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ABSTRACT

Multiple-target tracking (MTT) in the presence of spuri-
ous measurements poses difficult computational challenges
related to the measurement-to-track data association prob-
lem. Different approaches have been proposed to tackle this
problem, including various approximations and heuristic op-
timization tools. The Cross Entropy (CE) and the related
Parametric MinxEnt (PME) methods are recent optimiza-
tion heuristics that have proved useful in many combina-
torial optimization problems. They are akin to evolution-
ary algorithms in that a population of solutions is evolved,
however the solution improvement mechanism is based on
statistical methods of sampling and parameter estimation.
In this work we apply the Cross-Entropy method and its
recent MinxEnt variants to solve approximately the multi-
scan version of the data association problem in the presence
of misdetections, false alarms, and unknown number of tar-
gets. We formulate the algorithms, and explore via simu-
lation their efficiency and performance compared to other
recently proposed algorithms.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Probabilistic algorithms

General Terms

Algorithms, Performance

Keywords

data association, target tracking, heuristic optimization, cross-
entropy method, Monte-Carlo methods

1. INTRODUCTION
Multiple-target tracking (MTT) is an essential component

of surveillance-related systems. A general formulation of
the problem assumes an unknown and varying number of
targets continuously moving in a given region. In the single-
sensor version, the states of these targets are sampled by
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the sensor and the noisy measurements are provided to the
tracking system. The detection probability is not perfect
and the targets may go undetected at some sampling in-
tervals. In addition, there are spurious reports of possible
targets, or clutter measurements which arise independently
of the targets of interest. A primary task of the MTT system
is data association, namely, partitioning the measurements
into disjoint sets, each generated by a single source (target
or clutter). The secondary goal is estimation of the states
based on the measurements originating from the targets of
interest. The data association problem may be formulated
in several ways. In single scan data association the raw mea-
surements are processed one scan at a time and the target
states are updated accordingly. Alternatively, several sets
of measurements may be collected and processed together
in batch mode – this is the multi scan data association. For
an illustration see Fig. 2.

Several methods exist to handle the data association prob-
lem. These may be roughly grouped into two types: Bayesian
and non-Bayesian. Among the Bayesian methods, there is
the well known Joint Probabilistic Data Association Filter
(JPDA) [1], which is a single scan filter where the states of
existing targets are to be updated based on the latest set of
measurements (scan). Data association is handled by sum-
ming over the probabilities of all feasible partitions, where
no two targets can share a measurement and each target
may be a source of at most one measurement per scan. A
shortcoming of the basic JPDA is its inability to initiate and
terminate tracks. In addition, calculating the probabilities
of all feasible events is NP-hard [4] in the number of targets
and measurements and the calculation becomes intractable
even for a moderate size of the problem. Another well known
approach is the multiple hypotheses tracker (MHT) [10], in
which each hypothesis associates past observations with tar-
gets and, as a new set of observations arrives, a new set of
hypotheses is formed by augmenting the previous ones. The
hypothesis with the highest posterior is returned as a so-
lution. The MHT is capable of initiating and terminating
tracks. However, the number of hypotheses involved in the
calculation grows exponentially over time. Thus, in order
to overcome the complexity, several pruning and clustering
methods are used at the expense of optimality.

The non-Bayesian approach is characterized by hard mea-
surement to track association, such that some cost func-
tion is maximized. The problem may then be reformulated
as an integer programming problem [7] or, more precisely,
as a multidimensional assignment problem, which is NP-
hard when the number of sets (scans) to be assigned is



greater than 3 [6]. Therefore, for the multi scan data as-
sociation, one should invoke some approximations schemes
for the multidimensional assignment such as Lagrangian re-
laxation techniques [5]. Note, however, that when there are
only two sets of data to be assigned, there exist exact, poly-
nomial time solutions which have been combined with par-
ticle filter based algorithms in the context of multi-target
tracking [8].

Another option to solve the multi scan data association
problem is by utilizing stochastic search methods. In [9] the
problem was solved by applying the Markov Chain Monte
Carlo (MCMC) method to obtain the partition with max-
imum posterior. Using the Metropolis algorithm, the au-
thors proposed a set of moves for modifying a partition of
the measurements, such that sampling from the posterior
distribution was possible after a few thousands of moves.
They showed a remarkable performance of the algorithm in
comparison to the MHT method in terms of accuracy of
the solution and running time. However, the algorithm is
still susceptible to getting trapped in a strong local max-
ima. Such behavior is typical of local search algorithms.

The main contribution of this paper is the development of
feasible algorithms that solve the multi scan data associa-
tion problem and are capable of initiating and terminating a
varying number of tracks. While the general setup and prob-
lem definition are very similar to those in [9], the solution
approach is different. We invoke the Cross Entropy (CE)
method [13] and the related Parametric MinxEnt (PME)
method [14] in order to obtain the partition with the high-
est posterior. CE based schemes are approaches for combi-
natorial and continuous optimization and for estimation of
rare-events probabilities. They are inherently global search
methods and, therefore, reduce the risk of getting into a local
maxima. The main idea is representing the solution space
with a set of parameters and defining a probability distrib-
ution on their values. Then, two successive steps are iter-
ated – sampling from the existing distribution, and updating
this distribution using a subset of elite (better-valued) sam-
ples. The underlying principle of solution improvement is
thus akin to evolutionary optimization algorithms (see, e.g.
[16]), but the solution generation mechanism is different,
and the whole scheme has very few meta-parameters that
need to be tuned. The resulting Cross Entropy Data Asso-
ciation (CEDA) and Parametric MinxEnt Data Association
(PMEDA) algorithms are applied to challenging tracking
scenarios, and show improved performance relative to cur-
rent state-of-the-art techniques, and in particular relative to
the results reported in [9].

