
Unified Inter and Intra Options Learning Using
Policy Gradient Methods

Kfir Y. Levy, Nahum Shimkin

Faculty of Electrical Engineering, Technion, Haifa 32000, Israel
{kfiryl@tx, shimkin@ee}.technion.ac.il

Abstract. Temporally extended actions (or macro-actions) have proven
useful for speeding up planning and learning, adding robustness, and
building prior knowledge into AI systems. The options framework, as in-
troduced in Sutton, Precup and Singh (1999), provides a natural way to
incorporate macro-actions into reinforcement learning. In the subgoals
approach, learning is divided into two phases, first learning each option
with a prescribed subgoal, and then learning to compose the learned op-
tions together. In this paper we offer a unified framework for concurrent
inter- and intra-options learning. To that end, we propose a modular pa-
rameterization of intra-option policies together with option termination
conditions and the option selection policy (inter options), and show that
these three decision components may be viewed as a unified policy over
an augmented state-action space, to which standard policy gradient al-
gorithms may be applied. We identify the basis functions that apply to
each of these decision components, and show that they possess a useful
orthogonality property that allows to compute the natural gradient in-
dependently for each component. We further outline the extension of the
suggested framework to several levels of options hierarchy, and conclude
with a brief illustrative example.

1 Introduction

In complex planning problems it is often useful to utilize macro-actions, where
every macro-action is a restricted plan or a policy, and compose these macro-
actions in order to form an overall plan or a policy [1–3]. In the terminology of
Sutton et al. [4], a macro action is called an option and the overall policy, com-
posing these options, is called a policy over options. That article suggested how
to compose existing options into a policy over options in a manner analogous to
standard Reinforcement Learning (RL) algorithms, employing the Semi-Markov
Decision process (SMDP) framework. An important problem is how to devise a
good option. A popular solution is to define a subgoal task, which is a task that

1 This is an extended version of the paper that will appear in Proceedings of the 9th

EWRL, Athens, Sept. 2011, and it includes additional details on the experimental
results in Section 6.

terminates if it arrives at a subgoal state, and an artificial reward is given for
arriving there. A plan for the subgoal task can be learned using conventional RL
methods, and the optimal policy, which is learned for the subgoal task is then
used as an option which halts in a subgoal state. Thus, the learning procedure
originally suggested in [4] divides the learning procedure into an intra-option
learning phase, where every option is learned using subgoals, and to inter-option
learning phase, where the composition of the options is learned, using stan-
dard RL algorithms applied to the SMDP framework. A possible shortcoming
of this approach is that options are rigid and do not change during the inter-
option learning phase. Sutton et al. [4] suggest a partial solution which they call
interruption, which corresponds essentially to a single step of greedy policy im-
provement. Another interesting approach is to find subgoals online, during the
learning phase, relying for example on reward or visit statistics of states [5, 6].
The options framework provides temporal abstraction of the planning and learn-
ing problem. A different approach towards abstraction of RL problems is to look
for the best policy within a parameterized family {πθ}θ∈Θ. The restriction to
a parameterized family allows to introduce prior knowledge, limits the search
space, and it allows use of gradient methods, [7–9] , in order to find a local
maximum. Policy gradient algorithms have been successfully applied to various
reinforcement learning problems in complex domains [8, 10, 11].
Previous work on parametric options includes [1–3]. In [1] gradient learning of
the stopping condition is derived through embedding the options into the state
space. In [2] the task is first manually decomposed into subtasks which are
learned separately and only then the higher decision hierarchy is being opti-
mized. In [3] the SMDP framework is utilized together with a certain regression
method in order to learn parametric intra-policies. All of these works do not
consider the problem of simultaneous optimization of the intra-options together
with the overall policy, and only the first addresses the problem of learning the
stopping conditions of options.
In this paper we are interested in schemes that can jointly learn the options poli-
cies (intra-option learning) and the policy-over-options (inter-option learning).
We first formulate a framework in which the three components of the overall pol-
icy: intra-option policies, option termination conditions and the option selection
policy, are viewed as a unified stationary policy over an augmented state-action
space, to which standard RL algorithms may be applied. We next propose a mod-
ular parameterization of these three components, and identify the basis functions
that apply to each of these policy components, we then show that these basis
functions enjoy a useful orthogonality property that allows to compute the nat-
ural gradient independently for each component, leading to great computational
savings.
The paper is constructed as follows: In Section 2 we describe the basic MDP
model, and provide a brief overview of natural gradient methods and the options
framework. In Section 3 we define the augmented state-action spaces and the
augmented hierarchial policy (AHP). In Section 4 we propose a parameterization
of the AHP for which we prove the orthogonality property of the parameterized

