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Blackwell’s theory of approachability, introduced in 1956, has since proved a useful tool in the study of a range of repeated
multiagent decision problems. Given a repeated matrix game with vector payoffs, a target set S is approachable by a certain
player if he can ensure that the average payoff vector converges to that set, for any strategy of the opponent. In this paper we
consider the case where a set need not be approachable in general, but may be approached if the opponent played favorably
in some sense. In particular, we consider nonconvex sets that satisfy Blackwell’s dual condition, namely, can be approached
when the opponent plays a stationary strategy. Whereas the convex hull of such a set is approachable, this is not generally
the case for the original nonconvex set itself. We start by defining a sense of restricted play of the opponent (with stationary
strategies being a special case), and then formulate appropriate goals for an opportunistic approachability algorithm that can
take advantage of such restricted play as it unfolds during the game. We then consider a calibration-based approachability
strategy that is opportunistic in that sense. A major motivation for this study comes from no-regret problems that lack a convex
structure such as the problem of online learning with sample-path constraints, as formulated in Mannor et al. [Mannor S,
Tsitsiklis JN, Yu JY (2009) Online learning with sample path constraints. J. Machine Learn. Res. 10:569–590]. Here the best-
response-in-hindsight is not generally attainable, but only a convex relaxation thereof. Our proposed algorithm, while ensuring
that relaxed goal, also comes closer to the nonrelaxed one when the opponent’s play is restricted in a well-defined sense.
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1. Introduction. The concept of set approachability, as introduced in Blackwell [7], concerns a repeated
matrix game with vector-valued payoffs that is played by two players, the agent and the opponent. Thus, for
each pair of simultaneous actions a and z in the one-stage game, a payoff vector r4a1 z5 ∈ �` is obtained.
Given a target set S in �`, the agent’s goal is to have the long-term average reward vector approach S, namely,
converge to S almost surely in the point-to-set distance. If that convergence can be ensured irrespectively of the
opponent’s strategy, the set S is said to be approachable, and a strategy of the agent that satisfies this property
is an approaching strategy (or algorithm) for S.

Approachability has close connections with online learning algorithms, and in particular with the notion of
no-regret strategies. In fact, soon after no-regret strategies for repeated games were introduced in Hannan [15],
it was shown by Blackwell [6] that the problem can be formulated and solved as a particular case of the
general approachability problem, for a suitably defined set and payoff vector. An extensive overview of these
concepts and their interrelations can be found in Fudenberg and Levine [14], Young [41], and Cesa-Bianchi and
Lugosi [9].

By its very definition, the notion of an approachable set accommodates a worst-case scenario, as the target
set must be approached for any strategy of the opponent. However, as the game unfolds, it may turn out that
the temporal variability in the sequence of the opponent’s actions is limited in some sense. For example, the
opponent may choose to employ a stationary strategy, namely, repeat a single mixed action, or perhaps repeat
a certain sequence of actions. If these restrictions were known in advance, the agent could possibly ensure
convergence to a target set S that is not approachable in general, or perhaps converge to a subset of the target
set S that is deemed more desirable. Our goal here is to formulate opportunistic approachability algorithms, in
the sense that they may exploit such limitations on the opponent’s action sequence in an online manner, without
knowing them beforehand.

To illustrate the ideas involved, it will be useful to consider here some examples.

Example 1. Consider a scalar reward matrix given by r40105= 2, r41115= −2, and r40115= r41105= 0,
where A = Z = 80119 are the actions available to the agent and the opponent. Suppose the agent’s goal is
to have its long-term average reward larger or equal to 1 in absolute value, namely, �R̄n� ≥ 1 − o415, where
R̄n = 41/n5

∑n
k=1 r4ak1 zk5. This clearly corresponds to an approachability problem, with the nonconvex target

set S = 4−�1−17∪ 611�5. Now, it is easily seen that for any mixed action q = 4q4051 q4155 of the opponent,
the agent has a response p = 4p4051p4155 so that r4p1 q5

4

=
∑

a1 z p4a5q4z5r4a1 z5 ∈ S. Thus, if the opponent
is restricted a priori to stationary strategies, the agent can easily devise a (possibly adaptive) strategy that
approaches S. However, this is clearly not the case in general: for example, the opponent can ensure R̄n → 0 by
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playing zn = 0 whenever R̄n−1 < 0, and zn = 1 otherwise. We see that the agent cannot approach the required
target set S in general, but can hope to do so if the opponent happens to play a stationary strategy.

