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Abstract. In Markov Decision Processes, the discount function determines
how much the reward for each point in time adds to the value of the process,
and thus deeply a�ects the optimal policy. Two cases of discount functions are
well known and analyzed. The �rst is no discounting at all, which correspond to
the total- and average-reward criteria. The second case is a constant discount
rate, which leads to a decreasing exponential discount function. However, other
discount functions appear in many models, including those of human decision-
making and learning, making it interesting and possibly useful to investigate
other functions.

We review results for a weighted sum of several discount functions with
di�erent cost functions, showing that �nite models with this criterion have
optimal policies which are stationary from a �xed time N, aptly called N-
stationary. We review a proof for their existence and an algorithm for their
computation, as well as remark on the structure of these policies as the discount
factors vary.

We then discuss two attempts to generalize the results for weighted ex-
ponential discount functions. The �rst is a hypothesis for a sum of di�erent
general discount function with certain exponential bounds, in the spirit of the
results for the exponential case. We show via counterexample that despite
the intuitive appeal of the hypothesis, it is in fact not true, and make some
remarks on why this is so.

Our second attempt at generalization is to represent a general discount
function as an in�nite sum of decreasing exponential functions with constant
coe�cients. We give convergence conditions on the sum under which the pre-
viously established results can be extended to enable us to �nd an optimal
policy for it. We discuss two examples that clarify our results, and connect
them to areas which require non-exponential discount functions. The work is
concluded by an example of a model with a monotonic discount function that
has no optimal N-stationary policy.
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1. Introduction

1.1. Markov Decision Processes. A Markov Decision Process (MDP) comprises
the following elements:

• A state space X. For most purposes we will assume X to be countable or
�nite.

• An action space A. To avoid technicalities, we will assume it to be �nite,
however, many basic results can be extended for an in�nite action space.

• Action sets A(x), representing the possible actions for each state x ∈ X.
• Action-dependent transition probabilities p (y|x, a) for every x, y ∈ X and
a ∈ A(x).

• An immediate reward function r (x, a) de�ned over all states and their
possible actions, and bounded above for each state.

• A discount function on discrete time, f(n).

A policy is a rule for determining which action to use for any circumstance. For-
mally, we de�ne for any time n ∈ {0, 1, 2, . . .} the history hn ∈ (A×X)n−1 × X
as the collection of all previous states and actions, plus the current state. That
is, hn = x0a0 · · ·xn−1an−1xn. The most general policy, denoted π, will then be a
mapping for every history hn to a probability measure π (·|hn) on A(x) . A policy
in conjunction with the transition probabilities de�ned above generates a discrete
time stochastic process {xn, an}∞n=0.

The �nal step in de�ning a MDP is to quantify how bene�cial each policy is. One
way to do it is by assigning each policy the following value function, also known as
a �criterion�:

V (x;π) = Eπx
∞∑
n=0

f(n)r (xn, an) (1.1)

Where Eπx is the expectation operator corresponding to the probability measure
on the process induced by policy π, given that h0 = x, and assuming V (x;π) is
well-de�ned.

Let us de�ne the maximal and minimal value of a MDP, respectively:

V (x) ≡ sup
π
V (x;π) V −(x) ≡ inf

π
V (x;π) (1.2)

For a given policy π, several important properties need to be de�ned:

• A policy is optimal if V (x;π) = V (x), for all x ∈ X.
• A policy is ε-optimal if V (x)− V (x;π) ≤ ε, for all x ∈ X.
• A policy is deterministic if it assigns a single action to every history, in
which case we may write: an = π(hn).

• A Markov policy is a policy that depends only on the present state and the
time, so we may write: π (·|hn) ≡ π(x, n).

• A stationary policy is a Markov policy that does not depend on the time.

Note that using a Markov policy generates a Markov process, while a stationary
policy generates a homogeneous Markov process.
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1.2. Discounted MDPs. A criterion is called discounted when f(x) = βn, for
some 0 < β < 1. For this criterion, the value of a reward decreases exponentially
with the time it is obtained, making it a natural choice for modeling interest rates
and many other e�ects.

It is a well known and basic result that for a discounted MDP there exists an
optimal policy which is stationary and deterministic. There are several algorithms
for computing this optimal policy. For more details and proof of this, see, for
example, chapter 6 in [5]. The time-independence of the optimal policy may be
considered a result of the �memory-less� property of exponential function.

1.3. Motivation for di�erent criteria. As mentioned earlier, discounted models
capture the e�ect constant degradation. However, many phenomena call for more
complicated discounting schemes.

One example is a non-constant interest or in�ation rate, to describe which we will
need to change the constant discounting βn to a more general function like f(n).

Models of decision making also very often involve a non-exponential discount func-
tion. In order to model psychological e�ects of �greediness� in decision-making,
economists use discount function where the rate of discounting increases with time,
meaning that the sequence f(n+ 1)/f(n) is increasing.

Because of the di�culty of analyzing decision processes with discount functions
other than the simple exponential, most theoretical results are obtained with �toy
functions�, such as f =

[
1, δβ, δβ2, δβ3, . . .

]
in [4]. Another class of discount func-

tions prevalent in this context are called hyperbolic discount functions (see [2]) and

are of the form: (1 + αn)−γ/α with α, γ > 0.

Another occurrence of non-exponential discounting is in models that involve learn-
ing, where the immediate costs/rewards vary with time according to a �learning
curve�. This usually means that early in the process, states and actions will tend
to cost more (or reward less) than in the future, because the system is still maturing
to full capacity in some sense.

