. Step 3 uses a fixed number of directions, e&#th bit of material, weighted by its mass. Hence, this distance

requiringO(+/P) work for summing up the densities along the raits our requirement of disturbing the input graph layout as little

emanating from each of the pixels. The total here i©(P%). as possible, in order to reduce changes to the structure of the

As discussed in Section IV, Step 4 requit®¢P). Finally, the layout, thus conserving the user’s mental map.

last step iSO(V). Hence, the total runtime ®(E +V + P1°). As A fundamental theoretical result [10], [32], [33] states that there

shown in Section VI, it is dominated by the time spent in Step 8xists a unique optimal mappingthat is a gradient of a convex

which can be controlled by changirigy function w, i.e. (i = Ow. In order to find the optimal mapping
U we use the algorithm of Haker et al. [9]. This algorithm has
IV. COMPUTING AN OPTIMAL MAPPING two main stages. First, an initial mappin§ is found. Next, the

In this section we describe a method, based on optimal ml{ggpping is updated iteratively in order to decrease the functional

transport, for finding a mapping between the two density imagl% Equation 11.

Dsmooth @nd Drarget in @ way that minimizes displacements, thusa, Finding aln 'n'g‘l"“ ma?plng is achieved by flrstdfsolv[ng a onﬁ-I
preserving the structure of the graph. imensional problem of transporting mass in a direction paralle

First, a brief introduction to the optimal mass transport proﬁg the x-axis (Equat'ion 12), followed by the SO'”“_O” ofa seﬂes of
lem, which was first formulated by Monge in 1781 and later b roblerr_]s transportl_ng_ ma_s; paral!el to the y-axis (I_Equatlon 13).
Kantorovich [8] is provided. Next, the application of this problerd* function a=a(x) is implicitly defined by the equation
to improving graph layouts is discussed. The section concludes by ax) 1 X 1
briefly describing how the mass-transport problem is efficiently /O /O pa(n,y)dydn :/0 /0 po(n,y)dydn.  (12)
solved using the algorithm of Haker et al. [9].

Let Qo and Q; be two subdomains oR?, with smooth a(x) is determined by numerically calculating the integrals. Dif-
boundaries. Positive density functiops(x,y) and pi(x,y) are ferentiating Equation 12 with respect to x gives

defined on these domains, respectively. We assume that 1 1
d(x) /O pa(a(x),y) dy= /O Ho(x,y) dy.

/[ Hoeyyaxdy=[[ iy dxay ®)

Qo Q A function b =b(x,y) is now defined implicitly by the equation
i.e. the same total mass is contained in both regions. In our case b(x,y) y
of density images of graph layouts, we assubge= Q; = [0,1] x a(x) /o pi(ax),p)dp = /0 Ho(x, p) dp. (13)

[0,1].

Our purpose is to construct a mapping betw&pooncom-  Givena(x), the functionb(x,y) can be computed by numerically
puted in Step 2 anMiarger cOmputed in Step 3. Unlike the performing the integrations in Equation 13. The initial mapping
classical setting described above, the densities used in our daseet to beu’(x,y) = (a(x),b(x.y)).
can be zero in some regions of the image - the ones not occupie€onsideringu® to be a vector field, the Helmholtz-Hodge
by the input graph layout. We therefore equalize the mass (iecomposition [29] states thaf can be decomposed into the
order to ensure Equation 8 is met) and add a constanteach sum of a curl-free vector fieldlw and a divergence free vector
of the input densities before computing the optimal mapping field x, i.e. u® = Ow+ x. In the 2D case a divergence free vector

using the following relations: field x can be written ag¢ = O'h for some SCﬁlaghfunction h,
. Lt oh on .
I/ Dsmoott{X. ) dxdy were L represents r_o.tatlt_)n b90°, sod+-h= (_ay= 2%)- In this
Qo case the decomposition i = Ow+ O'h.