Example 1 satisfies the following property: For every mixed action q of the opponent, there exists a mixed
action p of the agent so that r4p1 q5 ∈ S. This condition, referred to as Blackwell’s dual condition, will play
a central role in the following. As shown by Blackwell [7], for a convex set S this condition is necessary
and sufficient for S to be approachable; however, for nonconvex sets this condition is only necessary but not
sufficient, as seen above.

The next example demonstrates how nonconvex target sets that satisfy Blackwell’s dual condition can arise
naturally in the context of no-regret algorithms.

Example 2. Suppose the agent wishes to maximize a scalar average reward R̄n, defined as before, subject
to a long-term average cost constraint of the form C̄n ≤ � +o415, where C̄n is the n-step average of a (scalar or
vector-valued) cost function c4a1 z5. Let r∗

�4q5= maxp∈ã4A58r4p1 q52 c4p1q5≤ �9 denote the maximal expected
reward that the agent can secure against a mixed action q ∈ ã4Z5 of the opponent. We refer to r∗

�4q5 as the
constrained best-reward-in-hindsight. Now, consider the target set S = 84r1 c1 q5 ∈�2 ×ã4Z52 r ≥ r∗

�4q51 c ≤ �9.
Without the side constraint on the average cost, the above is exactly Blackwell’s formulation of the no-regret

problem (Blackwell [6]): The set S is convex and therefore approachable, and a strategy of the agent that
approaches this sets obtains R̄n ≥ maxp r4p1 q̄n5 − o415. However, with a nontrivial side constraint, the target
set S is generally nonconvex and nonapproachable, as shown in Mannor et al. [30]. As a consequence, the
convex hull of S was suggested there as a feasible target set for a regret-minimizing algorithm. However, in the
fortuitous event that the opponent plays a stationary strategy, or close to that, one should aim at a higher reward
as presented by the original target set rather than its convex relaxation.

Several other online decision problems involve nonconvex target sets that satisfy Blackwell’s dual condition,
including regret minimization with global cost functions (Even-Dar et al. [11]), regret minimization in vari-
able duration repeated games (Mannor and Shimkin [26]), and regret minimization in stochastic game models
(Mannor and Shimkin [25]).

Our starting point, then, is a target set S that satisfies Blackwell’s dual condition, but may be nonconvex. Such a
target set can be approached when faced with a statistically stationary opponent (which is restricted to stationary
strategies), by using a simple adaptive algorithm (e.g., estimate the opponent’s mixed action online and choose
an appropriate response to the current estimate at each stage). However, against an arbitrary opponent only the
convex hull of S is approachable in general. Our goal is to devise opportunistic approachability algorithms that,
in addition to approaching this convex hull, seek to approach strict subsets thereof when the opponent’s play
turns out to be restricted in an appropriate sense. In particular, in the extreme case that the opponent plays a
stationary strategy, we require that the set S itself be approached.

In fact, the algorithms we devise are shown to converge to a single point in S when the opponent is stationary.
Moreover, we establish this convergence (and generalizations thereof) under the broader property of empirical
stationarity, which is defined only in terms of the observed pure actions of the opponent.

The central contributions of this paper are the following:
• We formulate an appropriate concept of opportunistic approachability, which relies on the accompanying

notions of statistically and empirically restricted opponents.
• We propose a class of approachability algorithms that is based on a calibrated forecast of the opponent’s

actions (Dawid [10], Foster and Vohra [12]). In contrast to the standard approachability algorithms that are based
on Blackwell’s primal condition, our algorithms are based on Blackwell’s dual condition. Hence, they do not
require the computation of the projection to the target set S, or the computation of the convex hull of S whenever
S is nonconvex. Instead, they require only a computation of a best response at a finite number of points. We
note, however, that the computational complexity is transferred in some sense to that of the calibrated forecasts.

• We show that the calibration-based algorithms are opportunistic in the above mentioned sense when facing
a statistically restricted opponent. Moreover, to establish the opportunistic properties against an empirically
restricted opponent, we require the calibrated forecast to be slowly time varying in an appropriate sense, which
we establish for a specific forecasting algorithm.