The structure of this paper is as follows. We formally state
the (discrete-time) general multiple-target tracking problem
in section 2. In section 3 we outline the CE and PME meth-
ods for combinatorial optimization. In section 4 we present
general purpose CEDA and PMEDA algorithms for multiple
target tracking. The algorithms are applied in simulation to
hard tracking scenarios and their performance is compared
with several popular algorithms in section 5.

2. PROBLEM DEFINITION

2.1 Preliminaries
Consider a surveillance scenario of duration T ∈ Z

+. There
are K targets moving around the surveillance region R for
some duration [tk

i , tk
f ] ⊂ [1, T ] for k = 1, . . . , K where K

is an unknown integer. The volume of R is V and it is
scanned periodically by a single sensor having scan period
Ts normalized to one time unit. The notation [ti, tj ] should
be interpreted as {ti, ti + 1, ..., tj}.

2.2 Target Model
In this subsection we describe the target modeling com-

monly used in the target tracking literature (see e.g. [2]).
Each target k starts at a random position in R at time tk

i ,
moves around R until tk

f and disappears. An existing target
may disappear at each sampling time with probability pz

and persists with probability 1 − pz. The number of new
objects arising at each time in R is modeled to have a Pois-
son distribution with a parameter λbV , where λb is the birth
rate of new targets per unit time and volume. The initial po-
sition of a new target is uniformly distributed over R. We
describe the motion of an object by the discrete-time dy-
namics F : R

d → R
d, where d is the dimension of the state

variable, and xt ∈ R
d is the state at time t. The object

k moves according to xk
t+1 = F (xk

t , wk
t ), t = tk

i , . . . , tk
f − 1

where wk
t ∈ R

d are white noise processes. In this work, we
consider the same linear dynamical model for each target,
namely, if a target is observed l times at ti, i = 1, ..., l, its
dynamic model may be expressed as:

xti+1
= A(ti+1, ti)xti + G(ti+1, ti)wti (1)

where wti is a white Gaussian noise with covariance matrix
Q. A and G are matrices of appropriate sizes, with entries
determined by the sampling interval (ti, ti+1) for each i.

2.3 Sensor and Measurement Models
We assume that a single sensor scans the surveillance re-

gion periodically with scan time Ts of one time unit. Noisy
observations of the position of each object are obtained with
detection probability Pd. In addition, the sensor generates
false alarms, whose number is assumed to have a Poisson dis-
tribution with parameter λfV , where λf is the false alarm
rate per unit time per unit volume. The origin of each ob-
servation (i.e. target or false alarm) is not a-priori known,
since each observation is assumed to carry only the cartesian
position and the corresponding time tag.

Let nt be the number of observations at time t, including
both noisy observations and false alarms. Let yj

t ∈ R
m de-

note the j-th observation at time t for j = 1, . . . , nt, where m
is the dimensionality of each observation vector. Each target
generates a unique observation at each sampling time if it is
detected. We assume a linear observation model, namely, an
arbitrary observation at time ti, yj

ti
, is generated as follows:

yj
ti

=

�
C(ti)xti + vti , yj

ti
is object originated

ut, otherwise
(2)

where vti ∈ R
m is a white Gaussian noise independent of

wti with covariance matrix R, C is a matrix of appropriate
size, and ut ∼ Unif(R) is the random process of false alarms,
assumed to be uniformly distributed in space.

2.4 Solution Space and Optimization Criteria
Dealing with hard data association we seek for a partition

of the measurements into disjoint sets. One of these sets is
the collection of false alarms and the others are collections
of measurements originating from the same target – one set
per target. Let Yt =

�
yj

t : j = 1, . . . , nt

	
be the set of ob-

servations at time t, and Y1:T =
S

t∈{1,...,T} Yt be the set of



all observations. Ω is defined to be the set of partitions of
Y1:T such that, for ω ∈ Ω:

1. ω = {τ0, τ1, . . . , τK},

2.
SK

k=0 τk = Y1:T and τi ∩ τj = ∅ for i 6= j,

3. τ0 is considered as the set of false alarms and τk, k ≥ 1
is considered as the kth track – a set of measurements
that are attributed to the kth target1.

τi =
n

yi1
t1

, yi2
t2

, . . . , yj
tj

| j ∈ Z
+, t1 < t2 < . . . < tj

o
4. |τk ∩ Yt| ≤ 1 for k = 1, . . . , K and t = 1, . . . , T . That

is, each measurement belongs to one track at most.

5. |τk| ≥ 2 for k = 1, . . . , K, where |τk| denotes the car-
dinality of τk. That is, a track must contain at least
two measurements.

We make two additional assumptions as part of the problem
formulation.

A. The maximal velocity of any target is bounded by a
known constant vmax.

B. The number of consecutive missing observations of any
track is bounded by a known constant dmax. This as-
sumption may be used as a criterion to distinguish an
event of a new target’s appearance from an event of a
continuation of an existing target.