> (9)

Ho=€+Dsmooth , H1 = &+ Drarget In order to compute the optimal MP mappirig= Ocw, the

second step of the algorithm removes the curl frofn This is
where g, p1 are the equalized and shifted densities which agchieved by using an iterative gradient descent method. In each
used to compute the Optima] warp. In our |mp|ementaﬂ@ﬂ05 iteration the current mapplrlgjls modified in order to reduce the

Diffeomorphismsii = (uy(x,y), Uz2(x,y)) from Qg to Q;, which  functional in Equation 11. Note that at all stages, the mapping
map one density function to the other according to the following is @ valid solution to the mass-transport problem. Settirg

[ Drarget(X, y) dxdy
Q

relation Ow+0O%f, f is found by solving the following Poisson Equation
Ho(X,Y) = |DU(X,y)|ua (T(x,Y)) (10) with a Dirichlet-type boundary condition:

are considered. HerB( is the Jacobian matrix anfDd| is its 02f = —div(ut)

determinant [29] . Equation 10 is called tMass Preservation f — 00nAQy. (14)

(MP) property and accordingl§i € MP. It implies, for example,

that if a small region inQq is mapped to a large region @;, The boundary condition ensures that the mapping will remain
there must be a corresponding decrease in density in order ¢onstrained in the given domain. It is shown in [9] that the
the mass to be preserved. functional in Equation 11 can be reduced by the following



evolution equation: Severaltextures which are two-dimensional images or data
P 1 arrays, are used to store data on the GPU, as illustrated in
ou_ —Dultf. (15) Figure 4. The input density is stored in thedensity texture.
gt Ho For each candidate directigh the current score for each pixel is
The time stepAt is set asAt = miny; HlTlO(DJ_f)inl’ where the Stored in thelocal metrictexture. Two textures are used to store

iteratively solves the Poisson Equation and updates the mappmsmc #2 We use two textures due to the GPU's inability to read

u until the curl ofu is below a given threshold. Our experiment&@Nd Write to the same texture. At the end of the computation the
show that performing up t®0 iterations of Equation 15 is global metric texture holds the best advancement diredfipg

sufficient for obtaining a high-quality warp. for each pixgl. h . hi . |
A multi—grid method [27], [30] is used in order to quickly Computation on the GPU is achieved by runningeanel or

solve Equation 14. The implementation uses the V-cycle algorithfﬁ"i‘gm?m prograrrfor gach pixel in the image. The GPU is able
split the computation into hundreds of parallel threads, thus

to control the transition between grid levels, Jacobi iteration® hievina hiah perf Th tati h inFi 4
for smoothing the solution and full weighting for downsamplin chieving high performance. The computation, Snown in FIgure =,

solutions between grids [27]. The complexity of the multi-gri p(_erformed using twq kernels. The f'.rSt I_<ernel,_ callmlc_
method for an image containi@ pixels isO(P), resulting in a metric calculates Equation 4 for each pixel in the image given
rapid solution. Equations 12,13,15 are linear ir; the image size.tt&e current directio. Given the coordinates of the current pixel,

fixed number of iterations of Equation 15 is performed. Henclé*,‘ax fr°m. Equation 4 1S d_eterlmlned b_y calculating the glosest
The total complexity of this step in the algorithm @(P) intersection of the ray in directio@, starting at the current pixel,
' with a boundary of the image. Next, the score is accumulated

using Equation 4. During this process, Bilinear interpolation is
V. IMPLEMENTATION ON THE GPU used to access the density texture in the non-integral coordinates.

) ) ) ] The GPU is able to efficiently execute the calc metric kernel.
Computing the target density (Step 3) is the most time CORyr each directior, when concurrently running the kernel on

suming stage of the algorithm since we need to perform mag¥ishnoring pixels, the accesses to the density metric have a
computations for each pixel of the image. In this section Wn |ocality. This results in a good utilization of the caches and

describe how this step is implemented on the GPU, resulting #lemory bandwidth of the GPU, which are optimized for 2D
a significant speedup of the running time of the algorithm, Fperations.

shown in Section VL. _ o A second kernel, thenergekernel is used to update the current
The GPU has several architectural characteristics that heJgst advancement direction per pixel. This kernel accepts as input

improve the speed of computation compared to the CPU. First, i@ previous best direction, stored in the global metric texture,
GPU is highly parallel. Itis able to run hundreds of computationghg the value of the score calculated in the current direction
threads in parallel. In some cases, memory access latencyyissiored in the local metric texture. The kernel compares the
hidden by switching to executing a different thread. Seconglyo scores and writes to its output the merged best score. After
the GPUs memory system is optimized for two-dimensiongkratively running the calc metric and merge kernel for the set of
locality, as opposed to the one-dimensional locality employed iy candidate angles, the global metric texture contains the value
CPUs. Qur implementation on the GPU takes advantage of thggene pest angldhes: for each pixel.