• We apply our opportunistic approachability framework to the constrained regret minimization problem intro-
duced in Example 2. Our algorithms attain the convex relaxation of the constrained best-reward-in-hindsight,
while satisfying the long-term constrains. In addition, in the fortuitous event that the opponent’s play is empiri-
cally or statistically restricted, our algorithms attain the constrained best-reward-in-hindsight itself.
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Since Blackwell’s original construction, several approachability algorithms and related results have been pro-
posed in the literature. Hart and Mas-Colell [16] proposed a class of approachability algorithms, by using a
general directional mapping instead of the one based on Euclidean distance to the target set. Shimkin and
Shwartz [37] and Milman [33] extended the basic approachability concept and results to stochastic games.
Hou [18] and Spinat [39], independently, formulated a necessary and sufficient condition for approachability of
general (not necessarily convex) sets. In Lehrer [20], approachability theory was extended to infinite dimensional
spaces. Lehrer and Solan [22] give the characterization of the family of approachable sets when the player is
restricted to use strategies with bounded memory. Abernethy et al. [1] established an equivalence between no-
regret learning and the approachability problem. Mannor et al. [28] proposed a robust approachability algorithm
for repeated games with partial monitoring and applied it to the corresponding regret minimization problem.
Moreover, Perchet and Quincampoix [35] proposed a unified framework for approachability both in the full
or partial monitoring case. The approachability policies discussed in all these papers are based on Blackwell’s
primal condition, which is a geometric separation condition with respect to the fixed target set. Therefore, the
existing algorithms are not opportunistic in the sense we advocate in this paper.

The idea of approachability using a response function appears in Lehrer and Solan [21] in the context of
internal no-regret strategies (see Lehrer and Solan [23] for the updated version of that paper), and in Bernstein
and Shimkin [3] in the context of approachability without projection. It also resembles the ideas in recent
papers such as Mannor et al. [28] and Perchet and Quincampoix [35]. However, opportunistic properties of the
related algorithms are not analyzed in these works. A recent work by Bubeck and Slivkins [8] considered the
multiarmed bandit problem, and proposed an algorithm that simultaneously achieves the optimal convergence
rates against both arbitrary and stationary opponents. However, the opportunistic property there is with respect
to the convergence rates rather than with respect to the achievable goal.

The idea of choosing a best response to calibrated forecasts was first introduced in Foster and Vohra [12]
in the context of attaining correlated equilibrium, and was subsequently used in Mannor and Shimkin [26] and
Mannor et al. [30] in the context of regret minimization. An approachability strategy that is based on calibrated
forecasts was apparently proposed by Perchet [34]; however, the discussion there is limited only to convex sets,
and hence the opportunistic properties of the algorithm are not analyzed.

We note that the calibration-based algorithm, while conceptually simple, is computationally challenging
because of the computational complexity of obtaining calibrated forecasts. In particular, given the recent result
of Hazan and Kakade [17], it is unlikely that there exists an efficient algorithm to compute an exact calibrated
forecast when the number of actions available to the opponent is large. The only computationally efficient cali-
bration algorithms known in the literature are for the case of binary sequences (Mannor et al. [29]). Thus, our
calibration-based scheme is computationally efficient in this case. For opponents with nonbinary action sets,
other methods need be considered. It should be emphasized that the main goal in this paper is in formulating the
concept of opportunistic approachability and in showing that there exist algorithms that fit this concept. Hence,
the computational issues are left for future work. Finally, we note that the convergence rates of our algorithms
are that of the calibrated forecast used. E.g., for �-calibration (and thus, � approachability) using internal regret
minimization, the rate is the standard rate of convergence of no-regret algorithms, that is of O41/

√
n5.

The paper is structured as follows. In §2, we review the approachability problem and standard approachability
algorithms. In §3, we introduce the concept of opportunistic approachability along with the definitions of the
response and goal functions, which will be used subsequently in our algorithms. Section 4 provides a background
on calibrated forecasts, presents the calibration-based approachability algorithm, and analyzes its performance
in the cases of a general and statistically restricted opponent. In §5, we introduce slowly varying calibrated
forecasts, establish their existence, and analyze the performance of our algorithms in the case of empirically
restricted opponent. Section 6 applies the proposed algorithms to the problem of constrained regret minimization.
We conclude in §7 with some final remarks.

2. Review of the approachability problem. In this section, we present the approachability problem and
review the basic conditions for a set to be approachable, as well as Blackwell’s approachability algorithm.

