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Abstract

We consider reinforcement learning in the parame-
terized setup, where the model is known to belong
to a parameterized family of Markov Decision Pro-
cesses (MDPs). We further impose here the as-
sumption that set of possible parameters is finite,
and consider the discounted return. We propose
an on-line algorithm for learning in such parame-
terized models, dubbed the Parameter Elimination
(PEL) algorithm, and analyze its performance in
terms of the the total mistake bound criterion (also
known as the sample complexity of exploration).
The algorithm relies on Wald’s Sequential Proba-
bility Ratio Test to eliminate unlikely parameters,
and uses an optimistic policy for effective explo-
ration. We establish that, with high probability, the
total mistake bound for the algorithm is linear (up
to a logarithmic term) in the size of the parameter
space, independently of the cardinality of the state
and action spaces.

1 Introduction
In the Reinforcement Learning (RL) framework, an agent in-
teracts with a partially known environment with purpose of
maximizing some numerical utility measure based on obser-
vations of the environment state and reward signals. ([SB98]).
The environment is often modeled as a Markov Decision
Process (MDP) with finite state and action spaces. One pos-
sible goal for the agent is to learn an (almost-)optimal control
policy as quickly as possible. Alternatively, in an on-line
setting where learning is performed during normal system
operation, the agent’s goal may be to maximize the actually
obtained reward or to minimize of suboptimal moves relative
to the optimal (non-learning) policy.

A fundamental issue that greatly affects the convergence
rate of RL algorithms is the efficient exploration of the state
and action spaces. In an on-line setting, in particular, the
agent faces the well-known exploration-exploitation trade off:
whether to keep trying to acquire new information (explore),
or to act consistently with accumulated information to max-
imize reward (exploit). An efficient solution of this trade off
is essential to obtain acceptable convergence guarantees.

Several different measures of the convergence rate were
proposed for the on-line RL problem. These include the

number of exploratory episodes [KS02, BT02], the number
of time steps the agent follows a sub-optimal action, and the
number of times the agent spends following a non-optimal
policy [Kak03]. We shall consider here the latter two, and
refer to them as the action-mistake count and policy-mistake
count (also known as the sample complexity of exploration),
respectively. A learning algorithm is said to be PAC (Prob-
able Approximately Correct) if its relevant convergence-rate
metric is polynomial in the model size parameters with high
probability.

In recent years several PAC algorithms were introduced.
These include the R-max algorithm [BT02], further analyzed
in [Kak03], the MBIE algorithm [SL05] and the Delayed
Q-learning algorithm [SLW+06]. These algorithms do not
use any prior knowledge on the model parameters, but rather
estimate empirically either the transition probabilities or di-
rectly the Q-function for all state-action pairs. As a result,
their convergence-rate metrics are at least proportional to the
cardinality of the state and action spaces, which may not be
acceptable for large problems. Possible approaches to han-
dle such problems include various approximation schemes,
and the use of prior knowledge about the system to enhance
learning performance.

An effective use of structural knowledge about the sys-
tem has been demonstrated for factored MDPs in [KK99].
Here we consider the case where a parameterized model of
the system in question is available. The potential problem
simplification offered by such models can be demonstrated
through a simple queueing example. Consider a single-server
queue with buffer and server capacity of 100 customers. As-
sume that the arrival and service processes are Poisson pro-
cesses with rate parameters λ and µ, respectively. In this
model, all transition probabilities are determined by two pa-
rameters only. Therefore, although the cardinality of the
state space is 100, it is enough to estimate only two parame-
ters in order to find an optimal policy. This observation turns
out to be even more acute in case of a queuing system that
contains several such queues, say N > 1. While the cardi-
nality of the state space grows exponentially to 100N , which
makes learning on a per-state basis infeasible, the number of
parameters associated with arrival/service processes grows
linearly to 2N .

Parameterized control models, in which all model param-
eters are defined in terms of a smaller parameter vector, have
been extensively studied in the context adaptive control, and
in particular stochastic adaptive control [KV98]. Several im-



portant issues were raised and formalized in this context, in-
cluding the closed-loop identifiability problem [Man74] and
the principle of “optimism in face of uncertainty”[KB82].
However, the results of this research are focused mostly on
asymptotic convergence results, rather than on polynomial
convergence bounds.

Our focus in this paper is on parameterized system mod-
els with a finite parameter space. We further consider the
discounted reward problem. We present an efficient RL al-
gorithm for this case, called the Parameter Elimination (PEL)
algorithm, and show that its total mistake bound grows lin-
early (up to logarithmic terms) in the size of parameter space,
and independently of the size of the state and action spaces.
Essentially, the PEL algorithm operates as follows. It main-
tains a list of plausible parameters J , which is initially equal
to the entire parameter set. Parameters are then eliminated
one-by-one from the plausible set using the Sequential Prob-
ability Ratio Test (SPRT) [Wal52] based on the observed his-
tory. As for action selection, at every step t an “optimistic”
parameter (relative to the current state) is selected from the
set J . This parameter is the one that maximized the (dis-
counted) value function from the current state. The current
action is then selected as the optimal one for the optimistic
parameter.

While the finite parameter case may be considered a sim-
plified abstraction, it can serve as an approximation to the
continuous parameter case through discretization. A detailed
treatment of this approach falls beyond the scope of the present
paper.

The rest of the paper is organized as follows. In Sec-
tion 2 we present the model along with some definitions and
notations. Section 3 defines the main performance metrics
considered in this paper. In Section 4 we present the PEL
algorithm and provide our main performance bounds for this
algorithm. Section 5 is devoted to the proof of these results.
In Section 6 we summarize the results obtained so far and
discuss future work.

2 Model Formulation

An MDP M is specified by a five-tuple 〈S,A, R, p, η〉, where
S is a finite state space, A is a finite action space, R is a finite
reward set, p : S × A → ∆(S) is the transition probability
function and η : S × A → ∆(R) is the reward probability
function. Here ∆(S) denotes the set of probability vectors
over the set S, and similarly for ∆(R). Given that at the
time step t the state is st ∈ S and the action is at ∈ A,
the agent receives a random reward rt ∈ R with probability
η(rt|st, at) and moves to state st+1 ∈ S with probability
p(st+1|st, at).

The observed history until time t is the sequence ht
4
=

{s0, a0, r0, ..., st−1, at−1, rt−1, st}. A (deterministic) deci-
sion rule is a mapping from history to action, namely πt :
Ht → A, where Ht = (S × A × R)t × S. A policy A is
a collection of decision rules {πt}∞t=0 so that at = πt(ht).
Note that a (deterministic) learning algorithm is such a pol-
icy. Given an initial state s, the policyA induces a stochastic
process (st, at, rt)∞t=0 with probability measure PA,s·. The
expectation operator corresponding to this measure is de-
noted by EA,s.

Let V A(s)
4
= EA,s {∑∞

t=0 γtrt} denote the discounted
return for policy A from state s. Here 0 < γ < 1 is the dis-
count factor, which we fix from now on. We refer to V A(s)
as the value function for policy A. A policy A = {πt}∞t=0
is called stationary if πt = π for all t, and, π : S → A is
a function of the current state only. We hence use π to de-
note both the mapping π : S → A and the corresponding
stationary policy. It is well known (e.g., [Put94]) that there
exists a deterministic stationary policy π∗ which is optimal in
sense that V π∗(s) ≥ V A(s) for any state s and any policyA.
Denote the corresponding optimal value function as V ∗(·).
Further define the action-value function (or Q-function) for
state-action pair (s, a) as

Q∗(s, a) = r̄(s, a) +
∑

s′∈S

p(s′|s, a)V ∗(s′),

where r̄(s, a)
4
=

∑
r∈R rη(r|s, a) denotes an expected re-

ward for the state-action pair (s, a). The following equality,
known as Bellman equation, holds for any stationary policy
π and state s ∈ S:

V π(s) = r̄(s, π(s)) + γ
∑

s′∈S

V π(s′)p(s′|s, π(s)), (2.1)

while the optimal value function of policy π∗(s) satisfies

V ∗(s) = max
a

Q∗(s, a) ≡ Q∗(s, π∗(s)).