When the penalty of learning does not depend on speci�c states and actions, we
may write down the learning curve as a discount function, g(n), that will typically
vary monotonically to a nonzero limit. Common learning curves exhibit exponential
( g(n) = c1 + c2β

n
l ) or power law ( g(n) = c1 + c2 (n+ n0)−α ) behavior, the latter

being the more common (see [3]). If we also take into account constant discounting,
the total discount function will be of the form f(n) = βng(n).

A di�erent cause for generalization is the case of several reward sources, which need
to be discounted di�erently. An example for such a case may be the management of
several projects, each on a di�erent time scale. Another example is an investment
portfolio with di�erent cash �ow streams.

The most natural way to model situations like these is to go from one reward func-
tion, to a sum of several reward functions, each with a di�erent discount function.
Criteria of this kind will be referred to as general weighted criteria, and will have
the form:
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V (x;π) ≡
K∑
k=1

Vk(x;π) , where Vk (x;π) = Eπx
∞∑
n=0

fk(n)rk (xn, an) (1.3)

When fk(n) = βnk and 1 > β1 > β2 > . . . > βK , this will be referred to as the
weighted discounted criterion. It will be discussed in Chapter 2, and is the starting
point of this work.

1.4. Embedding weighted MDPs in Discounted MDPs. We call f(n) ex-
ponentially bounded if there exists a 0 < β < 1 and some K ∈ R such that
|f(n)| ≤ Kβn for all n ≥ 0. Equivalently and more usefully, f(n) is exponen-
tially bounded if f(n) = βng(n) for some 0 < β < 1 and bounded function g(n).

Suppose we have a Markov Decision Process with a value function as de�ned in the
previous section, but with all the discount functions exponentially bounded. Let us
then write fk = βnk gk, and choose their order so that 1 > β1 > β2 > . . . > βK > 0.

De�ne the following discounted Markov Decision Process, with discount factor β1:

X̃ = X× N , Ã(x) = A(x) , p̃ ((y,m) | (x, n) , a) = δm,n+1p (y|x, a) (1.4)

r̃ ((x, n) , a) =
∑K
k=1 (βk/β1)n gk(n)rk(x, a)

Notice that the state space is still countable1, that the action space is unchanged,
that the rewards are still bounded from above, and that both processes have the
same space of possible policies. Also, in the new process, the state contains infor-
mation of the time. This allows us to de�ne the new immediate reward in such a
way that both processes have the same value function, if we start at n = 0:

V (x;π) = Eπx
∞∑
n=0

K∑
k=0

fk(n)rk (xn, an) (1.5)

= Eπ(x,0)

∞∑
n=0

βn1 r̃ ((xn, n) , an) = Ṽ ((x, 0) , π)

Therefore, both processes have therefore the same optimal policy, σ. According to
the previous section the optimal policy for the discounted model is stationary and
deterministic, that is an = σ(x, n). Going back to the original space, we obtain the
following result:

Theorem 1.1. For a general weighted MDP with exponentially bounded discount
functions there exist an optimal policy that is deterministic and Markov.

In light of Theorem 1.1, all policies mentioned from now on will be assumed to be
deterministic unless speci�cally mentioned otherwise.

1Were X not countable, but Borel measurable, then X̃ would have been Borel measurable as
well. Since the result on the existence of stationary optimal policies can be extended to such state
spaces, Theorem 1.1 can also be extended.
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2. Weighted discounted criteria

For the most part, this chapter will review the theory developed by Feinberg and
Schwartz in [1]. This chapter and the results of the chapters following it will often
refer to this paper, and cannot be considered complete without it.

2.1. Two de�nitions. As mentioned in the introduction, weighted discounted MDPs
have the following criterion:

V (x;π) ≡
∑K
k=1 Vk(x;π) , where Vk (x;π) = Eπx

∑∞
n=0

∑K
k=1 β

n
k rk (xn, an)(2.1)

and 1 > β1 > β2 > . . . > βK > 0

Let be a π Markov policy. We call π N-stationary if:

π(x, n) = π(x,N) ∀x ∈ X, n ≥ N (2.2)

A 0-stationary policy is therefore stationary.

2.2. ε-optimal, N-stationary policies.

Theorem 2.1. If the functions rk are all bounded except for possibly one, then
for any ε > 0 there exists a �nite N and N -stationary, ε-optimal policy for the
weighted discounted problem.

A full proof can be found in [1], Theorem 2.4. The proof relies on the fact that
we can �nd an ε/4-optimal Markov policy for the weighted discounted process,
σ(x, n), and an ε/4-optimal stationary policy φ(x) for the criterion Vm, where rm
is not bounded (from below). We choose N such that:

|rk(x, a)|βNk
1− βk

≤ ε

4 (K − 1)
∀x ∈ X, a ∈ A(x), k 6= m (2.3)

And de�ne the N -stationary policy:

γ(x, n) =

{
σ(x, n) n < N

φ(n) n ≥ N
(2.4)

The ε-optimality of can now be proven by evaluating V (x;σ)− V (x; γ), keeping in
mid that σ is ε/4-optimal.

Note that this proof is not constructive in the sense that it does not tell us how to
compute γ (by not prescribing a computation of σ). If we assume that all the rk
are bounded, then there is a constructive result available.