Consider a repeated two-person game between an agent and an arbitrary opponent (that collectively represents
that agent’s environment, including the effect of Nature as well as that of other agents active there). The agent
chooses its actions from a finite set A, and the opponent chooses its actions from a finite set Z. At each time
instance n = 1121 : : : 1 the agent selects its action an ∈ A, observes the action zn ∈ Z chosen by the opponent,
and obtains a vector reward rn = r4an1 zn5 ∈ �`, ` ≥ 1, where r2 A×Z → �` is a given function. The average
reward vector obtained by the agent up to time n is then R̄n = n−1∑n

k=1 rk. A mixed action of the agent is
the probability distribution p ∈ã4A5, where p4a5 specifies the probability of choosing action a ∈A. Similarly,



Bernstein, Mannor, and Shimkin: Opportunistic Approachability
1060 Mathematics of Operations Research 39(4), pp. 1057–1083, © 2014 INFORMS

q ∈ ã4Z5 denotes a mixed action of the opponent. Let q̄n ∈ ã4Z5 denote the empirical distribution of the
opponent’s actions at time n, with

q̄n4z5
4

=
1
n

n
∑

k=1

	8zk = z90

Also, define the span of the reward vector

�
4

= max
a1 z1a′1 z′

�r4a1 z5− r4a′1 z′5�1 (1)

where � · � is Euclidean norm.
In what follows, we will slightly abuse notation and let

r4p1 q5
4

=
∑

a∈A1 z∈Z

p4a5q4z5r4a1 z5

denote the expected reward under mixed actions p ∈ ã4A5 and q ∈ ã4Z5; the distinction between r4a1 z5 and
r4p1 q5 should be clear by their arguments. Occasionally, we will use r4p1 z5=

∑

a∈A p4a5r4a1 z5 for the expected
reward under mixed action p ∈ã4A5 and pure action z ∈Z. The notation r4a1 q5 is interpreted similarly.

Let
hn−1

4

= 8a11 z11 : : : 1 an−11 zn−19 ∈ 4A×Z5n−1

denote the history of the game up to time n. A strategy � = 4�n5 of the agent is a collection of the decision
rules �n2 4A×Z5n−1 →ã4A5, n≥ 1, where each mapping �n specifies the mixed action for the agent at time n,
based on the observed history:

pn =�n4hn−150

The pure action an taken by the agent is then selected randomly according to pn. Similarly, the opponent’s
strategy is denoted by � = 4�n5, with �n2 4A × Z5n−1 → ã4Z5. Let ��1� denote the probability measure on
4A×Z5� induced by the strategy pair 4�1�5. In what follows, all the probabilistic statements are assumed to
hold with respect to these measures.

In the approachability problem, we consider a set S ⊆�`, and ask if there exists a strategy for the agent that
will bring the average reward vector to S (asymptotically, almost surely) no matter what the opponent’s strategy
is. Below is the classical definition of an approachable set from Blackwell [7].

Definition 1 (Approachable Set). A closed set S ⊆ �` is approachable by the agent’s strategy � if the
average reward R̄n = n−1∑n

k=1 rk converges to S almost surely for every strategy � of the opponent.1 The set S
is approachable if there exists such a strategy for the agent.

In what follows, we find it convenient to state all our results in terms of the expected average reward, where
the expected value is only with respect to the agent’s mixed actions:

r̄n
4

=
1
n

n
∑

k=1

r4pk1 zk50

With this modified reward, the stated convergence results will be shown to hold pathwise, for any possible
sequence of the opponent’s actions. The corresponding almost sure results for the actual average reward can be
easily deduced, using martingale convergence theory. Indeed, note that

d4R̄n1 S5≤ �R̄n − r̄n� +d4r̄n1 S50

Now, the first term is the norm of the mean of the martingale difference sequence Dk = r4ak1 zk5− r4pk1 zk5 and
can readily be shown to converge to zero at a uniform rate of O41/

√
n5; see, e.g., Shiryaev [38] or Cesa-Bianchi

and Lugosi [9].
Next, we present a formulation of Blackwell’s Theorem (Blackwell [7]), which provides us with a sufficient

condition for approachability of a general set S. To this end, for any x y S, let c4x5 ∈ S denote a closest
point in S to x. Also, for any p ∈ ã4A5 let T 4p5 4

= 8r4p1 q52 q ∈ ã4Z59, which equals the convex hull of the
points 8r4p1 z59z∈Z.

1 Blackwell’s original definition requires almost sure convergence at a uniform rate over the probability distributions induced by the strate-
gies � and � . Our algorithms satisfy this definition provided that the convergence of the employed calibrated forecasts is uniform, as for
example in the case of the calibration forecaster discussed in §5.2 in this paper. However, we will not assume it here.
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Definition 2 (Primal Condition: B-Sets). A closed set S ⊆ �` is called a B-set (where B stands for
Blackwell) if for every x y S there exists a mixed action p = p4x5 ∈ ã4A5 such that the hyperplane through
y = c4x5 perpendicular to the line segment xy, separates x from T 4p5.