In this paper we assume that the true MDP belongs to
a known family {Mθ}θ∈Θ of parameterized models, where
Θ is a finite parameter set. All models in the given family
share the same action, reward and state spaces, while their
transition and reward probabilities depend on the parameter
θ ∈ Θ, i.e., Mθ =< S,A, R, pθ, ηθ >. For each MDP Mθ

we denote by π∗θ , V ∗
θ and Qθ an optimal stationary policy,

the optimal value function and the Q-function, respectively.
In case the optimal policy is not unique, we henceforth fix
one (arbitrary) selection. The actual model M is thus corre-
sponds to some parameter θ0 ∈ Θ, namely M = Mθ0 . We
refer to θ0 as the true parameter.

3 Performance Metrics
An effective measure of on-line learning efficiency in an RL
problem is the number of time steps the algorithm prescribes
sub-optimal control. We consider two possible criteria for
sub-optimality at a given step. The first criterion examines
the expected discounted return from the present step onward
relative to the optimal one. The second criterion concerns
sub-optimality of the action taken at that step. We next intro-
duce these two criteria and show that they are closely related.

To define the first criterion, we introduce the notion of
the algorithm’s discounted return from the current step on.
Denote by A the policy of the learning algorithm. Let hτ be
the observed history up to time τ , and denote by

V A(hτ )
4
= EA,s0





∞∑

j=τ

γj−τrj

∣∣∣∣∣∣
hτ





the value of the policy A starting from time τ . The policy
mistake count is defined as follows:



Definition 1 Let ε be a positive number. The time step t
in said to be an ε-suboptimal step if V A(ht) < V ∗(st) −
ε. Equivalently, we say that the learning agent follows an
ε-suboptimal policy at time t. The policy-mistake count
(PMC) of a learning algorithm A is defined as

PMC(ε)
4
=

∞∑
t=0

I
{
V A(ht) < V ∗(st)− ε

}
.

The PMC counts the total number of ε-optimal time steps
in the sense of Definition 1. This criterion was introduced
in [Kak03], where it is also called the sample complexity of
exploration, and further studied in [SL05, SLW+06].

We now proceed to define the second criterion - the action-
mistake count (AMC). Recall that an optimal action a∗ =
π∗(s) in state s satisfies Q∗(s, a∗) = V ∗(s). Hence the dif-
ference V ∗(s) − Q∗(s, a) quantifies the effect of taking a
single suboptimal action a, and thereafter proceeding opti-
mally. The AMC measures the total number of ε-suboptimal
state-action pairs visited by algorithm during its operation.

Definition 2 For any ε ≥ 0, a state-action pair (s, a) is
called ε-suboptimal if Q∗(s, a) < V ∗(s) − ε. The action-
mistake count of a learning algorithm is defined as

AMC(ε)
4
=

∞∑
t=0

I {Q∗(st, at) < V ∗(st)− ε} .

Note that for ε small enough AMC(ε) = AMC(0) (due
to the finiteness of the state and action spaces), so that only
non-optimal actions are counted.

The AMC is dominated by the PMC as the next lemma
indicates.

Lemma 3 For any ε > 0 and learning algorithm A the fol-
lowing inequality holds almost surely:

AMC(ε) ≤ PMC(ε).

Proof: Since at is the action chosen byA at time t, it follows
by definition of Q∗(s, a) that V A(ht) ≤ Q∗(st, at).

It follows that any upper bound for the PMC also applies to
AMC. For this reason we shall focus in the following on the
PMC alone. We can now define the corresponding notion of
a PAC algorithm in the following way:

Definition 4 A learning algorithm A is called PMC-PAC
(or just PAC) if, for any positive ε and δ, its policy-mistake
count (action-mistake count) is polynomial in (|Θ| , ε−1, δ−1,
(1− γ)−1) with probability of at least (1− δ).

4 The PEL algorithm
In discrete parameterized models, the learning problem may
be reduced to the identification of the true parameter or, at
least, a parameter that leads to a near-optimal control policy
for the true model. Equivalently, one may try to eliminate all
other parameters from the set of optional parameters.

Let Rmax denote an upper bound on the one-step ex-
pected reward, namely

Rmax ≥ max
(s,a)∈S×A

max
θ∈Θ

{r̄θ(s, a)}.

Define the log-likelihood function of the observation
(st−1, at−1, rt−1, st) at time step t as

lt(θ) = log pθ(st|st−1, at−1) + log ηθ(rt−1|st−1, at−1).
(4.1)

The cumulative log-likelihood is then Gt(θ) =
∑t

i=1 lt(θ).
The PEL algorithm proceeds as follows (see Algorithm

1 for details). As an input, the algorithm requires the finite
family of possible MDPs {Mθ}θ∈Θ, with common state, re-
ward and action spaces. The value function V ∗

θ (·) and the
optimal policy π∗θ(·) for each model can be calculated using
one of the standard algorithms, i.e., value iteration, policy
iteration or linear programming (see [Put94]). An accuracy
parameter ε and an allowed probability of error δ are also
provided as input.

The algorithm maintains a list of plausible parameters
Jt throughout its execution. Initially, all parameter values
are considered plausible and then they are eliminated one
by one. The elimination step is based on the Sequential
Probability Ratio Test (SPRT), namely, comparing the log-
likelihood ratio Gt(θi)−Gt(θj) to a given threshold Gth >
0. If at time step t there exist parameters θi, θj ∈ Jt so
that G(θi) − G(θj) > Gth then θj is eliminated. Equiva-
lently, we first find θ̂, the most likely parameter in the set
Jt, and then compare the likelihood of all other plausible
parameters to G(θ̂). As the error probability of each elim-
ination can be upper bounded by e−Gth , the selection of
Gth = log

[
3(|Θ|−1)

δ

]
yields cumulative error probability of

all eliminations less than δ
3 (see subsection 5.4 for details).

The exploration-exploitation tradeoff is addressed using
the so-called “optimism in face of uncertainty” principle. At
each time step t, the PEL algorithm selects an “optimistic”
action in the following sense. First, the algorithm selects
the parameter θ(t) that maximizes the value function V ∗

θ (st)
for the current state st, among all parameters in the plau-
sible set Jt. The selected action is then the optimal action
given θ(t), i.e., at = π∗θ(t)(st). We note that unlike some
PAC algorithms such as E3 and R-max [KS02, BT02], PEL
does not freeze its policy over long pre-determined intervals,
but rather updates it each time some parameter is eliminated.
Furthermore, the selected action generally corresponds to a
different parameter θ at each state.

The main result of the paper is the following one.

Theorem 5 Consider the PEL algorithm with parameter 0 <
ε < Rmax

(1−γ) and 0 < δ < 1. With probability of at least 1− δ,
PEL’s policy-mistake count is upper bounded by

PMC(ε) ≤ κ |Θ| R3
max

ε3(1− γ)6
(4.2)

time steps, where κ
4
= 801 log

(
3|Θ|

δ

)
log 4Rmax

ε(1−γ) .

A slightly tighter bound is given in (5.14). This theorem
implies that the PEL algorithm is PAC in terms of the total
mistake bound, and its PMC is linear (up to a logarithmic
term) in the size of the parameter set. Note that the bound is
independent of the cardinality of the state and action spaces.
In the following section we establish the proof of Theorem
5.