base functions, and in Section 5 we briefly consider extending our framework to
hierarchical multi-level options, Section 6 presents an illustrative example and
in Section 7 we conclude the paper.

2 Model and Background

A discounted-reward Markov Decision Process (MDP) M may be defined by a
5 tuple < S,A, r, P, γ >. At time t, the system is in state st ∈ S, the agent
chooses an action at ∈ A, a reward r(st, at), is given, and the system transfers
to a new state st+1, randomized according to a transition probability function,
P (·|st, at). A policy π = {πt}∞t=0 is a series of mappings from the collection of
possible histories to a probability function over the action space. A stationary
policy depends only on the current state, and is therefore defined by the map
π : S → ∆(A), where ∆(A) is the probability simplex over the set A. For a given
stationary policy π, the value function V π and the action-value function Qπ are
defined as:

V π(s) = Eπ[
∞∑
t=0

γtr(st, at)|s0 = s] (1)

Qπ(s, a) = r(s, a) + Eπ[

∞∑
t=1

γtr(st, at)|s0 = s, a0 = a] (2)

We assume that the initial state s0 is chosen according to a fixed initial dis-
tribution η(s). The general goal is to maximize the discounted return, defined
as:

J(π) =
∑
s∈S

η(s)V π(s) =
∑
s∈S

dπ(s)
∑
a∈A

π(a|s)r(s, a) (3)

where dπ(s) = Es0∼η[
∑∞

t=0 γ
tpπ(st = s|s0)].

2.1 Natural Policy Gradient

In the policy gradient framework [7], the policy itself is parameterized as π(a|s) =
π(a|s, θ), and the vector θ is modified in the direction of gradient of expected
return J(πθ) , J(θ). Plain methods of gradient learning estimate the value of
∇θJ(θ) during the run, and modify the value of θ greedily in this direction. Nat-
ural gradient methods do not follow the steepest direction in parameter space,
but rather the steepest direction with respect to the Fisher metric G(θ) [12, 9,
8], which leads to improved convergence properties. The relation between the

standard gradient ∇θJ(θ) and the natural gradient ∇̃θJ(θ) is given by:

∇̃θJ(θ) = G−1(θ)∇θJ(θ) (4)

It is shown in [13] that the Fisher metric captures the geometric structure which
is induced by the parametric family of policies. As shown in [7], for a stationary
policy π, the gradient of the discounted return is given by:

∇θJ(θ) =
∑
s∈S

dπ(s)
∑
a∈A

π(a|s)Qπ(s, a)ψ(s, a) (5)

where ψ(s, a) = ∇θ log π(a|s). Assuming θ ∈ RN , for every element θ(m) in the
parameter vector θ define:

ψm(s, a) =
∂log π(a|s)
∂θ(m)

(6)

We shall refer to {ψm}Nm=1 as the θ base functions.
For functions f, g : S ×A→ R, consider the following inner product:

⟨f, g⟩ =
∑
s∈S

dπ(s)
∑
a∈A

π(a|s)f(s, a)g(s, a) (7)

Using the notation of this inner product, equation (5) can be written as:

∂J(π)

∂θ(m)
= ⟨Qπ, ψm⟩ (8)