Theorem 2.2. For a general weighted MDP with exponentially bounded discount
functions and bounded immediate reward functions, there exist exists a �nite N and
an N -stationary, ε-optimal policy, for any ε > 0 .
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Proof. (by �brute force�). Write down the criterion as:

V (x;π) = Eπx
∞∑
n=0

K∑
k=1

βnk g(n)rk (xn, an) , with 1 > β1 > . . . > βK > 0 (2.5)

De�ne R = sup
k,x,a,n

|g(n)rk(x, a)| <∞, and choose N such that:

RβNk
1− βk

≤ ε

2K
∀k ∈ {1, 2, . . . ,K} (2.6)

Now use Dynamic Programming2 to �nd a Markov policy σ(x, n) that is optimal
for the following Finite-Horizon Markov Decision Process:

VFH(x;π) ≡ Eπx
N−1∑
n=0

K∑
k=1

βnk g(n)rk (xn, an) (2.7)

Manufacturing the N -stationary, ε-optimal policy now involves simply using σ for
times before N , and arbitrarily choosing a stationary policy for later times, for
example:

γ(x, n) =

{
σ(x, n) n < N

σ(x,N) n ≥ N
(2.8)

Suppose is π(x, n) the optimal policy for the weighted discounted process, then:

V (x;π)− V (x; γ) = VFH(x;π)− VFH(x;σ)︸ ︷︷ ︸
≤0 from the optimality of σ

+ Eπx
∞∑
n=N

K∑
k=1

βnk g(n)rk (xn, an)

− Eγx
∞∑
n=N

K∑
k=1

βnk g(n)rk (xn, an) ≤ 2
K∑
k=1

RβNk ≤ ε (2.9)

Which proves the ε-optimality of the policy. �

Note that, asymptotically, in both Theorems 2.1 and 2.2, ε decreases exponentially
with N .

2Dynamic Programming is a recursive method to �nd optimal policies for �nite-horizon criteria
as in eq. 2.7. For more information, see chapter 4 in [5].
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2.3. N-stationary policies for �nite models. We will now present results on
the structure of optimal policies when both the state and action spaces are �nite.
In order to do so we need to make some more de�nition. The �rst is the conserving
set:

Γ1(x) ≡

a ∈ A(x) | V1(x) = r1(x, a) + β1

∑
y∈X

p (y|x, a)V1(y)

 (2.10)

Where Vk(x), V −k (x) are the maximum and minimum values of criterion k, respec-
tively, as de�ned in eq. 1.2. For every state x ∈ X, Γ1(x) is the set of actions which
may be taken in the optimal policy for criterion V1(x;π). This is proven in Lemma
3.1 of [1].

We now de�ne a set of states with suboptimal actions: X1 = {x ∈ X | Γ1(x) 6= A(x)}.
If X1 6= ∅, de�ne:

ε1 ≡ min
x∈X1,a∈A(x)\Γ1(x)

V1(x)− r1(x, a)− β1

∑
y∈X

p (y|x, a)V1(y)

 (2.11)

ε1 is the value of the smallest �mistake� one can make in the choice of a single
action, in regard to criterion V1.

If X1 = ∅ de�ne N1 ≡ 0. Otherwise de�ne:

N1 = min

{
n ∈ {0, 1, 2, . . .} | ε1 >

K∑
k=2

(
βk
β1

)n
max
x∈X

(
Vk(x)− V −k (x)

)}
(2.12)

We may now write down the following:

Lemma 2.3. Let X and A be �nite. If σ is an optimal Markov policy for the
weighted discounted problem, then for every n ≥ N1, σ(x, n) ∈ Γ1(x).

This Lemma is proven by contradiction using the de�nitions above. For more
details, see the proof of Lemma 3.3 in [1].

This means that after a �nite period of time, any optimal policy for the weighted
discounted problem is dominated by the optimal policy of the process with the
slowest decreasing discount factor, in the sense that any action in the optimal
policy must be also optimal for the �rst criterion alone.

If the set Γ1(x) is a singleton for all x ∈ X, then the lemma requires any optimal
policy to be N1-stationary. If it is not a singleton, we know that after time N1

our action sets reduce to A2(x) ≡ Γ1(x) and for every permissible policy, V1 will
attain its maximum value and thus be irrelevant. We may therefore solve a new
weighted discounted problem, now without the �rst factor and with the reduced
action space. Find Γ2(x), ε2, N2, de�ned similarly to their predecessors3 but for the
new problem, and go back to the beginning of the paragraph.

3The de�nitions will require minor adjustments. For example, the de�nition of Nk should now
read:
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This process will end either when the conserving set Γk(x) is a singleton for all
x ∈ X at some time k < K, or when we reach time K. In the latter case we may
choose a stationary policy arbitrarily from ΓK(x) for each x ∈ X, so in both cases
we will end up with N -stationary policies. The none-stationary part of the optimal
policy may then be computed using Dynamic Programming.

Thus we have outlined the proof of a signi�cant result:

Theorem 2.4. If the state and action spaces are �nite, then there exist an N -
stationary optimal policy for the weighted discounted problem, with N <∞.

For a more formal presentation and a proof, see Theorem 3.8 in [1]. The paper also
provides a more detailed version of the algorithm described (Algorithm 3.7), and
discusses its computational complexity.

Note that if either X or A is in�nite, ε1 might be equal zero while X1 6= ∅, and
then N = ∞, nullifying the result. This explains why we must limit ourselves to
the �nite case.