For further discussion of the last two restrictions the reader
is referred to [9]. A partition ω ∈ Ω is said to be valid
or feasible. Once a partition ω ∈ Ω is chosen, the tracks
τ1, . . . , τK ∈ ω and the set of false alarms τ0 ∈ ω are com-
pletely determined. We thus face a problem of choosing
the best (in some sense) partition ω∗ given the set of ob-
servations Y1:T . This is the so-called measurement oriented
approach to data association.A natural criterion for this ap-
proach is to consider the Maximum a-Posteriori probability
[2, 9, 10]. That is, looking for the optimal partition ω in the
MAP sense:

ω∗ = arg max
ω∈Ω

P {ω | Y1:T } . (3)

2.5 Cost Function
The expression for the posterior probability is commonly

used in the target tracking literature [2, 1, 9, 10] and the
complete derivation is omitted due to space limitations. Ap-
plying Bayes rule to (3) one obtains,

ω∗ = arg max
ω∈Ω

p (Y1:T | ω) P {ω} .

For each partition ω we define mt to be the number of targets
at time t, at – the number of new targets at time t, zt – the
number of targets terminated at time t, dt – the number of
target detections at time t, ut – the number of undetected
targets at time t, and ft – the number of false alarms at
time t. Bearing in mind that nt is the total number of
measurements obtained at time t, it may be easily verified
that the following relations hold: mt = mt−1 + at − zt,
ut = mt − dt, ft = nt − dt. The prior probability of a

1We shall refer to the above set of measurements as a track,
although usually a track is an estimated trajectory, that is
after filtering (or smoothing) out the measurement noise.

partition is determined by the above and the clutter and new
targets models. The likelihood accounts for the goodness
of fit of the measurement to a given partition based on the
target and measurement models. The final expression reads,

P {ω | Y1:T } ∝
Y

τ∈ω\{τ0}

|τ |Y
i=2

N (τ (ti); ŷti(τ ), Bti(τ )) (4)

·
TY

t=1

pzt
z (1 − pz)

mt−1−zt · P dt

d (1 − Pd)
utλat

b λft

f ,

where N (x; µ, Σ) is the Gaussian density with mean µ and
covariance Σ evaluated at x, τ (ti) is the i-th measurement
associated with track τ , ŷti(τ ) is the i-th predicted measure-
ment obtained from the standard Kalman Filter applied to
the measurements associated with track τ , and Bti is the
corresponding innovation covariance. For an extensive dis-
cussion and derivation of (4) the reader is referred to [15].

3. BACKGROUND ON CE AND PME

3.1 The CE Method for Combinatorial Opti-
mization

Let X be a finite set of elements and S(·) be a performance
function defined on X . Our goal is to find the maximum of
S(·) over X . Namely,

S(x∗) = γ∗ = max
x∈X

S(x). (5)

A convenient way to introduce the CE method is from the
parameter estimation perspective. When solving optimiza-
tion problems using the CE method, one searches for a prob-
ability distribution concentrated near the global extremum
of the objective function. Assume we can define a parame-
terized probability density function f(x;v) on the set x ∈ X .
The goal is to construct a sequence of parameter vectors
v1,v2, .... such that f(x;vt) becomes concentrated around
the global optimum x∗ as t increases. This goal is achieved
by sampling from f(x;vt) and constructing the next pa-
rameter vector vt+1 as the Maximum Likelihood estimate
of the distribution parameter based on the elite samples.
Namely,

v̂t+1 = arg max
v

ln f(X̃1, ..., X̃Nρ;v), (6)

where X̃1, ..., X̃Nρ are the Nρ elite samples, achieving the
best performance in the current set, and f(X̃1, ..., X̃Nρ;v)

is the joint density evaluated at X̃1, ..., X̃Nρ. The new para-
meter vector defines a new distribution from which we can
sample again and repeat the procedure. Instead of updating
the parameter vector vt directly via the solution of (6) one
may use the smoothed update which reduces the probability
that some components of vt will become degenerate at early
stages,

v̂t = αṽt + (1 − α)v̂t−1, 0 ≤ α ≤ 1, (7)

where ṽt is the solution obtained from (6). The whole proce-
dure is summarized in Alg. 1. The stopping criteria in step 5
of Alg. 1 may be lack of significant improvement for several
iterations, or convergence to a degenerate distribution.

Assume now that X = (X1, ..., Xn) is a random vector
such that each Xi is a discrete random variable that can



Algorithm 1 The CE Algorithm for Optimization.

1: Define v̂0 = u. Set t = 1 (level counter)
2: Generate X1, . . . ,XN from f(·;vt−1) and compute the

sample (1 − ρ)-quantile γ̂t of the performances.
3: Find the MLE of the new parameter vt based on the set

of the elite samples. Namely, solve (6).
4: Smooth the estimate via (7).
5: If stopping criteria are met - stop, otherwise set t = t+1

and reiterate from step 2.

assume a finite number of values {a1, ..., am} and let

vjk , P {Xj = ak} = Ev

h1{Xj=ak}

i
be the components constituting the parameter vector v. The
important observation that makes the CE method very easy
to apply to various optimization problems, such as the Trav-
eling Salesperson and MaxCut [6, 13], is that in this case
there is a simple componentwise analytical solution to (6)
that reads [13]

v̂jk =

PN

i=1 1{Xij=ak}1{S(Xi)≥γ̂t}PN

i=1 1{S(Xi)≥γ̂t}

, (8)

where Xij is the j-th element of the i-th sample Xi drawn
from f(x,vt−1). Namely, the updated value of each pa-
rameter is the relative frequency of the appearance of the
corresponding value in the current elite sample.