Hence, if we denote Ψθ = span{ψθ1 , . . . , ψθN }, and Qπ
Ψθ
(s, a) as the orthogonal

projection of Qπ(s, a) onto Ψθ, the function Qπ in equation (8) can be replaced
with Qπ

Ψθ
. The orthogonal projection Qπ

Ψθ
(s, a), by definition, could be written

as

Qπ
Ψθ
(s, a) =

N∑
i=1

wiψi(s, a) = wT∇θ log π(a|s) (9)

From the orthogonality principle we know that ⟨Qπ − Qπ
Ψθ
, ψi⟩ = 0 for every i.

From the last two equations one can obtain a linear equation for w

Gθw = cθ (10)

where

Gθ(i, j) = ⟨ψi, ψj⟩, Gθ ∈ RN×N

cθ(i) = ⟨Qπ, ψi⟩, cθ ∈ RN (11)

It is shown in [12, 9, 8] that w is the natural gradient of J(θ). So, if we manage to
estimateGθ and cθ, we can calculate w from equation (10) and gradient update θ.
In order to estimate the entries of the matrix Gθ, we can simply use the temporal
average of ψi(st, at)ψj(st, at). As for the entries of cθ, it is demonstrated in [7]

that if we define the advantage function Aπ(s, a) , Qπ(s, a) − V π(s), we can
replace the Qπ function in equation (11) with the advantage function. The latter
may be estimated with the time difference (TD) error:

δt = rt + V π(st+1)− V π(st) (12)

which is an unbiased estimate of the advantage function. It is suggested in [8] to
estimate the entries cθ(i) with the temporal average of ψi(st, at)δt. We still re-
quire an estimate of the value function V π, which can be done with TD methods
as in [9] or with the least square methods [14, 15]. Once we have an estimate of
Gθ and cθ, we can calculate the natural gradient: w = G−1

θ cθ. We refer the reader
to [9] for a complete description of the natural gradient learning algorithm.

2.2 The Options framework

An option o is characterized by a 3-tuple < I, π, β >, where I ⊆ S is the
set from which the option can be initiated, β : S → [0, 1] is a termination
probability, and π is the intra-option policy, which in general, may depend on
the entire history since the option was initiated (but not before). Here we restrict
attention to stationary intra-option policies. Note that a primitive action can
be considered as a single step option. A policy-over-options is defined to be
a mapping µ : S → ∆(O), where O is the set of all options, determines which
option should be initiated in the current state. Given the the policy-over-options
µ and options set O we refer to their combination as the overall policy (OP).
We refer to intra-option policies, stopping conditions and policy-over-options as
the three decision components of the OP. In [4] the SMDP framework is utilized
in order to optimize the policy-over-options, µ.

3 The Augmented Options Model

In this section we formulate an augmented MDP model that will enable us to
utilize existing RL algorithms in order to learn simultaneously the three deci-
sion components of the overall policy (OP). In Subsection 3.1 we describe the
decisions process made by the OP and in the following Subsection we define
augmented state-action spaces and show that the OP in the original state-action
spaces is equivalent to a stationary policy in the augmented spaces.
We consider a given OP {µ,O}, where µ is the policy-over-options and O =
{πi, βi}ni=1 is the options set. We index the individual option by i or j, where
i, j ∈ O, and denote by πi and βi the intra policy and stopping condition of
option i. Note the use of the same notation i for the option itself and its index.

3.1 Overall Policy (OP) Description

The following is an outline of the decision process made by an OP:
1. At time t the process arrives at a state st with the option it, chosen at the
previous step. We divide the choices of the policy to three decision phases:

– Stopping decision phase (sp): Choose whether or not to stop the current
option, with the choice made according to the stopping probability βit(st).
We relate to the decision to stop or not as an action, chosen from the binary
action set Astop , {stop, cont}.

– Option decision phase (op): Choose a new option jt. If in the previous
phase stopping was not chosen, the former option persists (jt = it), oth-
erwise, the policy-over-options chooses a new option jt according to jt ∼
µ(·|st).