2.4. Notes on optimal policies in �nite discounted models. We would like
to gain further insight on what happens to optimal policies of �nite discounted
problems, as the discount factor varies. Assume we have such problem with discount
factor β, and a stationary policy φ. We may write:

V β(x;φ) = Eπx
∞∑
n=0

βnr (xn, an) = r (x, φ(x)) + β
∑
y∈X

p (y|x, a)V β(y) (2.14)

De�ning vector and matrix notation:

(Vφ(β))i ≡ V
β(i;φ) , (rφ)i ≡ r (i, φ(i)) , (Pφ)ij ≡ p (j|i, φ(i)) (2.15)

We can rewrite eq. 2.14 and obtain the value function explicitly:

Vφ(β) = rφ + βPφVφ(β)⇒ Vφ(β) = (I − βPφ)−1
rφ (2.16)

Lemma 2.5. Given a �nite discounted model, for any 0 < B < 1, and any two
deterministic stationary policies φ1, φ2, either Vφ1(β) = Vφ2(β) only on a �nite
number of values of β ∈ [0, B], or Vφ1(β) = Vφ2(β) for every β ∈ [0, 1).

Because of possible singularities in β = 1, the number of intersections between val-
ues of di�erent policies might approach in�nity as β goes to 1. However, demanding
β to lay in a closed interval contained in [0, 1) solves that problem, as will be shown
immediately.

Nk ≡ min

{
n ∈ {Nk−1, Nk−1 + 1, . . .} | εk >

K−k∑
i=2

(
β̃i

β̃1

)n
max
x∈X

(
Ṽi(x)− Ṽ −i (x)

)}
(2.13)

Where it is understood that β̃i, Ṽi, Ṽ
−
i refer to the new problem with K − k discount factors

(so that β̃i = βi+k−1), and appropriately restricted actions sets.
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Proof. Consider the following vector-valued of functions of β:

f(β) = Vφ1(β)− Vφ2(β) = (I − βPφ1)−1
rφ1 − (I − βPφ2)−1

rφ2 (2.17)

According to the Perron�Frobenius theorem, a stochastic matrix has no eigenvalues
on
[
B−1,∞

)
, and therefore f(β) is well-de�ned, with each element an analytic

function of β ∈ [0, B]. It is a well known result that on a compact set, an analytic
function either has a �nite number of zeroes or is identically zero, which proves the
lemma. �

Notice that in the case where Vφ1 = Vφ2 for every β ∈ [0, 1), both policies al-
ways yield the same results in the discounted case, making one of them somewhat
redundant. Let us therefore make the following de�nition:

A �nite discounted model for which no two stationary policies have identical value
functions for every β is called minimal.

Theorem 2.6. For a minimal model, and a discounted criterion with discount
factor 0 < β ≤ B < 1, for all but a �nite number values of β:

(i) Di�erent stationary policies have di�erent values.

(ii) There is only one optimal stationary policy.

Proof. Since the model is �nite, there is a �nite number of stationary policies (∏
x∈X |A(x)| ). It then follows from the minimality of the model and Lemma 2.5

that the overall number of intersections between two value functions of di�erent
policies is �nite. Hence the number of β's for which there is an intersection is �nite,
proving part (i).

When there is more then one optimal policy, the value of two di�erent policies must
be the same, and by (i) this can happen at most for a �nite number of β's, proving
(ii). �

Also, there is a simple su�cient (but not necessary) condition for minimality:

Condition 2.7. A �nite MDP is minimal if the reward function is 1-1 valued for
every x ∈ X.

Proof. We prove this by contradiction. Suppose the model is not minimal, then
there are two di�erent policies, φ1, φ2, such that Vφ1(β) = Vφ2(β) for every β ∈
[0, 1). In particular, this holds for β = 0:

rφ1 = (I − 0 · Pφ1)−1
rφ1 = Vφ1(0) = Vφ2(0) = rφ2 (2.18)

But since the policies are di�erent, there must be some x ∈ X so that and r (x, φ1(x))
6= r (x, φ2(x)), because of the 1-1 nature of the reward function. This contradicts
our assumption that there are two di�erent policy with the same value, and there-
fore the model is minimal. �

We may also �nd an equivalent condition to minimality, in terms of transition
matrices and reward vectors:
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Lemma 2.8. A �nite MDP is minimal if and only if for every two di�erent sta-
tionary policies φ1 and φ2, there exist n ≥ 0 such that Pnφ1

rφ1 6= Pnφ2
rφ2 .

Proof. Because the value functions are analytic in β (as discussed in the proof of
Lemma 2.5), their series expansions are well-de�ned:

Vφ(β) = (I − βPφ)−1
rφ =

∞∑
n=0

βnPnφ rφ (2.19)

By de�nition a model is minimal if for every two di�erent stationary policies φ1and
φ2, Vφ1(β0) 6= Vφ2(β0) for some β0 ∈ [0, 1). Because the functions are analytic, this
is equivalent to demanding that the expansions of Vφ1(β) , Vφ2(β) in β have at least
one di�erent coe�cient - which in light of eq. 2.19 means that there exists n ≥ 0
such that Pnφ1

rφ1 6= Pnφ2
rφ2 . �

Whether it is possible to derive a simpler yet equivalent condition for minimality
remains an open question.