Theorem 1 (Sufficient Condition and Algorithm). Every B-set is approachable, by using at time n
the mixed action p4r̄n−15 of Definition 2 whenever r̄n−1 y S. (If r̄n−1 ∈ S, an arbitrary action can be used.)

Remark 1. Theorem 1 holds also if r̄n is replaced with R̄n.

In addition, a dual necessary condition for approachability can be formulated as follows.

Definition 3 (Dual Condition: D-Sets). A closed set S ⊆�` is called a D-set (where D stands for Dual)
if for every q ∈ã4Z5 there exists a response p ∈ã4A5 such that r4p1 q5 ∈ S.

Theorem 2 (Necessary Condition). A closed set S is approachable only if it is a D-set.

For convex target sets, Blackwell [7] showed that the primal and dual conditions coincide.

Theorem 3. Let S be a closed convex set. Then, the following statements are equivalent: (i) S is approach-
able, (ii) S is a B-set, and (iii) S is a D-set.

Theorem 3 has the following corollary.

Corollary 1. The convex hull of a D-set is approachable (and is also a B-set).

Proof. The convex hull of a D-set is a convex D-set. The claim then follows by Theorem 3. �

We note that a complete characterization of the family of approachable sets was provided independently by
Hou [18] and Spinat [39]. They proved that a closed set S is approachable if and only if it contains a B-set.
However, this result is not used in the present paper, as our main interest here is in the dual (rather than primal)
condition. Hence, throughout the paper, we assume that the target set S satisfies the following condition.

Assumption 1. The set S is a D-set.

Observe that we do not assume that S is a convex set. Consequently, although conv4S5 is approachable by
Corollary 1, S itself need not be approachable.

Our focus in this paper is on a conceptually simple approachability strategy that is based on the dual condition,
previously proposed by Perchet [34]: at each time n use the mixed action pn ∈ã4A5, which is a response (in the
sense of Definition 3) to a calibrated forecast yn ∈ã4Z5 of the pure action zn ∈Z. The definition of calibrated
forecasts and the analysis of this strategy is presented in §4.

We note that in parts of this paper, the set S will only be implicitly defined through an appropriate response
function, so that Assumption 1 is satisfied by definition of the latter; see Remark 2 in §3.

3. Opportunistic approachability. In this section, we define the desiderata for an opportunistic approach-
ability algorithm. To that end, we first define appropriate notions of a statistically and an empirically restricted
play of the opponent, as well as the response and goal function for the given target set.

Before making formal definitions, we state the idea of our approach. We propose algorithms that simultane-
ously achieve the following goals, for any D-set S:

1. The convex hull of S is approached, for any strategy of the opponent.
2. If the mixed actions of the opponent or, more generally, the empirical frequencies of the opponent’s actions

are restricted to a subset of its mixed actions space (in the sense of Definitions 4 and 5), then the algorithm
approaches a corresponding strict subset of conv4S5. In particular, if the opponent is stationary, the set S itself
is approached.

3.1. Restricted opponent play. We start with a definition of restricted play of the opponent in terms of the
sequence of its mixed actions 8qn9, which is intuitive and easy to state. In particular, we consider the notion
of a statistically restricted play, in the sense that 8qn9 is asymptotically restricted to some set Q ⊆ ã4Z5. We
note that this and other definitions below relate to a given sample path of the process (rather than to the overall
policy of the opponent).
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Definition 4 (Statistically Q-Restricted Play). We say that the play of the opponent is statistically
Q-restricted, if there exists a convex subset Q ⊆ ã4Z5 so that the sequence 8qn9 of the mixed actions of the
opponent satisfies, for the given sample path,

lim
n→�

1
n

n
∑

k=1

d4qk1Q5= 00

Here, d4q1Q5 is Euclidean point-to-set distance.

Observe that the Cesàro mean convergence of Definition 4 is a weaker assumption than the convergence of
d4qn1Q5 to zero.

A possible weakness of Definition 4 is that the mixed actions of the opponent are not generally revealed
(when its strategy is not known), or may even lack an explicit meaning (e.g., when the opponent is Nature). We
therefore proceed to define a notion of an empirically restricted play of the opponent, in terms of the empirical
frequencies of the opponent’s pure actions. To this end, we need to refer to a certain partition of the time axis
into blocks on which these frequencies are computed. We let �m denote the length of block m = 1121 : : : .
Also, we let nM =

∑M
m=1 �m denote the time at the end of block M . Finally, q̂m ∈ ã4Z5 denotes the empirical

distribution of the opponent’s actions of block m, namely,

q̂m4z5=
1
�m

nm
∑

k=nm−1+1

	8zk = z90

With this in hand, we introduce the following.