– Action decision phase (ap): Choose a new action at, according to the
option jt chosen at the previous phase, i.e. at ∼ πjt(·|st).

2. At time t + 1 the process arrives at a new state st+1 under the policy it+1

chosen in the previous step. Again, three phases of decision will take place as in
the previous step. Note that the following holds by definition: it+1 = jt, i.e., at
the current step we arrive with the option we chose in the previous step.
We will relate to the option it with which we arrive at a state st as the arrive-
option at time t, and the option jt which we choose in time t as the act-option.

3.2 The Augmented Model

Given the original state and action spaces, S,A, and the overall policy {µ,O},
we define the augmented state and actions spaces, S̃, Ã :

– Augmented state s̃ = (i, s), where i ∈ O is the the option with which we
arrive at the state s.

– Augmented action ã = (φ, j, a), where φ ∈ Astop is the decision whether
to stop the current arrive-option i. The action j ∈ O is the choice of the
act-option, and a ∈ A is the primitive action chosen by the act-option j.

State and option transitions in the original state space translate to state transi-
tions in the augmented space. Given the original transition probabilities P (s′|s, a)
we can calculate the transition probability function in the augmented one:

P (s̃′|s̃, ã) = P ((i′, s′)|(i, s), (φ, j, a)) = 1{i′=j}P (s
′|s, a) (13)

Hence, the transition probability is the original P (s′|s, a) if the next arrive-
option i′ is equal to the current act-option j, otherwise it is 0. Note that φ = cont
implies i = j.
Given a overall policy {µ,O} in the MDP M , we define the following policy Π
in the augmented space:

Π(ã|s̃) = Π((φ, j, a)|(i, s)) = Psp(φ|i, s)Pop(j|φ, i, s)P (a|j, s) (14)

where

Psp(φ|i, s) = 1{φ=stop}βi(s) + 1{φ=cont}(1− βi(s)) (15)

Pop(j|φ, i, s) = 1{φ=cont}1{j=i} + 1{φ=stop}µ(j|s) (16)

P (a|j, s) = πj(a|s) (17)

We relate to Π as the augmented hierarchical policy (AHP). Notice that Π(ã|s̃)
depends only on (ã, s̃) and is therefore stationary. The term Psp(φ|i, s) is the
probability that the current arrive-option i will stop at the current state s. The

next term Pop(j|φ, i, s) is the probability that an act-option j will be chosen
given the current state and stopping action, and the last term P (a|j, s) is the
probability that a new action a is chosen in state s, which is done according to
the policy of the act-option, j. In equations (15)-(17), we relate the equivalent
policy Π to the policy-over-options µ and options set O = {πi, βi}ni=1. Notice
that we can design µ to be also dependent at the arrive-option, i.e., µ = µ(j|i, s).
It is easy to show that the policy Π over the augmented spaces is equivalent to
the overall policy {µ,O}, over the original MDP, in the sense that both induce
the same probability measure over augmented state-actions trajectories (which
include stopping decisions and option choices), {it, st, φt, jt, at}Tt=0 particularly:

E{µ,O}[

∞∑
t=0

γtrt|s0, i0] = EΠ [

∞∑
t=0

γtrt|(i0, s0)] (18)

Therefore, in order to simultaneously learn the three decision components of the
overall policy (stopping, intra policies, policy-over-options), we can directly ap-
ply standard RL methods to the augmented hierarchical policy Π. In particular,
we can apply natural gradient methods which we mentioned in Subsection 2.1,
in the next Section we investigate natural gradient learning of the AHP, Π.