Algorithm 1 Parameter ELimination
Input:{Mθ}θ∈Θ – the finite family of possible MDPs, ε – a
required accuracy of policy estimation, δ – an allowed prob-
ability of error.
Initialize: Initialize the list of plausible parameter values to
J0 = Θ. Initialize the array of cumulative log-likelihood to
G0(θ) = 0 for all θ ∈ Θ.
For t = 0, 1, ... do
1. Stopping condition: If Jt is a singleton, namely Jt =
{θ}, then use the corresponding policy π∗θ indefinitely and
skip items (2)-(5) below.
2. Find an optimistic parameter: Select a parameter value
that maximizes the value function among plausible parame-
ter values: θ(t) := arg max

θ∈Jt

V ∗
θ (st).

3. Act: Execute the action according to the optimal policy
for the optimistic parameter: at := π∗θ(t)(st).
4. Update: Observe the reward rt and the next state st+1.
Update for all θ ∈ Jt: Gt+1(θ) := Gt(θ) + lt+1(θ) where
lt+1 is defined in (4.1).
5. Eliminate: Set Jt+1 := Jt and do:

a. For all θ ∈ Jt+1 so that Gt+1(θ) = −∞, let Jt+1 :=
Jt+1 \ {θ}.

b. Find the most likely parameter in the plausible set θ̂ :=
arg max
θ∈Jt+1

G(θ).

c. For all θ ∈ Jt+1 so that Gt+1(θ̂) − Gt+1(θ) >

log
[

3(|Θ|−1)
δ

]
, let Jt+1 := Jt+1 \ {θ}.

5 Proof of the Main Result

An outline of the proof of Theorem 5 is as follows. We begin
in Section 5.1 by introducing an optimistic auxiliary model
that will prove useful later on. In Section 5.2 we define in-
formative state-action pairs (Definition 9) that are roughly
state-action pairs that distinguish the true MDP and the aux-
iliary model. We next show in Theorem 10 that within a
finite time interval following an ε-suboptimal time step (Def-
inition 1), there is a positive probability to reach an informa-
tive state-action pair. Moreover, Theorem 12 (Section 5.3)
implies that the number of ε-suboptimal steps encountered is
bounded with high probability in terms of number of actual
visits to informative state-action pairs. Hence, once we show
that the number of visits to informative state-action pairs is
bounded, we can conclude that the policy-mistake count is
bounded as well. To show the former, we bound in Sec-
tion 5.4 the stopping time of the SPRT test (for any fixed
parameter θ 6= θ0) using a non-decreasing measure of accu-
mulated statistical information related to Bhattacharyya’s in-
formation coefficient. In Section 5.5 we show that each visit
to an informative state-action pair adds some strictly positive
amount of information to one parameter at least. Hence the
number of visits needed for SPRT to trigger is bounded. Us-
ing the pigeon-hole principle, we obtain that the number of
visits to an informative state action pairs until convergence
to an ε-optimal policy is also bounded, thus concluding the
proof.

Note that from this point on all the probabilities and ex-
pectations refer to the stochastic process induced by the PEL
algorithm on the actual MDP Mθ0 , unless mentioned other-
wise.

5.1 An Auxiliary Model
Consider some fixed subset of parameters J ⊆ Θ. For every
s ∈ S, define the optimistic parameter in J as

θ(J, s) = arg max
θ∈J

V ∗
θ (s)

(with ties decided arbitrarily). Define an auxiliary MDP MJ =
〈S, A,R, pJ , ηJ〉, where pJ(s′|s, a) = pθ(J,s)(s′|s, a) and
ηJ(r′|s, a) = ηθ(J,s)(r′|s, a). Further define the following
stationary policy: πJ (s) = π∗θ(J,s)(s). This policy picks
at each state the optimal action according to the parameter
θ(J, s) that is optimistic for that state. (In the context of the
PEL algorithm, it is evident that as long as the set Jt is equal
to J , the algorithm follows this stationary policy.) Denote the
value function of the MDP MJ under the policy πJ as V πJ

J .
For notational convenience we the abbreviated notation VJ .
Then the auxiliary model is optimistic in the following sense:

Lemma 6 For any s ∈ S and θ ∈ J the following inequality
holds 1 :

VJ (s) ≥ V ∗
θ (s). (5.1)

Proof: Let us consider the difference of the two value func-
tions. Noting the definition of θ(J, s) and πJ , and substitut-
ing the corresponding Bellman backup (2.1) we have

VJ(s)− V ∗
θ (s) ≥ VJ(s)− V ∗

θ(J,s)(s)

= γ
∑

s′∈S

pJ(s′|s, πJ (s))
[
VJ(s′)− V ∗

θ(J,s)(s
′)

]

≥ γ
∑

s′∈S

pJ(s′|s, πJ (s))
[
VJ(s′)− V ∗

θ(J,s′)(s
′)

]
.

Repeating the argument n times we obtain that (with s0 ≡ s),

VJ(s)− V ∗
θ (s)

≥ γn
∑

s1,s2,...,sn∈Sn

(
n∏

i=1

pJ(si|si−1, πJ(si−1))

)

·
[
VJ(sn)− V ∗

θ(J,sn)(sn)
]

≥ −Rmax

1− γ
γn

∑

s1,s2,...,sn∈Sn

(
n∏

i=1

pJ(si|si−1, πJ(si−1))

)

≥ −Rmax

1− γ
γn n→∞−−−−→ 0.

The second inequality follows since the value functions are
positive and upper bounded by Rmax

1−γ . The third inequality
uses the fact that sum of probabilities over all possible histo-
ries is equal to 1.

1Note that the auxiliary model MJ need not be in the family
{Mθ}θ∈Θ. Hence, it may even hold that VJ(s) > V ∗

θ (s) for any
θ ∈ Θ and s ∈ S.



5.2 Implicit Explore or Exploit
We next establish that the PEL algorithm implicitly solves a
tradeoff between possible exploration and exploitation. In
other words, the agent either follows an ε-optimal policy
or otherwise gains some properly defined information with
some positive probability.

The proof is partially based on results from [SL05] and
[KS02]. For a stationary policy π denote the discounted H-
step value function by

V π(s,H)
4
= Eπ,s

{
H−1∑
t=0

γtrt

}
.

The first lemma addresses the sensitivity of the value func-
tion to the time horizon.

Lemma 7 If H ≥ 1
1−γ log Rmax

ε(1−γ) then
|V π(s, H)− V π(s)| ≤ ε for all policies π and states s.

Proof: Trivial by bounding the tail of sum of rewards in
the definition of the value function (see e.g. Lemma 2 in
[KS02]).

In the following we use Teff = 1
1−γ log 4Rmax

ε(1−γ) as an ef-
fective horizon length, beyond which the effect on the dis-
counted return is negligible.

The following lemma bounds the sensitivity of the dis-
counted reward function to perturbations in the transition and
reward probabilities. For two probability distributions p and
q on the finite set A, we use the l1 norm to measure their
separation:

‖p(·)− q(·)‖1 =
∑

a∈A

|p(a)− q(a)| . (5.2)

Lemma 8 Let M1 =< S, A,R, p1, η1 > and M2 =< S, A, R,
p2, η2 > be two MDPs with non-negative rewards bounded
by Rmax. Let π be some stationary policy and let ε1 be a pos-
itive number. If ‖η1(·|s, a)− η2(·|s, a)‖1 ≤ ε1(1−γ)2

Rmax
and

‖p1(·|s, a)− p2(·|s, a)‖1 ≤ ε1(1−γ)2

Rmax
for all states s and ac-

tions a, then

max
s∈S

∣∣V π
M1

(s)− V π
M2

(s)
∣∣ ≤ ε1.

Proof: Follows from Lemma 4 in [SL05], after noting that
|r̄1(s, a)− r̄2(s, a)| ≤ Rmax ‖η1(·|s, a)− η2(·|s, a)‖1 .