2.5. Application to the weighted discounted problem. Suppose now that we
have a �nite model with a weighted discounted criterion of the form described in eq.
2.1. Assuming that the model is nice enough be minimal, we can apply Theorem
2.6 and observe that Γk(x) is in fact a singleton for any x ∈ X and any β1, outside
a �nite4 set of �bad� value.

On �rst inspection this would mean that if our model happened to have such a
�bad� value of β1, so that Γ1(x) is not a singleton for all x ∈ X, we can just replace
it with β1− δ, where δ is in�nitesimal. Since the change is very slight, we expect to
still get valid results, and now our job is much simpler since we only need to �nd
the optimal policy of V1 in order to have the stationary part of the optimal policy.

However, let us examine what happens to ε1. With β1, we had at least two optimal
policies, φ1, φ2, and with β1 − δ, only φ1 remained optimal. However, since δ is
in�nitesimal, Vφ1(β − δ) − Vφ2(β − δ) is in�nitesimal as well, and by de�nition
ε1 ≤ Vφ1(β − δ)− Vφ2(β − δ). This means that as δ goes to zero, ε1 goes to zero as
well, and N1 tends to in�nity.

In conclusion, for many weighted discounted models we may be able to avoid itera-
tion of the optimal policy computation algorithm by �in�nitesimally� changing β1.
However, the price of this in�nitesimal modi�cation will be an �in�nite� increase in
the N of the N -stationary optimal policy, corresponding to an �in�nite� increase
in the computational e�ort.

4Assuming the relevant values of β1 are bounded from above by some arbitrary β0 < 1.



MARKOV DECISION PROCESSES WITH GENERAL DISCOUNT FUNCTIONS 12

3. General weighted criteria

3.1. An intuitive hypothesis. Consider a �nite Markov Decision process with
criterion:

V (x;π) = Eπx
∞∑
n=0

K∑
k=1

fk(n)rk (xn, an) (3.1)

Also, assume that the functions have the following bounds:

β̄nk ≥ fk(n) ≥ βn
k
and, 1 > β̄1 ≥ β1

> β̄2 ≥ . . . (3.2)

Note that this is a stronger condition than the previously assumed exponential
bounds, and we may write fk(n) = β̄nk gk(n), with 0 < g(n) ≤ 1 for every n.

Since each of thefk is strictly larger than the functions which succeed it, and all
the functions are exponentially bounded, it is natural to expect that like in the
weighted exponential case, the (not necessarily stationary) optimal policy of f1 will
dominate the optimal policy of the entire process in the long run. Next in order of
priority should come the optimal policy for f2 in the restricted action space, and
so on.

In order to formalize this hypothesis, we need to de�ne an equivalent of the con-
serving set in the case where the optimal policy is not stationary. First we de�ne
the value function of the �rst criterion, shifted by time N :

V N1 (x;π) = Eπx
∞∑
n=0

f1(n+N)r1 (xn, an) (3.3)

And the appropriate shifted optimal value:

V N1 (x) = sup
π

Eπx
∞∑
n=0

f1(n+N)r1 (xn, an) (3.4)

Notice that for f1(n) = βn we have: V N1 (x) = βNV1(x). Also notice that there
exists a (Markov) policy π(x, n) such that π(x, n + N) achieves V N1 (x) for any
N ≥ 0. Such policy is called persistently optimal. For more information, see ? ].

We de�ne a time-dependent conserving set:

Γ1(x, n) ≡

a ∈ A(x) | V n1 (x) = r1(x, a) +
∑
y∈X

p (y|x, a)V n+1
1 (y)

 (3.5)

So similarly to the discounted case, the set Γ1(x, n) is the set of permissible actions
for the optimal policy of criterion V1, at time n. If f1(n) = βn then Γ1(x, n) = Γ1(x)
for every x ∈ X and every time n.

We may now write down an equivalent to Lemma 2.3:
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Conjecture 3.1. Let σ be an optimal Markov policy for a �nite model with a
general weighted criterion, with discount functions that obey the bounds in eq. 3.2.
There exist N <∞ such σ(x, n) ∈ Γ1(x, n) that for every x ∈ X, n ≥ N .

However, this hypothesis turns out to be false, as shall be demonstrated immedi-
ately.

3.2. A counterexample. Consider the following model:

X = {d, u} A(d) = {s,m} A(u) = {s} (3.6)

p (d|d, s) = p (u|d,m) = p (u|u, s) = 1

Since the is no choice of action in state u, the model allows only two stationary
policies:

πs when down, stay there.
πm when down, move up.

We de�ne the immediate reward functions r1 and r2:

r1 (d, s) = 6 r1 (d,m) = 0 r1 (u, s) = 8 (3.7)

r2 (d, s) = 0 r2 (d,m) = 0 r2 (u, s) = 100

And the discount functions:

f1(n) = (0.75n + 0.25n) /2 , f2(n) = 0.25n (3.8)

We have: 0.75n ≥ f1(n) ≥ 0.5n > 0.25n ≥ f2(n) ≥ 0.25n, so the functions obey the
bounds speci�ed in eq. 3.2. For the general weighted criterion, let us �nd Γ1(d, n)
as de�ned in eq. 3.5. V1 is clearly a weighted discounted criterion, and therefore
must have an N -stationary optimal policy. This means that Γ1(d, n) = Γ1(d,N)
for all n ≥ N and some N <∞. Moreover, we know how to �nd Γ1(d,N), Denote:

V1,1(d;π) = Eπd
∞∑
n=0

0.75nr1 (xn, an) , V1,2(d;π) = Eπd
∞∑
n=0

0.25nr1 (xn, an)

The numbers were rigged so V1,1(d;πs) = V1,1(d;πm) = 12, and therefore the �rst
discount factor adds no restrictions to the stationary part of the optimal policy of
V1. However, V1,2(d;πs) = 4 > 4/3 = V1,2(d;πm), which means that Γ1(d, n) = {s}
for su�ciently large n. According to our hypothesis, for even more su�ciently large
n, the optimal policy will have to have its actions belong to Γ1(d, n), which happens
to be a singleton.