4 Natural Gradient of the AHP

In this Section we offer a modular parameterization of the AHP Π, for which we
prove an orthogonality property (Proposition 1), which enables us to substan-
tially reduce the computational burden of calculating the natural gradient for
the parameterized AHP (Corollary 1).
The special structure of the AHP Π in equations (14)-(17) suggests the following
parameterization:

βi(s) = βi(s, λi) (19)

µ(j|s) = µ(j|s, χ)
πj(a|s) = πj(a|s, θj)

with the parameter vector

Θ = (θ1, θ2 . . . , θN , λ1, λ2 . . . , λN , χ) (20)

The parameter vector Θ is composed of three types of sub-vector parameters:
θi controls the stationary policy of option i, λi controls the stopping of the ith

policy, and χ controls the choices of the policy over options µ.
Generally, in order to calculate the natural gradient (equation (10)), we should
invert an N ×N matrix, where N = dim{Θ}.
In what follows we denote byNθm , Nλk

, Nχ the dimensions of the vectors θm, λk, χ,

and by θ
(h)
j the hth element of the sub-vector θj .

Proposition 1 Let {µ,O} be an overall policy with stationary options set O =
{πi, βi}ni=1, and let Π be its equivalent augmented hierarchical policy as in equa-
tions (14)-(17), parameterized as in equations (19)-(20). Define the following
linear subspaces of the Θ-base functions from equation (6):

Ψθm = span{ψ
θ
(h)
m

}Nθm

h=1 ∀m ∈ O

Ψλk
= span{ψ

λ
(h)
k

}Nλk

h=1 ∀k ∈ O

Ψχ = span{ψχ(h)}Nχ

h=1 (21)

Then these subspaces are orthogonal under the inner product defined in (7).

Proof: We may calculate the base function for the elements of the parameter
vector Θ as follows:

ψ
λ
(h)
k

=
∂logΠ((φ, j, a)|(i, s), Θ)

∂λ
(h)
k

= 1{i=k}
1

Psp(φ|i, s, λi)
∂Psp(φ|i, s, λi)

∂λ
(h)
i

(22)

ψχ(h) =
∂logΠ((φ, j, a)|(i, s), Θ)

∂χ(h)
= 1{φ=stop}

1

Pop(j|φ, i, s)
∂µ(j|s, χ)
∂χ(h)

(23)

ψ
θ
(h)
m

=
∂logΠ((φ, j, a)|(i, s), Θ)

∂θ
(h)
m

= 1{j=m}
∂log πj(a|s, θj)

∂θ
(h)
j

(24)

It is easy to see that the indicator functions in (22)(24) imply that the following
orthogonality relations hold:

⟨ψ
λ
(f)
m
, ψ

λ
(h)
k

⟩ = 0 ∀m ̸= k (25)

⟨ψ
θ
(f)
m
, ψ

θ
(h)
k

⟩ = 0 ∀m ̸= k (26)

Less trivial are the following relations:

⟨ψ
θ
(f)
m
, ψ

λ
(h)
k

⟩ = 0, ⟨ψ
θ
(f)
m
, ψχ(h)⟩ = 0 ∀k,m (27)

⟨ψχ(f) , ψ
λ
(h)
k

⟩ = 0 ∀k (28)

Let us prove (27) first :

⟨ψ
θ
(f)
m
, ψ

λ
(h)
k

⟩ =
∑
s̃∈S̃

dΠ(s̃)
∑
ã∈Ã

Π(ã|s̃)ψ
θ
(f)
m
ψ
λ
(h)
k

=

∑
i,s

dΠ(i, s)
∑
φ,j,a

Π(ã|s̃)1{j=m}
∂log πj(a|s, θj)

∂θ
(f)
j

1{i=k}
∂logPsp(φ|i, s, λi)

∂λ
(h)
i

=

∑
s

dΠ(k, s)
∑
φ,a

Pop(m|φ, k, s, χ)∂Psp(φ|k, s, λk)
∂λ

(h)
k

∂πm(a|s, θm)