3.2 The PME Method for Combinatorial Op-
timization

Recall that the goal of the CEM was to find a“good” sam-
pling density concentrated near the global optimum of the
problem at hand. Another option is to consider the (single
constrained) Minimum Cross Entropy (MinxEnt) program
that reads

min
f(x)

�
D(f |h) =

Z
ln

f(x)

h(x)
f(x) dx = Ef

�
ln

f(X)

h(X)

��
(9)

subject to the first moment constraint:

EfS(X) = γ,

Z
f(x) dx = 1,

Z
h(x) dx = 1, (10)

where f and h are n-dimensional pdf’s, S(x) is the known
performance function, x ∈ R

n, and γ is a performance close
to the optimal γ∗. Assuming h(·) is a known pdf that incor-
porates all the available information about g∗(·), the prob-
lem is to find the closest to h(x) density f(·) in the Kullback-
Leibler sense subject to the moment constraint. If no prior
information is available, h(x) is taken to be uniform. We
shall restrict ourselves to the discrete distributions f(x) and
h(x) parameterized by parameter vectors v,u respectively –
f(x,v) and h(x,u). The solution of the MinxEnt program
is [11]

f(x,v∗) =
h(x,u) exp {−S(x)λ}

Eu [exp {−S(X)λ}]
, (11)

where λ is a constant (temperature) obtained from the fol-
lowing equation

Eu [S(X) exp {−S(X)λ}]

Eu [exp {−S(X)λ}]
= γ, (12)

and X ∼ h(x,u). For γ = γ∗, the optimal temperature is
λ∗ = −∞ and the optimal density f∗(x) is a Dirac delta
function located at x∗. Given a successful choice of γ and
obtaining the corresponding value of λ we could, in princi-
ple approximate the optimal x∗ by generating samples from
(11). However, sampling from such distribution is not a triv-
ial task. Thus, we shall approximate the distribution (11) as
a product of marginal densities which will allow easy sam-
pling similarly to the basic CE method. Note that if h(x,u)
is a discrete (multidimensional) distribution with finite sup-
port, then so is f(x,v∗) and, consequently, all its marginal
distributions. Thus, all these distributions are completely
determined by their parameters which may be calculated as
follows. Assuming as before, that X = (X1, ..., Xn) is a ran-
dom vector such that each Xi is a discrete random variable
that can assume a finite number of values {a1, ..., am}, the
PME estimator of

vjk , P {Xj = ak} = Ev

h1{Xj=ak}

i
is [14]

v̂jk =

PN

i=1 1{Xij=ak} exp {−S(Xi)λ}PN

i=1 exp {−S(Xi)λ}
. (13)

It is readily seen that (13) is essentially the same as (8)
with indicators 1{S(Xi)≥γ̂t} being replaced by exponentials
exp {−S(Xi)λ}. The optimal “temperature” parameter λ is
obtained from the (numerical) solution of the stochastic ver-
sion of (12) such that the single constraint in (9) is satisfied:PN

i=1 S(Xi) exp {−S(Xi)λ}PN

i=1 exp {−S(Xi)λ}
= γ. (14)

Similarly to the CE method, we invoke a multi-stage proce-
dure where a sequence of reference parameters {vt, t ≥ 0},
a sequence of levels {γt, t ≥ 1} and a sequence of tempera-
tures {λt, t ≥ 1} are generated. As before, we shall use the
latest available information for the prior density. Namely,
at stage t, h(x,u) = f(x,vt). The whole optimization pro-
cedure is summarized in Algorithm 2. For both CE and

Algorithm 2 The PME Algorithm for Optimization.

1: Define v̂0 = u. Set t = 1 (level counter).
2: Generate X1, . . . , XN from f(·; v̂t−1) and compute the

performance mean from γ̂t = Ev̂t−1
S(X).

3: Use the same sample X1, . . . ,XN and solve the stochas-
tic program (14). Denote the solution by λ̂t.

4: Update v̂t componentwise via (13).
5: If stopping criteria are met - stop, otherwise set t = t+1

and reiterate from step 2.

PME optimization routines we expect the parameter vec-
tors to converge to degenerate ones, such that by sampling
from the final distribution we shall always obtain optimal or
near-optimal solutions. Unlike CE, all samples are used to
update the parameters in the PME method (although modi-
fications are possible) and the solution for λ in (14) requires
a line-search procedure and usually cannot be done analyt-
ically. We thus expect each iteration of the PME method
to be slower than its CE counterpart. All “tuning” meth-
ods used for CE, such as smoothing and stopping rules, are
directly applicable here as well.



4. CE BASED DATA ASSOCIATION
In this section we develop a family of CE-based algorithms

to solve the multi-scan multi-target tracking problem. Since
the only difference between the CE and PME methods for
combinatorial optimization is the updating scheme of the
parameters, we shall describe both methods together and ex-
plain the differences when needed. In order to apply the CE
and PME methods to our problem we must specify the ran-
domizing pdfs {f(·;v)} and the procedure for sampling the
solutions from it. A convenient framework for both meth-
ods is to encode the optimization problem as a graph and to
introduce the randomization on the graph’s edges or nodes
[13].