Therefore, if the hypothesis is correct, there must be an N -stationary optimal policy
for this model and the general weighted criterion, with πs as its stationary part.
Suspiciously enough, this result does not depend at all on our choice of r2.

Let us rewrite our criterion:
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V (x;π) = Eπx
∞∑
n=0

K∑
k=1

fk(n)rk (xn, an) (3.9)

= Eπx
∞∑
n=0

0.75n
r1 (xn, an)

2
+ Eπx

∞∑
n=0

0.25n
(
r2(xn, an) +

r1 (xn, an)
2

)
Evidently in this case the problem may be viewed as discounted itself. Again the
�rst discount factor does not a�ect the stationary part of the optimal policy, but
now the policy πm is clearly preferable for the second factor. We therefore conclude
this model does indeed have an optimal N -stationary policy, but that the stationary
part of this policy is πm. This contradicts the hypothesis and thus proves it wrong.

3.3. Discussion. Our counterexample shows that general weighted models with
the bounds in eq. 3.2 fail to capture the essential �hierarchical� property of the
weighted discounted models. In the generalized case, a discount function may
contain parts that act as �tie-breakers�, in that they create variations in the values
of what would otherwise be identically-valued policies. When we have �tie-breakers�
that decay faster, or as fast as the subsequent discount functions, the overly �ne-
tuned optimal policy for one discount function might not dominate when the rest
of the functions are taken into account.

It is possible to �nd conditions on the discount functions that actually work, at
the cost of their elegance. Suppose we have a general weighted criterion with the
current bounds, and in analogy to the weighted discounted case de�ne: X1(n) =
{x ∈ X | Γ1(x, n) 6= A(x)} Assuming the non-degenerate case where X1(n) 6= ∅,
de�ne5:

ε1(n) = β−n
1

min
x∈X1,a∈A(x)\Γ1(x)

V n1 (x)− r1(x, a)−
∑
y∈X

p (y|x, a)V n+1
1 (y)


(3.10)

N1(n) = min

{
N ∈ {0, 1, . . .} | ε1(n) >

K∑
k=2

fk(N)
βN

1

max
x∈X

(
Vk(x)− V −k (x)

)}
(3.11)

N1 = max
n

N1(n) (3.12)

It is straight-forward to see that N1 is well-de�ned and �nite when ε1(n) ≥ ε1for
some ε1 > 0 and all n.6 Under this condition, one can follow through the steps the
proof of Lemma 3.3 in [1] and arrive at a proof of the hypothesis, with the slightly
unseemly condition added.

5When X1(n) = ∅, de�ne ε1(n) =∞.
6In the counterexample it is possible to show that ε1(n) behaves asymptotically as 0.25n, and

thus N1 =∞ for this model and criterion.
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4. Results for a single generalized discount function

4.1. Representation as an in�nite sum of exponential functions. Consider
model with �nite X and A, and a weighted discounted criterion with rk (x, a) =
ckr (x, a), where the ck are some real constants. Also, let the number of discount
factors go to in�nity, yielding the following criterion:

V (x;π) = Eπx
∞∑
n=0

f(n)r (xn, an) with, f(n) =
∞∑
k=1

ckβ
n
k and, β1 > β2 > · · · (4.1)

This is a MDP with a generalized (single) discount function criterion, which is well

de�ned as long as the series
∞∑
k=1

ckβ
n
k converges for each n. Usually it also makes

sense to normalize the discount function so that f(0) =
∞∑
k=1

ck = 1.

While it is possible to show, using function-theoretical arguments, that any time
series f(n) may be represented in this fashion, useful results will add stronger
convergence condition on the de�ning sum.

4.2. Application of results for weighted discounted criteria. Going back to
the weighted discounted representation, we would like to use the results of chapter
2 to characterize the optimal policy for this criterion. As in chapter 3, the �rst step
would be to generalize Lemma 2.3.

Since they depend only on the �rst discount factors, the de�nitions of Γ1(x) and
ε1 remain unchanged. The de�nition of N1 should now be:

N1 = min

{
n ∈ {0, 1, . . .} | ε1 >

∞∑
k=2

(
βk
β1

)n
max
x∈X

(
Vk(x)− V −k (x)

)}
(4.2)

De�ne:

S(n) ≡
∞∑
k=2

(
βk
β1

)n
max
x∈X

(
Vk(x)− V −k (x)

)
(4.3)

Since max
x∈X

(
Vk(x)− V −k (x)

)
≥ 0 for all k, S(n) =∞ or is �nite for every n, and is

thus well de�ned. N1 is well de�ned if S(N) −→
N→∞

0.

Lemma 4.1. Either S(n) =∞ for every n ≥ 0 or S(n) −→
n→∞

0.