∂θ
(f)
m

=

∑
s

dΠ(k, s)
∑
φ

Pop(m|φ, k, s, χ)∂Psp(φ|k, s, λk)
∂λ

(h)
k

∂

∂θ
(f)
m

∑
a

πm(a|s, θm) = 0

where in the last step we used the identity
∑

a πm(a|s) = 1. The proof of
⟨ψ

θ
(f)
m
, ψχ(h)⟩ = 0 is similar. We next prove equation (28):

⟨ψχ(f) , ψ
λ
(h)
k

⟩ =
∑
s̃∈S̃

dΠ(s̃)
∑
ã∈Ã

Π(ã|s̃)ψχ(f)ψ
λ
(h)
k

=

∑
i,s

dΠ(i, s)
∑
φ,j,a

Π(ã|s̃)
1{φ=stop}

Pop(j|φ, i, s)
∂µ(j|s, χ)
∂χ(h)

1{i=k}
∂logPsp(φ|i, s, λi)

∂λ
(h)
i

=

∑
s∈S

dΠ(k, s)
∑
j,a

πj(a|s, θj)
∂µ(j|s, χ)
∂χ(h)

∂Psp(stop|k, s, λk)
∂λ

(h)
k

=

∑
s

dΠ(k, s)
∂Psp(stop|k, s, λk)

∂λ
(h)
k

∂

∂χ(h)
{
∑
j

µ(j|s, χ)
∑
a

πj(a|s, θj)} = 0

where in the last step we used the identities
∑

a πj(a|s) = 1,
∑

j µ(j|s) = 1. �
Given the last orthogonality result, it is clear that the matrix GΘ in (11) be-
comes block diagonal with each block corresponding to a component of Θ.

Corollary 1 Given a parameterization of the AHP Π as in equations (19)-
(20), we can estimate each sub-vector of the natural gradient w independently
as follows: we can write an independent equation with the form of (10) for the
relevant sub vector wθm , wλk

, wχ. The wθm equations:

Gθmwθm = cθm (29)

where:

Gθm(i, j) = ⟨ψ
θ
(i)
m
, ψ

θ
(j)
m
⟩ Gθm ∈ RNθm×Nθm (30)

cθm(i) = ⟨Qπ(s, a), ψ
θ
(i)
m
⟩ cθm ∈ RNθm (31)

Similar equations apply to wλk
, wχ.

Thus, in order to calculate the natural gradient vector, it is sufficient to invert
2n+1 Fisher matrices, where n denotes the number of options, each matrix has
the dimension of the corresponding sub-vector.

5 Multilevel Decision Hierarchies

In the previous sections we have considered a hierarchical structure with one
level of options below the top (policy-over-options) level, so that every low level
option chooses primitive actions. In this section we briefly consider a multi-level
hierarchical structure, in which higher-level options can treat options from a
lower level as extended actions. We describe options with only two levels of
hierarchy, as the extension to structures with more levels of hierarchy is similar.

Fig. 1: Hierarchical options structure.

In figure 1 we illustrate the hierarchical structure of an overall policy with two
levels of hierarchy, where root option is denoted by µ0, the first level option-
nodes are denoted by µ1, µ2 and beneath every node i in the 1st level lie the leaf
options oi,n whose policies are stationary. Similarly to section 3, we can divide
the choices made by this hierarchical policy into 5 decision phases as follows.
Suppose at time t the process arrives a state st with a leaf option oit,nt :

1. Decide whether to stop the current leaf option.

2. The hierarchy above, µit , makes a decision whether to stop the execution of
the current level 1 decision node.

3. The root policy µ0 chooses a new level 1 decision node, µjt .

4. The level 1 hierarchy, µjt chooses a new leaf option ojt,mt

5. The new leaf option chooses a primitive action at ∼ πjt,mt(·|st)

As in section 3, we can define corresponding augmented state and action spaces
and an equivalent augmented hierarchical policy above these augmented spaces,
it can be shown that the orthogonality property between the basis function of the
various policy components (Section 4) will be maintained. We omit the details
here due to space constraints.