properties. It should be noted that it is better to compute the best direction

Given the current density image as an input, the goal is to (Equation 5) in a single pass, using the current dengitps

calculate for each pixel the best advancement direcBagy, as the input and the best directiofhes(x,y) as the output. This

in Equation 5. This is done by finding for each pixel the anglgould remove the necessity for having a temporary texture for the

that minimizes the score in Equation 4. local result, performing the ping-pong algorithm between the two
copies of the global metric texture and running the merge kernel.
0 density However, in order to protect the system from fatal errors, the
graphics driver limits the amount of time a computational kernel
is allowed to run. The allotted time is insufficient to perform the
$ computation in one pass, especially in lower performance GPUs.
Thus, we chose the multi-pass implementation discussed in the
local global previous paragraphs.
metric metric #1

VI. RESULTS

@ Our algorithm was tested using the output of several state-
of-the-art graph layout algorithms in a variety of applications.
A Table 1l gives information about the graphs and the parameters
globa used in our algorithm. Below, we discuss the results of our
metric #2 . ;
feedback algorithm and compare them to the results obtained by the node
overlap algorithm of Dwyer et al. [20]. We were not able to
Fig. 4. Execution graph of finding the best advancement direction on tkompare thef results. of our_algo_rlthm to th_ose of Gansner and
GPU in Step 3 (rectangles = textures, ovals=kerreéis, the current direction North [15] since their algorithm is not designed to handle the
being tested) large graphs used in our experiments.
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(@) InputFM? layout (b) Removing node overlaps using [20] (c) Our improved layout

Fig. 5. ug380 graph (V=1104, E=3231). Note how when using our algorithm the center expands, reducing node density while the outer ring is unchanged.
When using [20] the layout is hardly changed.

Figures 1 and 5 show improvements of layouts computed loircle in the leftmost part of the graph become visible. Also,
FM?3 [12], which is a multi-level force-directed algorithm. It usesexpanding the small circular formation at the bottom right hand
solar systems, which consist of nodes at a distance of two edgete of the graph allows more detail about the sub-clusters it
or less from the center of the solar system, in order to create ttentains to become visible. Moreover, as opposed to (b), the
graph hierarchy. layout in (¢) maintains the overall structure of the layout.

Figure 1 shows a layout of the protein graph, which is the un- Figures 7 and 8 show improvements of the layouts produced
weighted version of the protein homology graph presented in [34}y [37], which is a multi-level forced directed graph layout algo-
The layout contains a large, dense central cluster. Applying aithm. Spectral partitioning is used to create the graph hierarchy.
algorithm increases the percentage of screen space devoted tdiDeree type partitioning is used to accelerate the computation
elements of the graph. This allows more of the fine details of tlaad allows for an efficient GPU implementation.
graph to become visible, especially in the central region of theFigure 7 shows the ISP graph, which represents the router
graph. Note how the overall structure of the different elements nétworks of several internet service providers (ISPs) [38]. In the
the graph, such as the different "spokes” it contains, is retainddyout, green, black and blue nodes represent routers belonging
In comparison, the algorithm from [20] was not able to remove &b the ISPs visualized, while red nodes show other routers used
of the overlaps and the changes to the layout were small, similatly connect to the Internet. The layout in (b), computed by the
to Figure 8 (b). algorithm from [20], manages to displace nodes in order to avoid

Figure 5 shows a layout of the L1880 graph [35], which overlaps, while generally maintaining the overall structure of
contains one node with a very high degree. The layout containghe graph. Unlike our algorithm, the resulting layout does not
central core which is packed with many nodes. In (b) the resulitempt to make use of sparse regions of the layout. Instead, small
of a node overlap removal algorithm [20] are shown. Since tltisplacements are used in order to avoid overlaps. Applying our
input layout contains hardly any overlaps, the result in (b) slgorithm to this layout, as shown in (c), improves the separation
very similar to (a) and the graph remains cluttered. Applyingetween the nodes of the graph, while maintaining important
our algorithm to this challenging case, shown in (c), results in aharacteristics of the graph, such as the separation to clusters
increase in the radius of the central core, increasing the separafexcluding the red nodes). This is especially evident in the blue
between the nodes. The exterior nodes, which are sparser, duster at the bottom right and among the red nodes in the center
unaffected. left part of the graph. Note how the algorithm is able to expand