To state the central result of this subsection, define infor-
mative state-action pairs as those pairs for which either the
state transition or the reward distribution are distinct under
the true and optimistic models. More precisely:

Definition 9 Recall that θ0 is the true parameter. Let θ(J, s)
be defined as in Subsection 5.1. For t ≥ 0, let Kt be the set
of state-action pairs (s, a) for which

∥∥ηθ(Jt,s)(·|s, a)− ηθ0(·|s, a)
∥∥

1
≤ ε(1− γ)2

4Rmax
, and

∥∥pθ(Jt,s)(·|s, a)− pθ0(·|s, a)
∥∥

1
≤ ε(1− γ)2

4Rmax
.

We say that the PEL algorithm visited an informative state-
action pair at time t, if (st, at) /∈ Kt.

The following proposition asserts that occurrence of an ε-
suboptimal step leads to an explorative interval, where an
informative state-action pair is visited with probability of at
least ε(1−γ)

2Rmax
. Recalling the definition of an ε-suboptimal time

step in Definition 1, let

E1(t)
4
= {θ0 ∈ Jt} ∩ {V At(ht) < V ∗

θ0
(st)− ε} (5.3)

for t ≥ 0 denote the “suboptimal” event that time step t is ε-
suboptimal and the true parameter wasn’t eliminated before
time t. Let

E2(t)
4
= {(st−1, at−1) /∈ Kt−1} ∪ {Jt 6= Jt−1} (5.4)

for t ≥ 1 be the “informative” event that at time step (t− 1)
either an informative state-action pair was visited or some
parameter was eliminated from the set Jt−1 of plausible pa-
rameters at time t. Denote by

E3(t)
4
=

t+Teff⋃
τ=t+1

E2(τ), t ≥ 0

the event that the informative event E2(τ) occurred for τ

between (t + 1) and (t + Teff). Let Ft
4
= σ{ht} be the

sigma algebra of the history sequence until time step t, then
E1(t), E2(t) ∈ Ft, while E3(t) ∈ Ft+Teff .

Proposition 10 For every t ≥ 0 and t-history ht that satis-
fies E1(t),

PA,s0 {E3(t)|ht} >
ε(1− γ)
2Rmax

.

Proof: Let J = Jt denote the set of plausible parameters at
time t and let πJ and θ(J, s) be defined as in Subsection 5.1.
Denote by K = Kt the set of non-informative state-action
pairs at time t. Then

V A
θ0

(ht) ≡ EA,s0





∞∑

j=t

γj−trj

∣∣∣∣∣∣
ht





≥ EA,s0



 I {E

c
3}

t+Teff−1∑

j=t

γj−trj

∣∣∣∣∣∣
ht



 ,

where Ec
3 denotes the event complementary to E3. We wish

to replace the policy A in the last expression with a station-
ary policy. For that purpose, define an auxiliary MDP M ′
which coincides with Mθ0 on (s, a) ∈ K and with MJ (see
Subsection 5.1) on (s, a) /∈ K. Denote by PπJ

M ′ { ·|ht} the
probability measure on sequence (ai, ri, si+1)∞i=t induced by
the policy πJ on M ′, with EπJ

M ′ { ·|ht} the corresponding ex-
pectation operator. The t-history ht determines the sets J , G
and K for this auxiliary process.

For any realization in Ec
3(t), the set of plausible parame-

ters Jτ is constant on the interval τ ∈ {t, ..., t + Teff}, hence
the PEL algorithm follows the stationary policy πJ on that
interval. Moreover, over that interval the PEL algorithm vis-
its only state-action pair in K, hence the measure under MDP



Mθ0 coincides with the measure under M ′ there. Therefore

EA,s0



 I {E

c
3(t)}

t+Teff−1∑

j=t

γj−trj

∣∣∣∣∣∣
ht





= EπJ

M ′



 I {E

c
3(t)}

t+Teff−1∑

j=t

γj−trj

∣∣∣∣∣∣
ht



 .

Substituting in the previous inequality we obtain:

V A
θ0

(ht) ≥ EπJ

M ′



 I {E

c
3(t)}

t+Teff−1∑

j=t

γj−trj

∣∣∣∣∣∣
ht





= EπJ

M ′





t+Teff−1∑

j=t

γj−trj

∣∣∣∣∣∣
ht





−EπJ

M ′



 I {E3(t)}

t+Teff−1∑

j=t

γj−trj

∣∣∣∣∣∣
ht



 .

The first term is a finite horizon value function
V πJ

M ′ (st, Teff), while the sum in the second expectation can
be bounded from above by Rmax

1−γ . Hence,

V A
θ0

(ht) ≥ V πJ

M ′ (st, Teff)− Rmax

1− γ
PπJ

M ′ {E3(t)|ht} . (5.5)

Now the first term satisfies, due to Lemma 7, 8 and 6,

V πJ

M ′ (st, Teff) ≥ V πJ

M ′ (st)− ε

4
≥ VJ(st)− ε

2
≥ V ∗

θ0
(st)− ε

2
.

For the second term in (5.5), note that PπJ

M ′ {Ec
3(t)|ht} =

PA,s0 {Ec
3(t)|ht}, hence PπJ

M ′ {E3(t)|ht} = PA,s0 {E3(t)|ht}.
Thus,

V A
θ0

(ht) ≥ V ∗
θ0

(st)− ε

2
− Rmax

1− γ
PA,s0 {E3(t)|ht} .

On the other hand, for ht in E1(t) the time step t is ε-suboptimal,
namely V A

θ0
(ht) < V ∗

θ0
(st)− ε. Combined with the previous

inequality we obtain

PA,s0 {E3(t)|ht} >
(1− γ)ε
2Rmax

.

5.3 Discovery Lemma
Proposition 10 shows that in the Teff steps following an ε-
suboptimal step there is a probability of at least ε(1−γ)

2Rmax
to

reach some informative state-action pair or eliminate some
parameter from Jt. Based on that, Lemma 12 below essen-
tially bounds the number of ε-suboptimal steps in terms of
the number of actual visits to informative state-action pairs
and parameter eliminations.

The proof of this lemma is somewhat complicated by two
facts. First, the events involved are not independent. Second,
we need consider only those time instances over which the
probability to reach an informative state-action pair exceeds

some threshold. Indeed, applying a concentration inequal-
ity (such an Hoeffding’s or Azuma’s) to all time instances,
including those where this probability is null or very small,
would result in too week a bound. The proposed solution
is to apply an appropriate concentration inequality over an
appropriate subsequence of (stopping) times.

This argument was introduced by Bernstein in [Ber07]
and proceeds through the following proposition.

Proposition 11 (Abstract Discovery Lemma) Denote by {Ft}
a given filtration (i.e., an increasing sequence of σ-algebras)
and by {Dt} a sequence of events with Dt ∈ Ft. Let

Z ,
∞∑

t=1

I {P {Dt| Ft−1} > p} ,

where p > 0 is some given constant. Further, suppose that

P

{ ∞∑
t=1

I {Dt} ≤ M

}
= 1

for some integer M > 0. Then, for 0 < δ < 1,

P
{

Z ≤ 2
p

(
M +

4
p

log
1
δ

)}
≥ 1− δ.

Proof: See [Ber07]. This proof is repeated in the Appendix
A for the benefit of the reader.

Let Kt be as in Definition 9 and let N2 be a positive
integer. Recall the definitions of E1(t), E2(t), E3(t) and Ft

from the previous section.

Lemma 12 For any positive integer N2, let T2(N2) be the
time step on which the event E2(t) occurred for the N2-th
time, namely,

T2(N2) = inf

{
n

∣∣∣∣∣
n∑

k=1

I {E2(k)} = N2

}
(5.6)

(with T2(N2) = ∞ is such n does not exist). Then, for all
ε > 0 and 0 < δ < 1,

PA,s0





T2(N2)∑

k=0

I {E1(k)} ≤ N1



 ≥ 1− δ,

where

N1
4
= Teff

4Rmax

ε(1− γ)

[
N2 +

8Rmax

ε(1− γ)
log

Teff

δ3

]
.