6 Experimental Results – Inverted Pendulum

The inverted pendulum task is a known RL benchmark in which we have to
swing up an inverted pendulum from the down position to the up-position and
keep it stable. We have two state variables, the angle and it derivative, namely
s = (θ, θ̇), θ ∈ [0, 2π]. We can apply a limited torque |a| ≤ amax at the rotary
joint. The system dynamics is described by the following equation:

θ̈ =
1

ml2
(−αθ̇ +mgl sin(θ) + a) (32)

The simulation constants that we used are given in the following table:
Name Symbol Value

Maximal torque amax 7
Gravity acceleration g 9.81
Mass of pendulum m 1

Length of pendulum bar l 1
Friction coefficient α 0.5

In the experiments one trial was simulated for 10 seconds, and a discretization
time step of ∆t = 0.05 was used, resulting in 200 steps per episode. The reward
is given by r(s, a) = (cos(θ)− 1)− 0.02θ̇2, and the discount factor is γ = 0.98.
Motivated by [16, 17] where multiple controllers are designed based on traditional
control theory and then combined using an RL scheme, we use the following three
parameterized options in order to learn an effective control policy:

1. Swinging Option: a1 ∼ N (k1sign(θ̇), σ
2
1).

2. Decelerating Option: a2 ∼ N (−k2sign(θ̇), σ2
2).

3. Stabilizing Option: a3 ∼ N (k3θ̄ + k4θ̇, σ
2
3).

Here N (µ, σ2) is gaussian random variable with a fixed variance σ2.
And:

θ̄ , θ̄(θ) =

{
θ if 0 ≤ θ ≤ π

θ − 2π else

We further parameterized the options stopping conditions:

1. Swinging Option: β1(s) = Φ(θ−(π+λ1)
σsp

) + Φ(−(θ−(π−λ1))
σsp

).

2. Decelerating Option:

β2(s) = Φ(θ−(π+λd)
σsp

)Φ(−(θ−(π+λu))
σsp

) + Φ(θ−(π−λu)
σsp

)Φ(−(θ−(π−λd))
σsp

).

3. Stabilizing Option: β3(s) = Φ(θ−(π−λ3)
σsp

)Φ(−(θ−(π+λ3))
σsp

) .

Where Φ is the cumulative normal distribution. We optimize over the action pa-
rameters {ki}4i=1 and stopping parameters:{λ1, λ3, λd, λu}. And the inter option
decision rule is unchanging so that if |θ − π| ≤ π

2 then the next option will be
the first, otherwise we always make the following option transitions:1 7→ 2, 2 7→
3, 3 7→ 2.
In order to evaluate the value function we used the LSTD(λ) algorithm with
λ = 0.9, and the features vector:

fAug(i, s) = (1{i=1}f
T (s), 1{i=2}f

T (s), 1{i=3}f
T (s))T

where

fT (s) = (1, sin(θ), cos(θ), θ̇, sin(2θ), cos(2θ), θ̇2, θ̇ sin(θ), θ̇ cos(θ))

Results are illustrated in Fig.2. From Fig 2a, we can see that our algorithm
converges within 90 episodes, where in most of the cases it converges within less
40. Interestingly our algorithm eventually neglects the decelerating option, as
shown in Figure 2b.

0 50 100 150 200 250 300

−85

−80

−75

−70

−65

−60

−55

−50
E

xp
ec

te
d

re
tu

rn
 J

(Θ
)

Episodes

(a)

10 20 30 40 50 60 70 80 90 100

100

150

200

250

300

350

Time

θ
(d

eg
re

es
)

10 20 30 40 50 60 70 80 90 100

1

2

3

Time

O
pt

io
n

(b)

Fig. 2: Learning curves for the pendulum task. In (a) we can see the expected
return averaged over 20 runs. In (b),we can see the options selection and θ as a
function of time for the converged parameters .