Proof. The �rst condition clearly excludes the the latter. Conversely, if S(N0) <∞
for some N0 <∞, then for a given ε > 0 we can choose K so that:

SK,∞(N0) ≡
∞∑
k=K

(
βk
β1

)N0

max
x∈X

(
Vk(x)− V −k (x)

)
<
ε

2
(4.4)
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Denote SK(n) ≡ S(n) − SK,∞(n). Since SK(n) is a �nite sum of exponentially
decreasing functions, SK(n) −→

n→∞
0 and we may choose N so that SK(N) < ε/2.

Since all the summands in S(n) are positive, SK,∞(N) ≤ SK,∞(N0) for N ≥ N0.
Putting it all together, we get:

S(N) = SK(N) + SK,∞(N) ≤ SK(N) + SK,∞(N0) < ε

This proves that S(n) −→
n→∞

0. �

Denote:

R+ = max
x∈X,a∈A(x)

r(x, a) , R− = min
x∈X,a∈A(x)

r(x, a) (4.5)

For ck > 0, for each x and k we have: Vk(x) ≤ R+/ (1− βk) and Vk(x) ≥
R−/ (1− βk), and by applying similar considerations to the case ck < 0, we con-
clude that:

∀k : max
x∈X

(
Vk(x)− V −k (x)

)
≤ |ck|

R+ −R−

1− βk
≤ |ck|

R+ −R−

1− β1
(4.6)

And therefore:

S(n) ≤ β−n1

1− β1

∞∑
k=2

βnk |ck| (4.7)

Let us call a function f : {0, 1, . . .} → R exponentially representable if there exist
sequences {ck}∞k=1 and {βk}∞k=1 such that:

• {βk}∞k=1 is positive, decreasing and β1 < 1.
• f(n) =

∑∞
k=1 ckβ

n
k , and the sum converges absolutely, starting from some

time N <∞.

From Lemma 4.1 and the above considerations it follows that N1 is well-de�ned
if f(n) is exponentially representable. Moreover, we may easily �nd a model so
that for any discounted criterion the di�erence between the maximal and minimal
attainable values is 1, and therefore for any k, |ck| = maxx∈X

(
Vk(x)− V −k (x)

)
.

For such a model, S(N) = β−N1

∑∞
k=2 β

N
k |ck| and we may therefore say that for a

given discount function, N1 is well-de�ned for any model, if and only if the function
is exponentially representable.

When N1 is well de�ned, we can go on to prove Lemma 2.3 for the in�nite case,
exactly like in the �nite case. The resulting generalized Lemma 2.3 should read:

Lemma 4.2. Consider a �nite Markov Decision Process with an exponentially
representable discount function. If σ is an optimal Markov policy for this problem,
then for every n ≥ N1,σ(x, n) ∈ Γ1(x) , with as Γ1(x) de�ned in eq. 2.10, and N1

as de�ned in eq. 4.2.
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It is clear that any exponentially representable function is exponentially bounded.
However, the condition turns out to be considerably more restrictive. This will be
further discussed in the Example 4.2.

The next natural step will be to iterate this result for the rest of the discount factors
and to end up with an algorithm for the �nding of the optimal policy of somewhat
general criteria. However, here there is another pitfall, since the algorithm will not
halt unless there is some K < ∞ so that the (appropriately restricted) conserving
set Γ1(x) will be a singleton for all x ∈ X.

However, the notion of minimality (de�ned in section 2.4) and our conclusions on
the structure of conserving sets for minimal models will enable us to write:

Theorem 4.3. Consider a �nite and minimal Markov Decision Process with an
exponentially representable discount function. There exists an N -stationary optimal
policy for this problem, with N <∞. This policy can be found using the algorithm
in section 2.3, which is guaranteed to halt.

Proof. Lemma 4.2 ensures us that the calculations in the algorithm are meaningful.
In the kth iteration of the algorithm, the restricted conserving set Γk(x) is not a
singleton for every x ∈ X only if there are two di�erent stationary policies that

attain the same value for the criterion V (x;π) = Eπx
∞∑
n=0

βnk r (xn, an). According to

Theorem 2.6, this can happen only for a �nite number of βk's. Therefore, at some
time K <∞ the conserving set must become a singleton and the algorithm halts,
providing an NK-stationary optimal policy. �

4.3. Examples. We now review three examples that will clarify the results of this
chapter.

Example 4.1. Decision making.

As mentioned in the introduction, discount functions for which f(n + 1)/f(n) is
increasing are useful in models of decision making. We give an example of a function
of the required type, that submits to the conditions of Theorem 4.3. For some
0 < β0 < 1, choose βk = βk0 and ck = 1/ (e− 1) k!. Then:

f(n) =
1

e− 1

∞∑
k=1

1
k!
(
βk0
)n

=
eβ

n
0 − 1
e− 1

(4.8)

For this function f(n + 1)/f(n) is increasing. Perhaps the simplest way to see it
is to con�rm that [log f(x)]′′ > 0 for every x > 0.7 Also, since the ck are positive,
Theorem 4.3 may be applied, with possibly interesting results.