4.1 The Connectivity Graph
Let n =

PT

t=1 |Yt| = |Y1:T | be the total number of obser-
vations (both noisy detections and false alarms). We define
G = (V, E) to be the basic connectivity graph of the problem,
where the set of nodes V = Y1:T is the set of all measure-
ments as defined above and the graph edges are

E = {(yt1 , yt2) | yt1 , yt2 ∈ Y, t1 < t2, (15)

‖yt2 − yt1‖ ≤ (t2 − t1)vmax, t2 − t1 ≤ dmax}.

This graph connects every node (measurement) with any
other node that can be an immediate successor in a feasible
track, subject to speed and separation constraints. A feasi-
ble track which is a set of observations with increasing time
tags is represented as a path in G, that is

τ =
n

yi, i = 1, 2, . . . , j | (yi, yi+1) ∈ E, i = 1, . . . , j − 1
o

.

The nodes of the graph represent measurements (both noisy
detections and false alarms), and the edges represent the
possible event that their endpoints originate from the same
target. Note that a node y that has no incoming and outgo-
ing edges is a false alarm by default, and may be removed
from the graph and permanently added to the set of false
alarms τ0. Henceforth, we shall assume that all such nodes
are removed from the graph. From now on, we identify each
valid partition of the measurements with the corresponding
partition of the graph nodes. The goal is to find a par-
tition of the the graph nodes into a set of vertex-disjoint
paths {τi, i ≥ 1} (which will represent tracks) and a set of
isolated nodes τ0 (which will represent false alarms) such
that the posterior P {ω | Y1:T }, defined in (4), is maximized.
Let S(ω) = P {ω | Y1:T } be the cost of a partition ω ∈ Ω.

We would like to incorporate the possibility of a (random)
appearance of the new targets and termination of existing
ones into the connectivity graph. This will be done by aug-
menting the basic connectivity graph by introducing new
nodes and edges. In order to incorporate the possibility of
termination of a target, we introduce an additional “sink”
node t that represents termination of a track. Each other
node i in the basic connectivity graph is connected to t by
a directed edge represents the event that i corresponds to
the last detection of the target prior to termination. Ad-
ditionally, t has a self-loop which meaning will be made
clear shortly. In order to be able to handle problems in-
volving unknown number of targets and initiation of new
ones we introduce additional n nodes into the graph – one
for each original node of the basic graph. These will be la-
beled s1, s2, ..., sn. Each new node si has two outgoing edges
– one leading to the corresponding node i ∈ V and another

n1 n2 n3 n4 n5 n6

n7 n8 n9 n10 n11 n12

s7 s8 s9 s10 s11 s12

s1 s2 s3 s4 s5 s6

t

Figure 1: An example of the ACG. Solid circles rep-
resent the actual measurements. Node i is denoted
as ni. Dashed circles are the additional nodes.

to the termination node t. The event represented by the
former edge is that node i is the first detection of a track. A
path that represents a track with j measurements contains
now j + 2 nodes as follows – {sv1

, v1, ..., vj , t}. We call the
resulting structure an augmented connectivity graph (ACG)
and refer to the original nodes in ACG, representing the ac-
tual measurements, as inner nodes. An example of an ACG
is shown in Fig. 1.

4.2 Probability Distribution Using the ACG
Next we define the probability distribution on the set

of partitions using the augmented connectivity graph. Let
GA = (VA, EA) be the ACG of the problem. For each inner
node i of the ACG, let pb(i) denote the probability that i is
an initial node. Similarly, for each inner node i in the ACG,
let pt(i) denote the probability that i is a final node in a
path. Let PA be the adjacency matrix of GA as follows,

PA = {pij > 0 : i, j ∈ VA,
X

j∈VA

pij = 1 (16)

pij = 0 if (i, j) /∈ EA, ptt = 1,

pij = pt(i) if j = t, pij = pb(j) if i = sj}.

From the construction of GA, all rows of PA have at least
one non-zero entry and it may be interpreted as a one-step
transition matrix of a directed Random Walk M on the
augmented graph GA. We define the following probability
distribution on the edges of GA:

f(ω | PA) =

8><>: 1
Z

nQ
k=1

|τk|+1Q
r=1

Q
i,j:{ω∈Ωij(r)}

pij , ω ∈ Ω

0, ω /∈ Ω

,

(17)
where Z is a normalization constant and Ωij(r) is the set
of all partitions in Ω for which there is a path with rth
transition from node i to node j

4.3 Sampling of Candidate Solutions
We now describe how to sample a partition ω from the dis-

tribution (17) defined through the edges of the augmented
connectivity graph GA having adjacency matrix PA. Recall
that PA may be interpreted as a one-step transition matrix



of the corresponding Random Walk M. We describe the
sampling procedure in two stages. First, we describe sam-
pling a single path in GA. We then proceed with sampling
multiple non-intersecting paths.

4.3.1 Sampling a Single Path

Sampling a single random path from the graph GA is per-
formed by picking uniformly at random i1 from {1, ..., n}
and generating a random walk on GA starting at si1 accord-
ing to the transition matrix PA until hitting t. Note that
since GA is a directed acyclic graph – after at most T steps
the sink node t will be reached and the process will termi-
nate. The resulting path is τ =

�
si1 , vi1 , ..., vij , t, j ≥ 0

	
.

It corresponds to a track associated with the measurements
corresponding to the nodes

�
vi1 , ..., vij

	
. From our problem

definition a valid track contains 2 or more measurements.
Thus, the resulting path is interpreted as a track if it con-
tains 4 or more nodes, namely if j ≥ 2. Shorter paths are
interpreted differently. For example, the only interpretation
of s1 → v1 → t is that v1 is a FA and the only interpretation
of the path s1 → t is that vs1

cannot be a first measurement
in any track (it can, however, be an inner measurement of
some other track).