Definition 5 (Empirically Q-Restricted Play). We say that the play of the opponent is empirically
Q-restricted with respect to a partition 8�m9, if there exists a convex subset Q ⊆ ã4Z5 so that, for the given
sample path,

lim
M→�

1
nM

M
∑

m=1

�md4q̂m1Q5= 00

We note that the requirement of Definition 5 is much weaker than that of Definition 4 (as Lemma 2 shows),
and hence is our focus. To see this, consider the following simple example.

Example 3. Consider binary sequences of actions, and let Q = 84005100559 be a singleton. The deterministic
sequence 0101: : : is empirically Q-restricted with respect to any partition with fixed even block lengths, or
with any strictly increasing blocks lengths. However, the opponent that generates this sequence using alternating
mixed actions 411051 40115 is of course not statistically Q-restricted. �

Observe that our definition of empirically Q-restricted play involves a general partition 8�m9 rather than a
partition with fixed lengths �m ≡ � . The main reason behind this general definition is the fact that we would like
to cover the case of statistically stationary sequences. The following example clarifies this point.

Example 4. Consider a stationary opponent that chooses its actions using a fixed strictly mixed action
q0 ∈ã4Z5, and the corresponding restriction set Q = 8q09. In this case, the sequence of pure actions will
not satisfy Definition 5 with probability one if we choose a partition with fixed (or bounded) block lengths.
Actually, we can satisfy Definition 5 with probability one only if we choose a partition with superlogarithmically
increasing lengths (as is shown in general by Lemma 2). �

A given sequence of actions may satisfy Definition 5 under different partitions, as the following example
demonstrates.

Example 5. Recall the setting of Example 3, and consider the sequence 01001100001111: : : . The empirical
frequencies of this sequence do not converge to Q, but it is empirically Q-restricted with respect to a partition
with exponentially increasing lengths �m = 2m. However, if we choose any partition with subexponentially
increasing lengths, Definition 5 will not be satisfied. �

In general, we are interested in the minimum possible block lengths that will ensure that Definition 5 is
satisfied. Moreover, we mostly focus on the sequences for which Definition 5 can be satisfied with a partition
with subexponentially increasing block lengths. This is motivated by the following lemma, which shows that
Definition 5 requires more than just convergence of q̄n to Q.
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Lemma 1. If Definition 5 is satisfied with respect to a partition with subexponentially increasing block
lengths for some Q ⊆ ã4Z5, then q̄n converges to Q. However, the converse is not true. Namely, there exist a
sequence of actions so that q̄n converges to Q, but there is no partition with subexponentially increasing block
lengths so that Definition 5 is satisfied with respect to it.

Proof. For any nM−1 + 1 ≤ k ≤ nM , we have that

d4q̄k1Q5 ≤ d4q̄nM 1Q5+ �q̄nM − q̄k�

= d

(

1
nM

M
∑

m=1

�mq̂m1Q

)

+ �q̄nM − q̄k�

≤
1
nM

M
∑

m=1

�md4q̂m1Q5+
�M
nM−1

1

where the second inequality holds by the convexity of the point-to-set Euclidean distance to a convex set, and
by the fact that the changes in q̄n are of the order of 1/n. But, if �m increases subexponentially, we have that
�M/nM−1 → 0, and the result follows.

To see why the converse need not be true, consider the sequence 01001100001111: : : from Example 5.
It can be easily verified that q̄n415 → Q = 61/311/27 in this case. However, if we choose any partition with
subexponentially increasing lengths, we have that, in the long-term, q̂m415 is either closed 0 or to 1, so that

lim inf
M→�

1
nM

M
∑

m=1

�md4q̂m1Q5 > 00 �

It should be emphasized that the convergence of q̄n to a restriction set Q seems to be not sufficient to
guarantee opportunistic convergence of the average reward in terms of Q. In particular, the convergence of the
empirical frequencies q̄n does not say anything about the rate of this convergence. Indeed, consider again the
sequence 01001100001111: : : from Example 5. As noted in the proof of Lemma 1, q̄n converges to a strict
subset of 60117. However, if we choose any partition with subexponentially increasing lengths, we have that, in
the long-term, the empirical frequency of 1 at any interval is either closed 0 or to 1, implying that opportunistic
convergence is impossible.

Finally, we claim that, almost surely, the requirement in Definition 4 implies the requirement in Definition 5
(see Appendix A for a proof).