Note that the function is exponentially bounded ( (e− 1)−1
βn0 ≤ f(n) ≤ βn0 )8, as

is expected. Also, note that the hyperbolic functions mentioned in the introduction

7This is a simple exercise in calculus: [f(x+ 1)/f(x)]′ > 0⇔ f ′(x+ 1)/f(x+ 1) > f ′(x)/f(x)

⇔ [log f(x+ 1)]′ > [log f(x)]′ ⇔ [log f(x)]′′ > 0.
8The lower bound is derived from eβ

n
0 ≤ 1 + βn0 , which is easily obtained by considering the

Taylor series of ex. For the upper bound, notice that f(0) = β 0
0 = 1 and that f ′(x) < (β x0 )′, for

every x > 0.
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are not exponentially bounded, and we will therefore not be able to analyze them
using our results.

Example 4.2. Learning curves

We saw in the introduction that a criterion with constant discounting and learning
gives a discount function of the form f(n) = βng(n), where g(n) is the learning
curve. It follows that a simple exponential learning curve can be analyzed as an
ordinary weighted discounted criterion. Moreover, any bounded function of the
form g(n) = β−nf(n), with f exponentially representable can be shown to behave
asymptotically as c1 + c2β

n
l , where c1, c2 are real constants and 0 < βl < 1. n

This unfortunately means we will not be able to analyze the more common case
of power law learning. However, we are still able to generate a variety of possible

learning curves. For example, let ck = (1− p) pk−1 and βk = β 1+bk

1+b with 0 < p, β <
1. Then:

f(n) = (1− p)βn(1 + b)−n
∞∑
k=1

pk−1
(
1 + bk

)n
(4.9)

= βn(1 + b)−n
n∑
i=0

(
n
i

) ∞∑
k=1

(1− p) pk−1
(
bi
)k

= βn(1 + b)−n
n∑
i=0

(
n
i

)
1− p
b−i − p

And so:

g(n) = (1 + b)−n
n∑
i=0

(
n
i

)
1− p
b−i − p

(4.10)

This leaning curve decreases monotonically from 1 to 1− p. For small values of b it
does so almost exactly like (1− p) + p(1 + b)−n, but for larger values the functions
are distinct.

Example 4.3. A monotonic discount function with no N-stationary optimal policy.

So far all the functions we discussed had an N -stationary optimal policy. It is reas-
suring to know that there are functions for which, under some models, the optimal
policy will have no stationary part. Moreover, when a discount function decreases
monotonically it seems natural for it to produce a behavior that is monotonic, or
stationary, in some sense. However, this intuition is not true, and we provide an
example of such a case.

Consider the function f(n) = βnh(n), with some 0 < β < 1 and:

h(n) =

{
2 nmod 6 = 0
1 otherwise

= [2, 1, 1, 1, 1, 1, 2, 1, 1, 1, . . .] (4.11)
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h(n) is periodic with period 6. From our discussion in the previous example we
already know that f(n) is not exponentially representable, because h(n) does not
have asymptotic exponential behavior.

Now consider the following (deterministic) model:

X = {1, 2, 3, 4, 5} , A(1) = {a1, a2} , A(2) = A(3) = A(4) = A(5) = {a} (4.12)

p (2|1, a1) = p (3|1, a2) = p (4|3, a) = p (5|4, a) = p (1|5, a) = p (1|2, a) = 1

An illustration of the state space and possible transitions.

With the immediate reward function:

r (1, a1) = 3 , r (1, a2) = 4 , r (2, a) = r (3, a) = r (4, a) = r (5, a) = 0 (4.13)

Suppose this MDP has an N -stationary optimal policy, σ(1, n) (the rest of the
states do not require decisions). Without loss of generality we may assume σis
deterministic9, and therefore that there exists a time M0 ≥ N such that xM0 = 1
w.p. 1, because of the deterministic nature of the model. Also, xM0+4 = xM0+8 = 1
w.p. 1, since at those times the policy is stationary and must repeatedly use only
one of the actions. For x0 = 1 we know M0 is even because every return to state 1
takes either 2 or 4 steps, and therefore either M0, M0 + 4 or M0 + 8 divides by 6.
We may thus choose M ≥ N such that xM = 1 w.p. 1 and h(n + M) = h(n) for
every n ≥ 0.

Let σM (1) ≡ σ(1, n+M), a stationary policy. We may write:

V (1;σN ) = Eσ
M

1

∞∑
n=0

βnh(n)r (xn, an) = β−MEσ1
∞∑

n=M

βnh(n)r (xn, an) (4.14)

By the optimality principle, σis optimal for the criterion on the right hand side,
which means that the policy σM is optimal for the original criterion. This shows
that if this problem has an N -stationary optimal policy, it also has a stationary
optimal policy.

Let σ1(1) = a1, σ2(1) = a2 be the two stationary policies in this model, and consider
the periodic Markov policy:

9Given a randomized N -stationary optimal policy, it is possible to show that there is also a
deterministic N -stationary optimal policy.
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π(1, n) =

{
a2 nmod 6 = 0
a1 nmod 6 = 4

(4.15)

Let β = 0.45. The values of the 3 policies will then be:

V (1;π) =
8 + 3β4

1− β6
≈ 8.19 (4.16)

V (1;σ1) =
6 + 3β2 + 3β4

1− β6
≈ 6.79 (4.17)

V (1;σ2) =
8 + 4β4 + 4β8

1− β12
≈ 8.17 (4.18)

This shows that for this problem, both stationary policies are suboptimal. Thus the
existence of an N -stationary optimal policy is prohibited, since our considerations
have shown that it will result in an optimal stationary policy. Since we chose β <
1/2, h(n) > βh(n+1) for every n. The discount function is therefore monotonically
decreasing, and for some models does not have an N -optimal policy, as required.
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