Home Assignment 2

Weak convergence. Conditional expectation. Regular conditional distributions.

Submit until: April 6

1. Weak convergence:

- (a) Let X_1, X_2, \ldots , be i.i.d. N(0,1) (standard normal). Let $M_n = \max_{m \leq n} X_m$.
 - i. By using the following inequalities, that hold for all x > 0:

$$(x^{-1} - x^{-3})e^{-x^2/2} \le \int_x^\infty e^{-y^2/2} dt \le x^{-1}e^{-x^2/2},$$

show that for any θ ,

$$\lim_{x \to \infty} \frac{P\left(X_i > x + \frac{\theta}{x}\right)}{P(X_i > x)} = e^{-\theta}.$$

ii. For n = 1, 2, ..., let b_n be the unique number with $P(X_i > b_n) = 1/n$. Show

$$\lim_{n \to \infty} P(b_n(M_n - b_n) \le x) = \exp(-e^{-x}).$$

- iii. Show that $b_n \sim (2 \log n)^{1/2}$ and conclude $M_n/(2 \log n)^{1/2} \to 1$ in probability.
- (b) Let $X_n, 1 \leq n \leq \infty$ be integer valued. Show that $P_{X_n} \Rightarrow P_{X_\infty}$ if and only if $P(X_n = m) \to_{n \to \infty} P(X_\infty = m)$ for all m.
- (c) Show that if $X_n = (X_n^1, \dots, X_n^n)$ is uniformly distributed over the surface of the sphere of radius \sqrt{n} in \mathbb{R}^n then $P_{X_n^1} \Rightarrow N(0,1)$. Hint: Let Y_1, Y_2, \dots be i.i.d. N(0,1) and define $X_n^i = Y_i(n/\sum_{m=1}^n Y_m^2)^{1/2}$.

2. Conditional expectation:

(a) Let $Var(X|\mathcal{F}) = E(X^2|\mathcal{F}) - E(X|\mathcal{F})^2$. Show that

$$Var(X) = E(Var(X|\mathcal{F})) + Var(E(X|\mathcal{F})).$$

- (b) Show that if $E(Y|\mathcal{G}) = X$ and $EX^2 = EY^2 < \infty$ then X = Y a.s.
- (c) Give an example on $\Omega = \{a, b, c\}$ in which

$$E(E(X|\mathcal{F}_1)|\mathcal{F}_2) \neq E(E(X|\mathcal{F}_2)|\mathcal{F}_1).$$