4.3.2 Sampling Non-intersecting Paths

To sample from (17) we could generate independently n
random walks on GA according to the procedure described
above. The resulting set of paths could have been returned
if it represented a valid solution (i.e. different paths do not
share nodes), or rejected otherwise. However, most samples
generated in this way will not be valid. We thus consider
an alternative, efficient sampling which ensures that only
valid solutions will be sampled. To this end, we invoke the
elimination principle similar to that used in the Traveling
Salesperson Problem in [13]. Strictly speaking, we repeat
the procedure for single path sampling n times from the
n auxiliary nodes s1, s2, ..., sn as before, but, upon reach-
ing a node we mark it as used and eliminate all incoming
edges, that is nullify the probabilities on these edges and
re-normalize the transition probabilities of remaining edges.
This sampling procedure is summarized in Alg. 3.

Algorithm 3 Sampling Procedure for the CEDA/PMEDA.

1: Pick si1 u.a.r from S = {s1, ..., sn}.

2: Define P (1) = PA and t11
= si1 to be the first node of

the first path. Set ut = t11
to be an auxiliary variable

that holds the current node. Let k = 1, j = 1.
3: Obtain P (j+1) from P (j) by setting the ut-th column of

P (j) to 0 and normalizing the rows to sum up to 1.
4: Generate tkj+1

from the distribution formed by the ut-

th row of P (j). If tkj+1
= t then S = S\ {si1} and go

to 4. Otherwise set ut = tkj+1
, j = j + 1 and reiterate

from 3.
5: If S = ∅ then stop. Otherwise, set j = 1, k = k + 1.

Pick si1 u.a.r from S and set tk1
= si1 (that is, start

new path), ut = tk1
and repeat from step 3.

4.4 Parameters Update
In order to update the distribution, we need to estimate

the parameters of the new matrix PA (16) based on the
best samples that have been obtained. This is performed by

taking the elite samples and calculating the Maximum Like-
lihood estimate of the elements of the new matrix PA. As
is well known [13], each parameter pij = (PA)ij is estimated

as p̂ij =
Nij

Ni
where Nij is the number of times the edge

(i, j) was used in the elite sample and Ni is the number of
times node i was visited in that sample. The PME updating
is performed in a similar manner as explained in section 3.
In addition, in our experiments we have used the smoothed
update as described in section 3.

4.5 Multi-Node State Representation
Recall that the state variable xt contains, in addition to

the target position, additional information such as target
velocity which is useful for estimating its next position. The
measurement variable zt, however, is assumed to carry only
position information. Since each inner node of the ACG
represents a single measurement, it is insufficient for predict-
ing likely positions for the next measurement. One possible
solution that we employ here is to modify the parametric
distribution that underlies the CE and PME algorithms in
the following way. Instead of sampling the next node in each
path based on the current node alone, we allow the sampling
probability to depend on several recent nodes (2 nodes are
used in the examples of the next section). While the number
of parameters to be estimated is increased, the performance
improvement is dramatic. This idea was introduced in [12]
and may easily be extended to higher order motion models.

4.6 Initialization Scheme
We introduce an initial probability distribution by apply-

ing a Kalman Filter to every three (or more – depending
on the target model) neighboring inner nodes of GA which
represent three consecutive measurements. The filter is ini-
tialized with the first two measurements using the two-point
differencing technique [3]. Namely, we initialize the position
as that of the first measurement and the velocity as the dif-
ference between the two measurements divided by the dif-
ference in their time tags. The corresponding probability of
each edge of the graph is computed on the basis of the pre-
dicted value of the Kalman Filter compared with the third
measurement.

Recall next that each node representing a measurement is
linked to the sink node t in the ACG. The probabilities on
these edges are initialized to some small value, the termina-
tion probability pz, which was introduced in section 2. The
probabilities on the edges outgoing from each node are then
re-normalized to sum to 1. Finally, initial probabilities are
introduced on the edges connecting the s nodes with the rest
of the graph. Each such edge is assigned a small probability,
say pb = 0.3 and the complementary value is assigned to the
edge connecting s to t.

4.7 Computational Requirements
The total running time is determined by the total number

of iterations until convergence, each of which is determined
by the number of candidate solutions, the time required to
generate each solution, the time required to evaluate each
solution, and the time to update the parameters for the fol-
lowing CE or PME iteration. Recall that a candidate so-
lution is drawn by randomly choosing vertex-disjoint paths
from the connectivity graph which is the problem was en-
coded to. Since the number of targets and their positions
are not known a-priori, every node in the graph has a prob-



ability to represent a true detection. Thus, the procedure
of sampling a single path in the graph is repeated, in the
worst case, O(n) times where n is the total number of ob-
servations. Sampling a single path from the graph is lin-
early dependent on the average outdegree of the nodes in
the graph, which is of the order of O(n), and on the sur-
veillance duration T . Namely, the complexity of sampling a
single candidate solution is O(T ·n2). Evaluation of the cost
of each solution requires, in the worst case, O(nT 2) since
we apply a Kalman filter to at most n/T tracks of length T .
The procedure of sampling a solution and evaluating its cost
is repeated N times (as the number of sampled solutions in
each iteration). The updating procedure in the multi-node
state representation requires O(N · n3) and the preprocess-
ing stage – O(n3) since we perform a constant number of
operation on every measurements triplet. The overall pro-
cedure time requirements are summarized as

O(nCE(N · n3 + N · T · n2)), (18)

where nCE is the number of CE/PME iterations till conver-
gence.