Proof: Define the following discovery event for t ≥ 0:

D(t)
4
= {θ0 ∈ Jt}

⋂ {
t∑

k=1

I {E2(k)} < N2

}⋂
E3(t).

This event implies the following: by time step t the true pa-
rameter wasn’t eliminated, and the informative event E2 was
encountered less than N2 times; furthermore, in the follow-
ing Teff steps an least one additional event E2 will occur.
Note that D(t) ∈ Ft+Teff .

In order to employ Proposition 11 let us sample the se-
ries of events D(t) and sigma-algebras Ft with the step of



Teff, i.e., for i = 0, 1, 2, ... and j ∈ {0, .., (Teff − 1)} denote
D

(j)
i+1 = D(i · Teff + j) and F (j)

i = Fi·Teff+j . Note that

D
(j)
i ∈ F (j)

i . For j as above define

Z(j) 4=
∞∑

i=0

I
{
PA,s0

{
D

(j)
i

∣∣∣F (j)
i

}
>

ε(1− γ)
2Rmax

}
,

and note that

PA,s0

{ ∞∑

i=1

I
{

D
(j)
i

}
≤ N2

}
= 1

by definition of D
(j)
i . Noting the definition of N1, applica-

tion of Proposition 11 with p = ε(1−γ)
2Rmax

yields

PA,s0

{
Z(j) ≤ N1

Teff

}
≥ 1− δ3

Teff
.

Applying the union bound we obtain

PA,s0





Teff−1∑

j=0

Z(j) ≤ N1



 ≥ 1− δ3.

We conclude the proof by showing that

T2(N2)∑
t=0

I {E1(t)} ≤
Teff−1∑

j=0

Z(j) (5.7)

≡
T2(N2)∑

t=0

I
{
PA,s0 {Dt| Ft} >

ε(1− γ)
2Rmax

}
.

For some t < T2(N2) let ht be a t-history that satisfies E1(t)
(if such history exists). For this history, θ0 ∈ Jt by definition
of E1(t) and the inequality

∑t
k=1 I {E2(k)} < N2 holds by

definition of T2(N2), hence the discovery event D(t) occurs
if and only if the event E3(t) occurs. Then, by Proposition
10,

PA,s0 {Dt|ht} >
ε(1− γ)
2Rmax

,

therefore I
{

PA,s0{Dt|Ft} > ε(1−γ)
2Rmax

}
≥ I {E1(t)} almost

surely. Hence 5.7 is established an the claim follows.

5.4 Sequential Hypothesis Testing
The sequential hypothesis test we use in our algorithm was
originated by Wald ([Wal52]) and is defined in the following
way. Consider a discrete-time stochastic process {xt}∞t=0
taking values in a finite set S. Denote by xn

0 = {x0, ..., xn}
the observations obtained by time n. Let the probability of
such observations under hypothesis H0 be denoted as p0(xn

0 ),
and under H1 as p1(xn

0 ). Note that the discussion here is not
limited to Markov processes.

Definition 13 For any 0 < δ < 1 define the stopping time

NW (δ) = inf
n

{
n

∣∣∣∣
p1(xn

0 )
p0(xn

0 )
≥ 1

δ
or

p1(xn
0 )

p0(xn
0 )
≤ δ

}
,

and the decision rule

dW (δ) =





H1 , when p1(x
n
0 )

p0(xn
0 )

∣∣∣
n=NW (δ)

≥ 1
δ

H0 , otherwise
.

The pair (NW (δ1), dW (δ1)) is the Sequential Probability
Ratio Test (SPRT).

It was shown by Wald ([Wal52]) that the error probability of
the SPRT is bounded by δ:

Theorem 14 (Wald) P
{

dW (δ) = H0

∣∣ H1

} ≤ δ and
P

{
dW (δ) = H1

∣∣ H0

} ≤ δ.

We next establish a useful bound on the stopping time of
SPRT, using an auxiliary stopping time for the same process
based on the Bhattacharyya coefficient rather than the likeli-
hood ratio. We begin by defining the Bhattacharyya coeffi-
cient [Kai67].

Definition 15 (Bhattacharyya coefficient) Let p and q be
probability distributions on the finite set S. Then the Bhat-
tacharyya coefficient is

ρ
4
=

∑

s′∈S

p1/2(s′)q1/2(s′).

Note that ρ ≤ 1 by the Cauchy-Schwarz inequality. The
Bhattacharyya distance (or information) is defined as− log ρ.
This metric is related to the l1-norm of (p− q) in the follow-
ing way:

Lemma 16 − log ρ ≥ 1
8 ‖p− q‖21

Proof:Kraft [Kra55] showed the following relation:
1
2 ‖p− q‖1 ≤

√
1− ρ2. Equivalently, ρ ≤

√
1− 1

4 ‖p− q‖21,

hence log ρ ≤ 1
2 log(1− 1

4 ‖p− q‖21) ≤ − 1
8 ‖p− q‖21, where

the last inequality follows since log(1 − x) ≤ −x for all
0 ≤ x < 1.

Definition 17 (Bhattacharyya stopping time) Consider the
same processes and hypotheses as in Definition 13. Denote
the by

ρ(xn
0 ) =

∑

xn+1∈S

p
1/2
0 (xn+1|xn

0 )p1/2
1 (xn+1|xn

0 )

the Bhattacharyya coefficient between p0(·|xn
0 ) and p1(·|xn

0 ).
Then the Bhattacharyya stopping time (for 0 < δ < 1) is de-
fined as:

NB(δ) = inf
n

{
n

∣∣∣∣∣
n−1∏
t=0

ρ(xt
0) ≤ δ or (5.8)

p0(xn|xn−1
0 ) = 0 or p1(xn|xn−1

0 ) = 0

}
.

We note that the stopping condition
∏n−1

t=0 ρ(xt
0) ≤ δ can be

written as

Rn
4
= −

n−1∑
t=0

log ρ(xt
0) ≥ − log δ,



where Rn is the cumulative Bhattacharyya distance (or total
Bhattacharyya information).

While our algorithm uses the Wald test, the Bhattacharyya
stopping time will be more handy for analysis as Rn is a non-
decreasing sequence. The following proposition relates these
two stopping times.

Proposition 18 For 0 < δ < 1, the inequality

P
{

NW (δ) > NB(δ3/2)
}
≤ δ

holds both under H0 and H1.

Proof: Assume that H0 holds true (the proof is identical un-
der H1). Since p1(xn|xn−1

0 ) = 0 implies NW = NB(δ3/2)
(if not stopped before), we can focus in the remainder of the
proof only on stopping due to the first condition in (5.8). Let
N1 = NB(δ3/2) and denote the log likelihood ratio of the
history up to the stopping time N1 as:

L
(
xN1

0

) 4
=

N1∑
t=1

log
p1(xt|xt−1

0 )
p0(xt|xt−1

0 )
.

Then NW (δ) > N1 implies that L
(
xN1

0

)
> log δ, hence

P
{
NW (δ) > N1

} ≤ P
{

L
(
xN1

0

)
> log δ, N1 < ∞

}
.

Chernoff’s inequality now implies

P
{

L
(
xN1

0

)
> log δ, N1 < ∞

}

≤ E
{

exp
{

1
2

[
L

(
xN1

0

)
− log δ

]}
I{N1<∞}

}
,

hence

P
{
NW (δ) > N1

} ≤ 1√
δ
EC , (5.9)

where

EC
4
= E

{
exp

{
1
2
L

(
xN1

0

)}
I{N1<∞}

}
.