Figure 6 shows an improvement of the layout produced m®ach of the clusters into surrounding sparse areas, allowing more
TopoLayout, which is a feature-based multi-level graph drawirdgtails to become visible inside the clusters, while still preserving
algorithm [36]. It creates a subgraph hierarchy by recursivetfie overall clustered structure of the graph.
detecting topological features in the graph and replacing themFigure 8 shows the bcsstk32 graph [22], which represents a
with meta-nodes. Each feature is drawn using an algorithm tunstiffness matrix. It has a very high edge denskyV > 22. The
for the specific topology. The graph hierarchy is drawn bottontayout in (b), computed by the algorithm from [20], is nearly
up using an area-aware algorithm. The figure shows the add@2ntical to the input layout. The algorithm is not able to remove
graph [22], which describes a 32-bit adder that contains maalf of the overlaps of the graph, even when we change the size
biconnected components. In (b) the results of a node overlapthe squares representing the nodes. In (c) our uncluttering
removal algorithm [20] are shown. Note that the structure @flgorithm is used. It stretches the input layout, making the
the input layout is significantly distorted, making it difficult tomesh-like structure of the graph more evident. Note that the
comprehend the structure of the graph. Our improved layowlerall structure and features of the graph are conserved after the
shown in (c), is able to expand the circular clusters containedcluttering process. Also note that in the improved layout there
in the graph, better visualizing the intricate details of the grapare less highly-concentrated areas, where the edges are totally
For example, additional details about the composition of the innleidden. This makes the mesh structure of the graph visible in a



(a) Input layout by TopoLayout [36] (b) Removing node overlaps using [20]
Fig. 6. Add32 graph (V=4960, E=9462). Note how in (c) each of the rings is expanded, showing more detail.

(a) Input layout from [37] (b) Removing node overlaps using [20] (c) Our improved layout
Fig. 7. ISP router graph (V=5044, E=8043) . Nodes are color-coded by the ISP they belong to. Note how in (c) the blue nodes are uncluttered.

(a) Input layout from [37] (b) Removing node overlaps using [20] (c) Our improved layout

Fig. 8. Bcsstk32 graph (V=44609, E=985046). Note how in (c) reducing the node density allows more of the mesh structure of the graph to be uncovered
in the top left, bottom and middle of the graph.

larger portion of the layout. whereV is the number of nodes in the graphs is the area of
In order to quantitatively measure the quality of the improvdhe layout, andlist(u,v) is the distance between nodesandv.
ment to the layout, we define the following metric: The metric sums the inverted distances between all node pairs,
multiplied by a normalization factor. Under this metric, a lower
1 1 score is better since it implies that nodes are further away (and
= 0, 16 . 1 i i i i
Q V(V_l)AGuve u;évdlst(u,v) (16) hence distuy) 1S smaller). In order to normalize the metric we
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graph name| input | node overlap removal [20] our algorithm
add32 10763 15535 9392
bcsstk32 | 1465.9 1301.2 623.56
ISP 251.41 511.36 198.37
ug-380 7811.8 7811.8 6751.5
TABLE |

QUALITY RESULTS. VALUES IN THE TABLE ARE CALCULATED ACCORDING TO THE QUALITY METRIC IN EQUATION 16. LOWER VALUES IMPLY A HIGHER
QUALITY LAYOUT . THE INPUT COLUMN REPRESENTS THE QUALITY METRIC FOR THE INPUT GRAPHIHE NODE OVERLAP REMOVAL COLUMN GIVES
RESULTS WHEN APPLYING THE ALGORITHM FROM[ZO]. THE RESULTS WHEN USING OUR ALGORITHM ARE SHOWN IN THE RIGHTMOST COLUMN.