5. SIMULATION RESULTS

5.1 General Simulation Setup
We consider the same simulation setup as in [9]. A rec-

tangular region on a plane, R = [0, 1000] × [0, 1000] ⊂ R
2

is taken to be the surveillance region. Each target has a
4-component state vector with position and velocity in the
x and y directions. Namely,

xt = [pxt, vxt, pyt, vyt]
T .

We have used the Discrete White Noise Acceleration (DWNA)
model [3] for the targets dynamics. Namely,

xt+1 = Axt + Gwt,

where

A = diag [F1, F1] , F1 =

�
1 Ts

0 1

�
.

In addition, the vector process noise is wt = [wxt wyt]
T with

covariance Q = diag(σ2
w, σ2

w), and

cov(Gwt) = σ2
w · diag(Q1, Q1), Q1 =

�
1
4
T 4

s
1
2
T 3

s
1
2
T 3

s T 2
s

�
.

The measurement equation is

yt = Cxt + vt,

where

C =

�
1 0 0 0
0 0 1 0

�
and the (vector) measurement noise covariance matrix is
R = diag(σ2

v, σ2
v). We have used a surveillance duration

of T = 10 scans. Targets appear at a uniformly chosen po-
sition from the left bottom or right bottom quadrants of R
respectively. They all move diagonally (in straight lines)
with constant velocity randomly chosen between 0.2vmax

and 0.9vmax. Each target’s appearance and disappearance
times are chosen uniformly from the first and last quarters
of the surveillance interval respectively. An example of a
typical scenario is shown in Fig. 2.

5.2 Performance Measures
To the best of our knowledge, definition of unified per-

formance measures for evaluation of MTT algorithms is an
open question in the tracking and information fusion com-
munity. Performance evaluation of single-target tracking al-
gorithms (both with and without measurement origin uncer-
tainty) may be quantified by means of the Mean Square Er-
ror (MSE). Such criteria are problematic when dealing with
association algorithms, since the MSE may provide mean-
ingful insight on the performance only provided the data
association is perfect. We thus adopt the following, rather
intuitive, measures for performance evaluation suggested in
[9].

1. The normalized correct associations (NCA), that is,
the number of correct associations made by CEDA al-
gorithm divided by the true number of associations.

2. The incorrect-to-correct association ratio (ICAR) which
measures the ratio of incorrect to correct associations.

Mathematically, for each partition ω ∈ Ω, the set of all
associations in ω is represented as SA(ω) = {(τ, tτ

i , tτ
i+1) :

i = 1, . . . , |τ | − 1, τ ∈ ω} where tτ
i is the time at which the

track τ is observed i times. The set of correct associations
in ω relative to ω∗, which is the true partition, is CA(ω) =
{(τ, t, s) ∈ SA(ω) : τ (t) = τ∗(t), τ (s) = τ∗(s), τ∗ ∈ ω∗} The
above measures now read:

NCA(ω) =
|CA(ω)|

|SA(ω∗)|
, ICAR(ω) =

|SA(ω)| − |CA(ω)|

|CA(ω)|
.

In addition, we record the number of tracks estimated by the
algorithms. From the definition, NCA varies between 0 and
1 and it provides a measure of the number of correct asso-
ciations. In case of perfect associations - NCA = 1. It does
not account, however, for false tracks. On the other hand,
ICAR is a positive measure not bounded from above and,
informally, it counts false associations – both false tracks
and false continuations of true tracks. When no incorrect
associations are made - ICAR = 0.

5.3 Experiments and Results
In this section we test the performance of the proposed

algorithms by comparing them with the performance of the
Multiple Hypotheses Tracker (MHT), the Greedy tracker
[9] and the Markov Chain Monte Carlo Data Association
(MCMCDA) as was reported in [9]. The MHT and MCM-
CDA methods were briefly described in section 1. The greedy
tracker proposed in [9] is a batch-mode nearest neighbor
multiple-target tracking algorithm. It generates candidate
tracks by picking measurements nearest to the predicted
states until there there are no unused measurements left.
The algorithms are compared to each other using the per-
formance measures NCA, ICAR and the estimated number
of targets described in subsection 5.2.

Several ways exist to challenge a data association algo-
rithm. The first is by intensifying the false alarm rate λfV .
In addition, one can decrease the detection probability Pd

and increase the density of tracks K. Closely moving targets,
low detection probabilities and high false alarm rate make
the problem more difficult. In the following we perform three
different test sequences in which we modify different para-
meters to evaluate the performance of the algorithms – the
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Figure 2: An example of a typical scenario. Target detections and FAs from all 10 scans are shown (a), FAs
from a single scan are shown (b).

false alarm rate λf , the density of tracks K, and the detec-
tion probability Pd. In all simulations presented below the
results are averaged over 8 repeated runs.