We proceed to bound EC . Denote

d(xt+1|xt
0) , p

1/2
1 (xt+1|xt

0)p
1/2
0 (xt+1|xt

0)

so that ρ(xt
0) =

∑
x′∈S d(x′|xt

0). Further denote

D(xk
0)

4
=

k∏
t=1

d(xt|xt−1
0 ).

Let QB be the collection of N1-histories xN1
0 for which

N1 < ∞, namely

QB =

{
xk

0 ∈ Sk+1

∣∣∣∣∣
k−2∏

i=0

ρ(xi
0) > δ3/2 and

k−1∏

i=0

ρ(xi
0) ≤ δ3/2

}
.

Substituting the definition of the expected value we obtain:

EC

=
∑

x
N1
0 ∈QB

exp

{
1
2

N1∑
t=1

log
p1(xt|xt−1

0 )
p0(xt|xt−1

0 )

}
N1∏
t=1

p0(xt|xt−1
0 )

=
∑

x
N1
0 ∈QB

N1∏
t=1

(
p1(xt|xt−1

0 )
p0(xt|xt−1

0 )

)1/2

p0(xt|xt−1
0 )

=
∑

x
N1
0 ∈QB

N1∏
t=1

p
1/2
1 (xt|xt−1

0 )p1/2
0 (xt|xt−1

0 )

=
∑

x
N1
0 ∈QB

D(xN1
0 ).

Below we show that

EC ≡
∑

x
N1
0 ∈QB

D(xN1
0 ) ≤ sup

x
N1
0 ∈QB

{
N1−1∏
t=0

ρ(xt
0)

}
≤ δ3/2,

(5.10)
where the last inequality holds by definition of N1. Thus,
from (5.9) and (5.10),

P
{
NW (δ) > N1

} ≤ 1√
δ
EC ≤ δ.

Fix an integer M ≥ 1. With some abuse of notation define
QB(k) for k ∈ {1, .., M} be the collection of k-histories xk

0
for which N1 = k. We proceed by showing that

M∑

k=1

∑

xk
0∈QB(k)

D(xk
0) ≤ max

x
N1
0 ∈∪M

k=1QB(k)

{
N1−1∏
t=0

ρ(xt
0)

}
,

hence taking M →∞ establishes 5.10.
It is handy to artificially extend trajectories in

⋃M−1
k=1 QB(k)

to the length of (M + 1). Modify the trajectory x ∈ QB(k)
for k < M to the trajectory xM

0 by duplicating the state (xk)
enough times, i.e., xM

0 = {x0, x1, ..., xk, xk, ..., xk}. For
the modified states (xi, i ≥ k + 1) redefine d(xi|xi−1

0 ) =
I {xi = xk} so that D(xk

0) = D(xM
0 ). Note that, ρ(xi

0) = 1.
Denote the collection of modified histories by σM

0 . For
k ≤ M let

σk
0
4
= {xk

0 ∈ Sk+1|∃y ∈ σM
0 s.t. y0 = x0, ..., yk = xk}

(5.11)
denote the set of the possible first (k+1) states of trajectories
from σM . For xk−1

0 ∈ σk−1
0 denote by

σk(xk−1
0 )

4
= {x ∈ S|[xk−1

0 ; x] ∈ σk
0}

the set of states that extend xk−1
0 to the sequence in σk,

where [·; ·] denotes concatenation. Denote by

σM
k (xk−1

0 )
4
= {yM

0 ∈ σM
0 |y0 = x0, ..., yk−1 = xk−1}

the collection of all M -histories in σM
0 equal to xk−1

0 at the
first (k − 1) steps. For xk−1

0 ∈ σk
0 (k < M) denote

B(xk−1
0 )

4
= max

xM
0 ∈σM

k (xk−1
0 )

M−1∏

t=k

ρ(xt
0),



and set B(xM−1
0 ) = 1 for xM−1

0 ∈ σM−1
0 . Note that

B(xk−2
0 ) = max

xk−1∈σk−1(x
k−2
0 )

ρ([xk−2
0 ;xk−1])B([xk−2

0 ; xk−1]).

We next proof by induction that for 0 ≤ k ≤ M − 1 the
following inequality hold:

∑

xM
0 ∈σM

0

D(xM
0 ) ≤

∑

xk
0∈σk

0

D(xk
0)ρ(xk

0)B(xk
0).

In particular for k = 0 we obtain

∑

xM
0 ∈σM

0

D(xM
0 ) ≤ ρ(x0

0)B(x0
0) ≤ max

xM
0 ∈σM

0

{
M−1∏
t=0

ρ(xt
0)

}
,

hence concluding the proof. Let us show the basis for the
induction (k = M − 1)

∑

xM
0 ∈σM

0

D(xM
0 )

=
∑

xM−1
0 ∈σM−1

0

D(xM−1
0 )

∑

xM∈σM (xM−1
0 )

d(xM |xM−1
0 )

≤
∑

xM−1
0 ∈σM−1

0

D(xM−1
0 )ρ(xM−1

0 )B(xM−1
0 ).

Using the induction hypothesis for k ≥ i + 1 we obtain
∑

xM
0 ∈σM

0

D(xM
0 )

≤
∑

xi+1
0 ∈σi+1

0

D(xi+1
0 )ρ(xi+1

0 )B(xi+1
0 )

≤
∑

xi
0∈σi

0

D(xi
0)

∑

xi+1∈σi+1(xi
0)

d(xi+1|xi
0)

·ρ([xi
0;xi+1])B([xi

0; xi+1])

≤
∑

xi
0∈σi

0

D(xi
0)

∑

xi+1∈σi+1(xi
0)

d(xi+1|xi
0)B(xi

0)

≤
∑

xi
0∈σi

0

D(xi
0)ρ(xi

0)B(xi
0),

hence the induction step holds.

5.5 Proof of the Main Result
This subsection builds on our previous results to establish
the upper bound on the policy-mistake count (Theorem 5).
Consider the PEL algorithm applied to the true MDP Mθ0 .
The proof proceeds through the following steps. In steps 1-3
we define three “unwanted” events: the event E4 on which
the true parameter θ0 is eliminated from the plausible pa-
rameter set Jt at some point; the event E5 on which (es-
sentially) there is insufficient number of visits to informative
state-action pairs despite a large number of “sub-optimal”
steps; and the event E6 on which a sufficient amount of Bhat-
tacharyya information does not lead to parameter elimination
in the SPRT test. We show that the probability of each is
bounded by δ

3 . In step 4 and step 5 the required upper bound

on the PMC is shown to hold on (E4 ∪E5 ∪E6)c. In step 6
we combine the above to conclude the required result.

Step 1: Let E4
4
= {θ0 /∈ ∩∞t=1Jt} be the event that the actual

parameter is eliminated from the set Jt of plausible param-
eters at some point. As explained in Section 4, the elimi-
nation step of the algorithm can be interpreted as a SPRT
between any pair of parameter in Jt, with the threshold of

δ′
4
= δ

3(|Θ|−1) . From Theorem 14 we obtain that the prob-
ability of eliminating θ0 due to any other fixed parameter is
less than δ′. Therefore, by union bound the total probability
of eliminating θ0 is less then (|Θ| − 1)δ′, namely,

PA,s0 {E4} ≤ (|Θ| − 1)δ′ =
δ

3
.

Step 2: Recall the definition of E1(t) and T2 from (5.3) and

(5.6). Let E5
4
=

{∑T2(N2)
t=1 I {E1(t)} > N1

}
be the event

that the sub-optimal event E1(t) was encountered more than
N1 times before the N2-th informative event occurred. Here,

N2
4
= 12(|Θ|−1)

(
4Rmax

ε(1− γ)2

)2

log(
3(|Θ| − 1)

δ
)+(|Θ|−1)

(this selection is explained in step 4) and N1 is selected as in
Lemma 12 with δ := δ

3 , namely,

N1
4
=

4RmaxTeff

ε(1− γ)

[
N2 +

8Rmax

ε(1− γ)
log

3Teff

δ

]
.