Lemma 2. Suppose that the play of the opponent is statistically Q-restricted in the sense of Definition 4,
almost surely, with respect to the probability distribution induced by the strategies of the agent and the opponent.
Then the requirement of Definition 5 is satisfied with respect to any partition 8�m9 with superlogarithmically
increasing block lengths.

3.2. Response and goal functions. By definition of a D-set, one can define a response function p∗ that
for any q returns p such that r4p1 q5 ∈ S. Below we demonstrate that p∗ cannot be continuous in general.
We therefore settle for the following piecewise continuity property.

Definition 6 (Regular Response Function). A function p∗2 ã4Z5 → ã4A5 is a regular response func-
tion relative to the target set S if

(i) for each q ∈ã4Z5, r4p∗4q51 q5 ∈ S; and
(ii) the function p∗ is a piecewise continuous function.

That is, there exists a finite partition of ã4Z5 such that p∗ is continuous on the interior of every element of that
partition.

Example 6 (Example 1 Continued). Recall the approachability problem with the scalar reward matrix

R=

(

2 0
0 −2

)

and target D-set S = 4−�1−17∪ 611�5, introduced in Example 1. For brevity, we identify any p ∈ 60117 with
a mixed action 4p11 − p5 of the agent (namely, p is the probability of action 0). Similarly, a q ∈ 60117 is
identified with a mixed action 4q11 − q5 of the opponent. Observe that for q < 005 and p ≤ 005 − q, we have
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that r4p1 q5 ≤ −1 and therefore r4p1 q5 ∈ S. Similarly, for q > 005 and p ≥ 105 − q, we have that r4p1 q5 ≥ 1,
implying that r4p1 q5 ∈ S. We thus can define a regular response function as follows:

p∗4q5=

{

01 for q ≤ 005

11 otherwise0
(2)

Although other selections for p∗4q5 can be made, all of them will have a discontinuity at q = 005. �

Below we show that we can always choose a regular (that is, piecewise-continuous) response function.

Lemma 3. Under Assumption 1, there exists a regular response function.

Proof. To prove this lemma, we use standard results from set-valued analysis (see for instance Aubin and
Frankowska [2]). We construct a set-valued function f 4q5 as follows:

f 4q5
4

= 8p ∈ã4A52 r4p1 q5 ∈ S90

Since S is closed and r4p1 q5 is continuous, it follows that for every 8qn9 and q such that qn → q, we have that
limn→� f 4qn5⊆ f 4q5, in the sense that if pn ∈ f 4qn5 is such that pn → p then p ∈ f 4q5. We conclude that f is an
upper semi-continuous set-valued function. It follows from Fort’s Theorem that f is also lower semi-continuous
on a residual subset of S, namely, on a set whose complement is a meager set. In our case, this is an open set
whose complement has measure 0.

Pick a finite partition of ã4Z5. Now, from Michael’s selection theorem (Michael [32]), we know that on every
element of the partition we have a continuous selection. Thus, we can choose p∗4q5 ∈ f 4q5 such that p∗ is a
piecewise continuous function. �

The actual choice of p∗ is problem dependent. In §6 we will see an example where p∗ is naturally defined as
a best-response map. In general, we make the following assumption.

Assumption 2. Let p∗ be a regular response function relative to the given target set S, which we fix in the
following. We assume that p∗4q5 can be efficiently computed for any given q ∈ã4Z5.

We note that Assumption 2 implies Assumption 1 by the definition of p∗. Hence, throughout, we suppose that
Assumption 2 holds, and we usually do not refer to the target set S explicitly.

Remark 2. Observe that a given response function p∗ induces the following set:

S4p∗5
4

=
{

r4p∗4q51 q52 q ∈ã4Z5
}

0

This is the minimal target set for which p∗ is a (regular) response function. Consequently, we can start from a
given response function p∗ that will define the target set S4p∗5. Moreover, the definition of the response function
implies that any set S that contains S4p∗5 can be considered as a feasible target set.

The specified response function p∗ leads naturally to our next definition.

Definition 7 (Goal Function). The goal function r∗2 ã4Z5 → S is defined as r∗4q5 = r4p∗4q51 q5 for
any q ∈ã4Z5.

3.3. Opportunistic strategies. When the play of the opponent turns out to be statistically/empirically Q-
restricted, we will essentially require the average reward to converge to R4Q5= conv8r∗4q52 q ∈Q9, the convex
hull of the image of Q under the goal function r∗ (see Figure 1). Because of possible discontinuities in r∗,
we need to slightly expand that definition.