5.3.1 Number of Targets

In this experiment we modify the track density. The num-
ber of targets K in the scenario is varied between 10 and 75
and keep the clutter rate low and the detection probabil-
ity high. All other parameters are fixed as well, namely
– λfV = 1, Pd = 0.999 and vmax = 140 unit length per
unit time, pz = 10−2 and λbV = 1 such that, on aver-
age, there is a single new target at each scan. The aver-
age NCAs, ICARs and number of tracks are presented in
Fig. 3. It is readily seen that both cross-entropy based al-
gorithms score higher than Greedy and MCMCDA in NCA
and better in ICAR introducing no significant difference be-
tween CEDA and PMEDA. All algorithms outperform the
MHT. Note that MCMCDA improves only a little the per-
formance achieved by the Greedy algorithm. This is because
the Greedy algorithm finds a solution, which is a strong lo-
cal maximum of the problem, and MCMC, being a local
search method, needs sufficiently many steps to escape from
this strong local extremum. Although in theory the MCMC
method is considered a global optimization method, it turns
out in this experiment that at this level of problem com-
plexity it quickly got trapped in local minima, from which
it could not get out in any reasonable computation time.
Thus, MCMC effectively reduces here to local search, while
CE based algorithms maintain a more global flavor as wit-
nessed by their performance.

5.3.2 False Alarms Rate

There is a constant number of K = 10 tracks, which move
at constant velocity as described above. The clutter rate
varies between λfV = 1 to λfV = 100. Namely, in this
experiment we challenge our algorithms in heavily cluttered
environment, keeping the detection probability high and the
number of targets low. The results are depicted in Fig. 4.
Clear superiority of PMEDA may easily be noticed with

nearly 90% of correct associations. The CEDA algorithm
behaves similarly at low and moderate clutter rates, but de-
grades in NCA performance at high clutter rates. However,
false tracks are not produced keeping the ICAR relatively
low. We may conclude that, in this application, the up-
dating rule of the PMEDA algorithm, which uses all the
samples obtained at a given iteration rather than the elite
samples used by CEDA, is preferable. As reported in [9],
the MHT algorithm does not make any associations when
λfV ≥ 80 resulting in zero NCA and unreported ICAR.
MCMCDA being initialized with the output of the greedy
algorithm, removes many of the false tracks found at the
initialization stage, thus improving the ICAR, but at the
same time it degrades the NCA performance by changing
some of the correct associations. As a result, the obtained
NCA is lower than that of the greedy algorithm by a few
percent. Again, the inability of the MCMCDA to improve
sufficiently the greedy solution is due to its local behavior,
which limits the possibility to escape from the strong local
extremum obtained by the greedy algorithm. The greedy
algorithm achieves reasonable performance in terms of the
NCA with more than 80% of correct associations, but re-
sults in unacceptably large ICAR due to generation of high
number of false tracks which also increase the ICAR.

5.3.3 Detection Probability

There is a constant number of K = 10 tracks, which move
at constant velocity each uniformly chosen between 30 and
120 unit lengths per unit time. As mentioned, each target’s
appearance and disappearance times are chosen uniformly
from the first and last quarters of the surveillance interval
respectively. The clutter rate is kept constant at λfV = 1.
The probability of detection varies between Pd = 0.3 to
Pd = 0.9. Due to lower detection probabilities we have set
dmax = 5 since many consecutive missed detections may oc-
cur. The probability of track termination is pz = 0.01 and
the appearance of new tracks is modeled by λbV = 1. Now
the targets are not observed all the time. The results are
depicted in Fig. 5. Both cross entropy based algorithms
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Figure 3: Simulation results for various values of K.
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Figure 4: Simulation results for various values of λfV .
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Figure 5: Simulation results for various values of Pd.
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outperform all other algorithms with some superiority of
the PMEDA over CEDA. Unlike in the previous tests, the
greedy algorithm performs poorly with less than 50% of cor-
rect associations. MCMCDA scores better than MHT, but
much worse than cross entropy based algorithms especially
at very low detection probabilities. As mentioned before,
although in theory MHT is an optimal solution in the MAP
sense it performs poorly when the detection probability is
low or the false alarm rate is high due to the necessary
heuristics used in the MHT. These heuristics are required
part of all practical implementations of the MHT since with-
out them the number of hypotheses grows exponentially fast.
MHT with such heuristics may work well when a few hy-
potheses carry most of the weight. However, when the de-
tection probability is low or the false alarm rate is high,
there are many hypotheses with low weight and there is set
of dominating hypotheses, so MHT cannot perform well.
This explains the above poor behavior of the algorithm when
tested in the extreme cases.

5.3.4 Computation Times

All algorithms proposed in this paper were implemented
in Matlab without any code optimizations and ran on a PC
with 2.8GHz Intel processor. Recall that the overall perfor-
mance is determined by the time required to obtain a single
sample in the CE/PME procedures which requires O(T ·n2)
calculations. We present in Fig. 6 this empirically found
time versus the clutter rate which is proportional to the av-
erage number of observations in the problem at hand. It is
readily seen that this empirical evidence strongly supports
the calculated complexity needed to obtain a single sample.

6. CONCLUSIONS
We have proposed two methods for the multi-scan multi-

target data association problem based on the CE and PME
heuristics. These schemes have been tested in simulation
and show improved performance relative to the state-of-the-
art algorithms. A major issue in the proposed algorithms is
their computation time. Although polynomial in the prob-
lem parameters, the computation time is still considerable in
challenging scenarios which involve a large number of mea-

surements. In these cases the proposed algorithms are more
suitable for off-line data analysis. Future research directions
involve further reduction of the computation time and ex-
tension to multisensor cases. In addition, modification of
the algorithms to handle long time intervals by applying a
sliding window to the measurement set is of interest with
preliminary results available in [15].
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