Then, Lemma 12 implies (for any N2 and in particular for
the one above),

PA,s0 {E5} ≤ δ

3
.

Step 3: Consider hypothesis testing between MDPs Mθ0 and
Mθ for θ 6= θ0. Denote by NW (θ, δ), Rn(θ) and NB(θ, δ)
the corresponding SPRT stopping time, the total Bhattacharyya
information and the Bhattacharyya stopping time (see Defi-
nitions 13 and 17). Let E6 be the event on which NW (θ, δ′) >

NB
(
θ, (δ′)3/2

)
holds for some θ 6= θ0 (i.e., the relation be-

tween Bhattacharyya stopping time and SPRT stopping time
defined in Lemma 18 is violated). Using Lemma 18 and the
union bound we conclude that

PA,s0 {E6} ≤ (|Θ| − 1)δ′ =
δ

3
.

Step 4: Consider a realization h∞ = {st, at, rt}∞t=0 ∈ Ec
4 ∩

Ec
5∩Ec

6. Recall the definition of the informative event E2(t)
in (5.4). We proceed to show that for this realization,

∞∑
t=1

I {E2(t)} ≤ N2. (5.12)

Let t be a time step on which an informative state-action
pair (st, at) is visited (see Definition 9). Let us assess the
Bhattacharyya distance − log ρt between the joint distribu-
tion of (rt, st+1) under the true model Mθ0 and the auxiliary
model MJ . Evidently, it equals to sum of Bhattacharyya dis-
tances between ηθ0(·|st, at) and ηθ(t)(·|st, at), and between
pθ0(·|st, at) and pθ(t)(·|st, at), where θ(t) is the optimistic



parameter at time t (see Algorithm 1), namely

− log ρt = − log

[∑

s′∈S

p
1/2
θ(t (s′|st, at)p

1/2
θ0

(s′|st, at)

]

− log

[∑

r′∈S

η
1/2
θ(t)(r

′|st, at)η
1/2
θ0

(r′|st, at)

]
.

Since (st, at) /∈ Kt, then, by Lemma 16,

− log ρt >
1
8

(
ε(1− γ)2

4Rmax

)2
4
= B0.

Hence each visit to an informative state-action pair (st, at) /∈
Kt increases Rt(θ) by at least B0 for at least one θ ∈ Jt. As
the sequence Rt(θ) is non-decreasing, the total number of
such increments until the stopping time NB(θ) triggers is

upper bounded by log((1/δ′)3/2)
B0

. By definition, for h∞ ∈ Ec
6

the parameter θ is eliminated no later than t = NB
(
θ, (δ′)3/2

)
,

therefore, by the pigeon-hole principle, the total number of
visits to informative state-action pairs until all θ 6= θ0 are
eliminated from Jt is bounded by (|Θ|−1) log((1/δ′)3/2)

B0
. Re-

call that E2(t) occurs if an informative state-action pair was
visited at time (t − 1) or a parameter was eliminated from
Jt−1. Hence,

∞∑
t=1

I {E2(t)}

≤
∞∑

t=1

I {(st−1, at−1) /∈ Kt−1}+
∞∑

t=1

I {Jt 6= Jt−1}

≤ (|Θ| − 1)
log((1/δ′)3/2)

B0
+ (|Θ| − 1) ≡ N2.

thus establishing (5.12).
Step 5: Let T2, N2 be as in Step 2. For h∞ as before we
argue that PMC(ε) ≤ N1. Since h∞ ∈ Ec

5,

N1 ≥
T2(N2)∑

t=0

I {E1(t)}

=

[ ∞∑
t=0

I {E1(t)}
]
I {T2(N2) = ∞}

+

[ ∞∑
t=0

I {E1(t)}
]
I {T2(N2) < ∞}

−



∞∑

t=T2(N2)+1

I {E1(t)}

 I {T2(N2) < ∞} .

Note that the argument in Step 4 implies, that for t > T2(N2)
the set Jt of plausible parameters contains only the true pa-
rameter θ0. For this realization the PEL algorithm follows an
optimal policy πθ0 from time T2(N2) onward, hence∑∞

t=T2(N2)+1 I {E1(t)} = 0. Therefore,

N1 ≥
∞∑

t=0

I {E1(t)} =
∞∑

t=0

I
{
V At(ht) < V ∗

θ0
(st)− ε

}
,

where equality holds since θ0 ∈ Jt for realization in Ec
4 (see

5.4). Hence, by definition of PMC,

N1 ≥ PMC(ε). (5.13)

Step 6: The bound (5.13) holds on h∞ ∈ Ec
4∩Ec

5∩Ec
6. But,

by the union bound,

PA,s0 {Ec
4 ∩ Ec

5 ∩ Ec
6} ≥ 1− δ.

Substituting N2 and Teff yields that

PMC(ε) ≤ (5.14)

768(|Θ| − 1)
R3

max

ε3(1− γ)6
log

(
3(|Θ| − 1)

δ

)
log

4Rmax

ε(1− γ)

+(|Θ| − 1)
4Rmax

ε(1− γ)2
log

4Rmax

ε(1− γ)

+
32R2

max

ε2(1− γ)3
log

[
3

δ(1− γ)
log

4Rmax

ε(1− γ)

]
log

4Rmax

ε(1− γ)

with probability of at least (1− δ). Noting that the first term
is the dominant one, the can be simplified to (4.2).

6 Conclusion
Parameterized models offer a great potential for reduction of
learning time and cost in large RL problems, alongside less
structured methods such as function approximation, aggrega-
tion and state abstraction. The former can and should be used
when the available prior information allows to reduce model
uncertainty to a lower dimensional parameter space, thereby
allowing explicit modeling of inter-state dependencies and
avoiding the pitfalls inherent in the local nature of learning in
the general, unstructured model. The development of effec-
tive RL methods for parameterized models should therefore
be of major interest.

In this paper we have considered the case of parameter-
ized models with with discrete parameter. We proposed the
PEL (Parameter Elimination) learning algorithm, which in-
corporates efficient exploration to achieve polynomial mis-
take bounds in a PAC sense. As may be expected these
bounds are independent of the cardinality of the state and ac-
tion spaces, and in fact may well apply to continuous spaces
under reasonable regularity conditions.

Several nontrivial choices were made in the construction
of this algorithm. First, the basic approach taken was that
of parameter elimination, rather than on-line parameter esti-
mation. The former has the advantage of reducing the con-
sidered parameter set over time, which can quickly converge
to a small set if sufficient statistical information is obtained.
On the theoretical side, this approach allows the application
of sequential hypotheses testing and its related theory for the
analysis of the algorithm. On the downside, the possible er-
ror of eliminating the true parameter cannot be rectified later,
and it is therefore important to keep its probability small.
Another choice made in the algorithm is to incorporate an
optimistic policy which is defined on a per-state basis, rather
than freeze a stationary that is optimal for a certain parameter
from a certain state. We believe this approach may add to ex-
ploration efficiency, although no direct comparison is avail-
able. Further work of immediate interest includes the exten-
sion of the PEL algorithm to continuous parameter spaces



though discretization, the consideration of other (estimation-
based) algorithms that may be appropriate for such spaces,
the incorporation of computational constraints, and consid-
eration of other learning criteria such as the total regret for
the average reward problem.
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A Appendix: An Abstract Discovery Lemma
We are about to prove here the Proposition 11. In words,
this theorem tells us that number of time steps with suffi-
cient probability for event Dt to occur (that is, steps having
P {Dt| Ft−1} > p) is polynomially bounded with high prob-
ability, provided that the total number of such occurrences is
bounded with probability one.