graph information node overlap removal [20] our algorithm

graph Vv E CPU VP | ITRS | CPU | CPU+GPU
protein | 30727 | 1206654 543 257 8 643 6.62
add32 | 4960 9462 2.23 257 | 15 641 4.86
bcsstk32| 44609 | 985046 462 257 4 642 5.84
ISP 5044 8043 0.9 257 | 25 643 5.19
ug-380 | 1104 3231 0.03 257 | 30 643 4.86

TABLE I

GRAPH INFORMATION AND RUNNING TIMES. THE LEFT SIDE OF THE TABLE GIVES INFORMATION ABOUT THE GRAPHSV AND E ARE THE NUMBER OF
GRAPH NODES AND EDGESRESPECTIVELY THE CENTRAL PART OF THE TABLE GIVES THE RUNNING TIMES IN SECONDS OF THE ALGORITHM
FROM [20], USING THE SAME MACHINE USED TO RUN OUR ALGORITHM THE RIGHT SIDE OF THE TABLE SHOWS THE RESULTS OF OUR ALGORITHMIHE
WIDTH AND HEIGHT IN PIXELS OF THE DENSITY IMAGE USED IS EQUAL TO\/|5. ITRSIS THE NUMBER OF ITERATIONS OFEQUATION 7 IN STEP5. CPU
IS THE TOTAL RUNNING TIME OF THE ALGORITHM IN SECONDS WHEN USING ONLY THECPU. CPU+GPUS THE TOTAL RUNNING TIME OF THE
ALGORITHM IN SECONDS WHEN USING THEGPU TO ACCELERATE STEP 3.

divide by the number of node-node combinatiols«(V —1)). the CPU and CPU+GPU columns, most of the time is spent in

The metric is multiplied by the area of the layout in order to takBtep 3, which involves a computationally demanding ray-shooting

into account changes to the size of the layout. A larger layout wifocess (Equations 4 and 5). Using the GPU results in a very large
receive a higher (i.e. worse) metric since enlarging the layout wpeedup of this step, accelerating the total runtime by up to 130
naturally lead to improved distances between the nodes. times. This reduces the total runtime to a few seconds.

Table | shows the results of using the quality metric defined Table 1l compares our running times to those of [20]. In
in Equation 16 on the graphs in Figures 5 - 8. The table shoWs latter, there is a big variation in the running time, since it
the metric for the input graph as well as the results when usidgpends on the number of overlaps. When there are few overlaps
the node overlap removal algorithm from [20] and when usingdd32, ISP, u®80), the algorithm runs quickly. Consequently,
our algorithm. As can be seen, using our algorithm improvége changes to the layout are small. In other cases (protein,
the metric (corresponding to a lower value) consistently. Thizgcsstk32), the running time is higher. Due to the large variation
demonstrates that indeed our algorithm manages to increaseithgunning times, in some cases it runs faster than our GPU
separation between nearby nodes, thus improving the readabiliplementation while in others it runs slower.
of the layouts and showing finer details. When using the algorithmThere are several reasons why the GPU is able to accelerate
from [20], the quality is improved in some cases (such as tisep 3 and therefore the execution of the entire algorithm so
bcsstk32 graph) while it is reduced in others. For example, #ignificantly. First, since the amount of work per-pixel is similar,
the ISP graph, the graph is stretched in the y axis (this is ritvere is good load balance between the different processors in the
visible Figure 7 (b), which is square), thus reducing the qualig®PU. Thus, the GPU is able to make efficient use of its computing
metric of the computed layout. A similar case, contributing to power, which is much higher than the CPU’s. Second, due to the
less desirable high score, happened with the add32 graph, wh2Belocality in the memory access pattern during the ray-shooting
area was significantly enlarged in order to avoid node overlapgrocess, the GPU is able to make efficient use of its caches. On

For our performance tests, we used a PC running Windows e CPU, however, accessing a 2D image requires lookups using
equipped with 2GB RAM, an Intel Core 2 Duo E6750 2.66 GHpointers, which is inefficient. Finally, as opposed to the CPU, the
CPU and an NVIDIA 8800GTS GPU with 96 shader processofsPU contains built-in instructions for performing the clamping
running at 1.2GHz. The algorithm was implemented using C+@perations needed for performing the interpolation of the values
OpenGL and Cg. in the density texture. In summary, this is a good example in