7 Concluding Remarks

The unified framework that we propose enables to take a structure of overall
policy and simultaneously optimize the intra-option policies, the stopping con-
ditions and the policy-over-options. However, the simultaneous optimization of
all parameters is only optional, and our framework allows one to freeze some of
the parameters while learning the others. For example, we could think of first
learning each intra-option policy separately (possibly using subgoals), and then
keep the policies parameters fixed while optimizing over the stopping conditions
and the composition of options, and only at the final phase optimize all param-
eters simultaneously. Comparing simultaneous verses alternating optimization
schedules is an interesting direction for further research.
The possibility to tune the stopping conditions enables us to obtain “smoother”
transitions in between the options, as opposed to the subgoals approach, where
the termination conditions are rigid.
As shown, the orthogonality property between the basis function of the different
policy components leads to significant simplification in the computation of the
natural gradient. In future research, one could look for similar computational
leverages in other learning algorithms such as second-order methods for param-
eter tuning, and least squares methods for the value function evaluation [14, 15].
More generally, additional theoretical and empirical work on parametric options
learning is evidently called for.

Acknowledgements

This work was supported in part by the IST Programme of the European Com-
munity, under the PASCAL2 Network of Excellence, IST-2007-216886. This pub-
lication only reflects the authors’ views.

References

1. G. Comanici and D. Precup, “Optimal policy switching algorithms for reinforce-
ment learning,” in Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems, 2010, pp. 709–714.

2. M. Ghavamzadeh and S. Mahadevan, “Hierarchical policy gradient algorithms,”
Twentieth International Conference on Machine Learning, pp. 226–233, 2003.

3. G. Neumann, W. Maass, and J. Peters, “Learning complex motions by sequenc-
ing simpler motion templates,” in International Conference on Machine Learning,
2009.

4. R. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning,” Artificial intelligence, vol. 112,
pp. 181–211, 1999.

5. O. Simsek and A. Barto, “Using relative novelty to identify useful temporal abstrac-
tions in reinforcement learning,” in International Conference on Machine Learning,
vol. 21. Citeseer, 2004, p. 751.

6. I. Menache, S. Mannor, and N. Shimkin, “Q-cutdynamic discovery of sub-goals in
reinforcement learning,” Machine Learning: ECML 2002, pp. 187–195, 2002.

7. R. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods
for reinforcement learning with function approximation,” Advances in neural in-
formation processing systems, vol. 12, 2000.

8. J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing, vol. 71, no. 7-9,
pp. 1180–1190, 2008.

9. S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and M. Lee, “Natural actor-critic
algorithms,” Automatica, vol. 45, pp. 2471–2482, 2009.

10. S. Richter, D. Aberdeen, and J. Yu, “Natural actor-critic for road traffic optimisa-
tion,” Advances in neural information processing systems, vol. 19, p. 1169, 2007.

11. O. Buffet, A. Dutech, and F. Charpillet, “Shaping multi-agent systems with gradi-
ent reinforcement learning,” Autonomous Agents and Multi-Agent Systems, 2007.

12. S. Kakade, “A natural policy gradient,” Advances in Neural Information Processing
Systems 14, vol. 2, pp. 1531–1538, 2002.

13. J. Bagnell and J. Schneider, “Covariant policy search,” in International Joint Con-
ference on Artificial Intelligence, vol. 18. Citeseer, 2003, pp. 1019–1024.

14. J. Boyan, “Technical update: Least-squares temporal difference learning,” Machine
Learning, vol. 49, pp. 233–246, 2002.

15. A. Nedić and D. Bertsekas, “Least squares policy evaluation algorithms with linear
function approximation,” Discrete Event Dynamic Systems, vol. 13, 2003.

16. T. Perkins and A. Barto, “Lyapunov-constrained action sets for reinforcement
learning,” in International Conference on Machine Learning. Citeseer, 2001.

17. J. Yoshimoto, M. Nishimura, Y. Tokita, and S. Ishii, “Acrobot control by learning
the switching of multiple controllers,” Artificial Life and Robotics, vol. 9, 2005.