In order to prove this theorem, we use the following re-
sult regarding martingale differences and stopping times.

Lemma 19 Let {Mt} be a martingale difference sequence,
adapted to the filtration {Ft}, i.e.,2

Mt ∈ Ft, E {Mt| Ft−1} = 0 (a.s.), ∀t ≥ 1.

Assume that the underlying martingale process Xt =
∑t

k=1 Mk

is uniformly integrable, that is

∀ε > 0, ∃λ > 0 : E {|Xt| I {|Xt| > λ}} < ε, ∀t ≥ 1.

Also, let {τi} be a sequence of stopping times with respect
to {Ft}, having τi−1 < τi a.s. for any i. Assume more-
over that {τi = t} ∈ Ft−1. Then, {M ′

i}∞i=1 , {Mτi
}∞i=1

is a martingale difference sequence, adapted to the filtration
{F ′i}∞i=1 ,

{Fτi+1−1

}∞
i=1

.

Proof: First, we see that M ′
i = Mτi ∈ Fτi ⊆ Fτi+1−1 = F ′i

(see [GS92]), for the definition of FT , where T is a stopping
time. Next, we have that

E
{
M ′

i F|′i−1

}
= E

{
Mτi F|τi−1

}

= E
{
Xτi F|τi−1

}− E{
Xτi−1 F|τi−1

}

= Xτi−1 −Xτi−1 = 0.

The last equality follows since Xτi−1 ∈ Fτi−1. Also, it
is easy to see that τ ′i = τi − 1 is a stopping time with re-
spect to {Ft}, since by hypothesis, {τ ′i = t} ∈ Ft. Thus, by
Optional Sampling Theorem for uniformly integrable mar-
tingales (see [RW00], Theorem II.77.5), we have that
E

{
Xτi F|τ ′i

}
= Xτ ′i , almost surely.

In the following lemma we define a martingale that will
be used in the proof of Discovery Theorem, and prove that it
is uniformly integrable.

Lemma 20 The following process

Xt ,
t∑

k=1

(I {Dk} − P {Dk| Fk−1}) , t > 0

(X0 , 0) is a uniformly integrable martingale adapted to
{Ft}.

Proof: The fact that {Xt} is a martingale adapted to {Ft}
follows trivially by definition. To prove uniform integrabil-
ity, we will use the fact that if there exists a positive random
variable Y with E {Y } < ∞, such that |Xt| ≤ Y, ∀t, a.s.
then the family {Xt} if uniformly integrable.

2We will use the relation X ∈ F to denote the fact that random
variable X is measurable with respect to F .

Indeed, for all t, we have that

|Xt| ≤
t∑

k=1

I {Dk}+
t∑

k=1

P {Dk| Fk−1}

≤ M +
t∑

k=1

P {Dk|Fk−1} , (A.1)

where the second inequality follows by the hypothesis that∑∞
k=1 I {Dk} ≤ M with probability one. Now define Yt ,∑t
k=1 P {Dk| Fk−1}. First, the expected value of Yt is bounded

by M :

E {Yt} = E

{
t∑

k=1

P {Dk| Fk−1}
}

=
t∑

k=1

E {E { I {Dk}|Fk−1}}

=
t∑

k=1

E {I {Dk}} (A.2)

= E

{
t∑

k=1

I {Dk}
}
≤ M, ∀t. (A.3)

Also,
Yt(ω) ≤ Yt+1(ω), ∀t, ω (A.4)

implying that

E {Y }t ≤ E {Y }t+1 , ∀t. (A.5)

Thus, by (A.2), (A.5), and the monotone convergence of the
sequence at , E {Y }t, we know that there exists a∞ ,
limt→∞ E {Y }t < ∞. This, (A.4), and the monotone con-
vergence theorem for Yt, imply that there exists a random
variable Y∞ = limt→∞ Yt, such that

Yt ≤ Y∞, a.s. ,∀t (A.6)

and

E {Y }∞ = E {lim}t→∞ Yt = lim
t→∞

E {Y }t = a∞ < ∞.

(A.7)
Substituting (A.6) in (A.1) yields |Xt| ≤ M + Y∞ , Y
with E {Y } ≤ M +E {Y }∞ < ∞, where the last inequality
holds by (A.7).

Proof:[Proof of Abstract Discovery Lemma] Let
τ1 , min {t ≥ 0 : P {Dt| Ft−1} > p},
τi , min

{
t > τi−1 : P

{
Dt F|t−1

∣∣ >
}

p
}

, ∀t ≥ 2 be an
increasing sequence of random times, where τi = ∞ if i >
Z. Now, for any t = 1, 2, ..., we have that

{τi ≤ t} ⇔
{

t∑

k=1

I {P {Dk| Fk−1} > p} ≥ i

}

and therefore {τi ≤ t} ∈ Ft−1. Thus, each τi, with i =
1, 2, ..., is a stopping time (satisfying the conditions of Lemma
19).

Now, by Lemma 20, {I {Dt} − P {Dt| Ft−1}} is a mar-
tingale difference sequence with respect to {Ft}, with uni-
formly integrable underlying martingale sequence. There-
fore, by Lemma 19, the “sampled” process



{I {Dτi} − P {Dτi | Fτi−1}} is a martingale difference se-
quence, with respect to {F ′i} ,

{Fτi+1−1

}
. Thus, for any

z > 0, we have that

P

{
z∑

i=1

I {Dτi
} ≤ p

2
z, Z ≥ z

}
(A.8)

≤ P

{
z∑

i=1

[I {Dτi
} − P {Dτi

| Fτi−1}] ≤ −p

2
z, Z ≥ z

}

≤ P

{
z∑

i=1

[I {Dτi} − P {Dτi | Fτi−1}] ≤ −p

2
z

}

≤ exp
(
−p2

8
z

)
. (A.9)

In this derivation, the first inequality follows since on the
event {Z ≥ z}, P {Dτi |Fτi−1} > p, ∀1 ≤ i ≤ z by the def-
inition of τi. The second inequality follows by omitting the
{Z ≥ z} event from probability. Finally, the third inequal-
ity follows by Azuma’s Inequality [Azu67], which states that
for any martingale difference sequence {Mi}, with |Mi| ≤
ci a.s.,

P

{
z∑

i=1

Mi ≤ −α

}
≤ exp

(
− α2

2
∑z

i=1 c2
i

)

holds for any α > 0. In our case, α = p
2z and ci = 1.

To complete the proof, for any z ≥ 2M
p , write

1 = P

{ ∞∑

k=1

I {Dk} ≤ M

}
(A.10)

≤ P

{ ∞∑

k=1

I {Dk} ≤ p

2
z

}

≤ P

{
Z∑

i=1

I {Dτi} ≤
p

2
z

}

= P

{
Z∑

i=1

I {Dτi} ≤
p

2
z, Z ≥ z

}
(A.11)

+P

{
Z∑

i=1

I {Dτi} ≤
p

2
z, Z < z

}

≤ P

{
z∑

i=1

I {Dτi} ≤
p

2
z, Z ≥ z

}
+ P {Z < z}

≤ exp
(
−p2

8
z

)
+ P {Z < z} .

Here, the first equality follows by the hypothesis of the theo-
rem. The first inequality follows since z ≥ 2M

p . The second
inequality holds since we are counting less time steps where
the events Dt occur. Finally, the last inequality follows by
(A.9). Thus, we have proved that 1 ≤ exp

(
−p2

8 z
)
+P {Z < z},

which is equivalent to P {Z ≥ z} ≤ exp
(
−p2

8 z
)

. Substi-

tution of z = 2
p

[
M + p

4 log 1
δ

]
completes the proof of the

Theorem.