Table Il gives information about the graphs and the runninghich the architecture of the GPU is able to provide a significant
times. It is evident that the running time is relatively indeperfpeedup compared to a CPU implementation.
dent of the size of the graph and the number of displacement
iterations made. This is so since the bulk of the computation VII. CONCLUSION
time is spent working on the different images the algorithm This paper proposes a new algorithm for reducing the cluttering
operates on. More specifically, as can be seen from comparcmnmonly occurring in graph layouts. Given any graph layout,
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the algorithm moves nodes to empty regions of the screen whil@] E. Shimizu and R. Inoue, “Time-distance mapping: visualization of
attemp“ng to retain the overall structure of the graph and thus transportation level of service,” iRroc. of Symposium on Environmental

reduce disturbances to the user's metal map.

Issues Related to Infrastructure Developm&@03, pp. 221-230.

[14] J. H. Chuang, C. C. Lin, and H. C. Yen, “Drawing graphs with

The algorithm has several key ideas. First, the density image™ nonuniform nodes using potential fields,’Rtoc. 11th Int. Symp. Graph
of the computed graph layout is used to decide how nodes will

be displaced. Second, a diffusion process that takes the structd

of the density image into account computes an alternative no@g]
distribution, making better use of the available screen space. in Proc. Working Conference on Advanced Visual Interfaces (AV.I’02)
Third, an optimal and mental-map preserving warp, based on ACM Press, 2002, pp. 157-166.

results from mass-transport problems, determines how to displ

Drawing (GD 2003) ser. LNCS, no. 2912, 2004, pp. 460—-465.

% E. R. Gansner and S. C. North, “Improved force-directed layouts,” in

Graph Drawing ser. LNCS, vol. 1547, 1998, pp. 364-373.
D. Harel and Y. Koren, “Drawing graphs with non-uniform vertices,”

é]cg K. Marriott, P. J. Stuckey, V. Tam, and W. He, “Removing node over-

lapping in graph layout using constrained optimizatio@@nstraints

the nodes. Although the mathematical techniques used in this yol. 8 no. 2, pp. 143-171, 2003.
paper require a great deal of computation, the paper demonstrétéks W. Li, P. Eades, and N. Nikolov, “Using spring algorithms to remove
how improved layouts can be computed in a matter of seconds,

by using the GPU to significantly accelerate the algorithm.

[19]

It has been shown that our algorithm is able to improve layouts
of large graphs, produced by a variety of well-known algorithms.

In future research we plan to integrate the algorithm into
interactive system that allows presenting user-selected regions of

interest in the graph with more detail. Another research directi@®i]
is using the algorithm to enhance the visualization of changes in

a dynamic graph sequence. [22
It may be possible to accelerate the algorithm further by moving

more parts to the GPU. These include the multi-grid solution &3]

the

Poisson equation [39] (Equation 14) and the iterative mass-

node overlapping,” inAsia Pacific Symposium on Information Visuali-
sation (APVIS2005)ser. CRPIT, vol. 45, 2005, pp. 131-140.

X. Huang, W. Lai, A. S. M. Sajeev, and J. Gao, “A new algorithm for
removing node overlapping in graph visualizatiomf. Sci, vol. 177,
no. 14, pp. 2821-2844, 2007.

] T. Dwyer, K. Marriott, and P. J. Stuckey, “Fast node overlap removal,”

in Graph Drawing ser. Lecture Notes in Computer Science, vol. 3843.
Springer, 2005, pp. 153-164.

E. R. Gansner and S. C. North, “An open graph visualization system
and its applications to software engineerin§gftware — Practice and
Experiencevol. 30, no. 11, pp. 1203-1234, 2000.

] C. Walshaw, “graph collection http://staffweb.cms.gre.-

ac.uk/"c.walshaw/partition/ .

O. Deussen, S. Hiller, C. van Overveld, and T. Strothotte, “Floating
points: A method for computing stipple drawing€bmputer Graphics
Forum vol. 19, no. 3, Aug. 2000, ISSN 1067-7055.

transport evolution [40] (Equation 15). [24] T. F. Chan, J. Cong, and K. Sze, “Multilevel generalized force-directed
method for circuit placement,” itSPD, P. Groeneveld and L. Scheffer,
Eds. ACM, 2005, pp. 185-192.
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