Definition 8 (Closed Convex Image). The closed convex image of a set Q ⊆ã4Z5 under the goal func-
tion r∗ is defined as

R+4Q5
4

=
⋂

�>0

conv8r∗4q52 d4q1Q5≤ �90

In words, the set R+4Q5 contains the convex hull of all the points of r∗4q5, q ∈ Q, together with possible
jumps in r∗ on the boundary of Q. Note that R+4Q5⊂ conv4S5, as r∗4q5 ∈ S by its definition. We illustrate the
inclusion of jumps using the following example.
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S

Q

q1
q2

q3

r*(q1)

r*(q2)

r*(q3)

Figure 1. An illustration of the restriction set Q and the convex hull of the image of Q under the goal function r∗.

Example 7 (Example 6 Continued). Consider the response function defined in (2). The corresponding
goal function is given by

r∗4q5=

{

−241 − q51 for q ≤ 005

2q1 otherwise.

We now compute the closed convex image of singeltons:

R+48q95=

{

r∗4q51 for q 6= 005

conv48−11195= 6−11171 for q = 0050

Observe that the discontinuity of r∗ at q = 005 is expressed by the fact that R+48q95 is the “jump interval”
6−1117. �

With the above notions at hand, we can finally define opportunistic approachability strategies.

Definition 9 (Statistically Opportunistic Approachability). A strategy � is statistically opportunis-
tic for a given goal function r∗ if it holds that

lim
n→�

d4r̄n1R
+4Q55= 0

whenever the play of the opponent is statistically Q-restricted (Definition 4) for some set Q ⊆ã4Z5.

Definition 10 (Empirically Opportunistic Approachability). A strategy � is empirically opportunistic
for a given goal function r∗ w.r.t. a partition 8�m9 if

lim
n→�

d4r̄n1R
+4Q55= 0

whenever the play of the opponent is empirically Q-restricted w.r.t. 8�m9 (Definition 5) for some set Q ⊆ã4Z5.

It should be emphasized that the definitions of opportunistic approachability strategies are based on the sample
path properties of the opponent’s play (either in pure or mixed actions). Also, observe that identifying whether
the opponent is statistically restricted, or identifying the partition on which the opponent is empirically restricted
are not straightforward tasks. However, no such tests are required in order to implement the suggested strategy,
nor for its stated opportunistic properties to hold. Moreover, the related convergence results are required to hold
without knowing the restriction set Q beforehand.

Remark 3. Note that Definitions 9 and 10 imply the standard definition of approachability, by setting
Q =ã4Z5. In this case, R+4Q5⊆ conv4S5, and

lim
n→�

d4r̄n1 conv4S55= 00

Remark 4. Observe that if a strategy is empirically opportunistic with respect to some partition with super-
logarithmically increasing lengths, it is also statistically opportunistic (as follows from Lemma 2). But the
converse is not necessarily true.
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We close this section with a simple example showing that a naive strategy that plays pn = p∗4q̄n−15 fails to
provide approachability guarantees, even in the case of a convex target set.

Example 8. Consider the reward matrix

R=

(

1 0
0 1

)

and target set S = 60051�5. Clearly, S is a convex set, and it is also a D-set: the response function can be taken
the same as in (2) and the corresponding goal function is given by

r∗4q5=

{

1 − q1 for q ≤ 005

q1 otherwise0

Now, assume that the sequence of opponent’s actions is a periodic sequence 010101: : : 1 and that the naive
strategy pn = p∗4q̄n−15 is employed by the agent. Since for all even n, q̄n−1 > 005, we have that an = 0. Also,
for odd n, q̄n−1 = 005, and an = 1. Consequently, R̄n → 0 y S. �

This example illustrates the well-known phenomenon of simple “best-response” strategies: since they choose
actions deterministically, they can be “tricked” by the opponent all the time. This is also the case, for example, in
the standard no-regret problem where best-response strategies that do not randomize fail to minimize the regret.

4. Calibration-based approachability. In this section, we present the basic calibration-based algorithm
that is the subject of this paper. We first provide some background on calibrated forecasts, present and analyze
our calibration-based approachability algorithm, and prove its properties in the case of a statistically restricted
opponent.

4.1. Calibrated forecasts. A forecaster is an algorithm that specifies at each time instance n a probabilistic
forecast yn ∈ã4Z5 of the opponent’s action zn, based on the history of observed actions and previous forecasts.
The forecaster’s policy may be randomized, i.e., at each time n it specifies a probability measure �n over ã4Z5.
In this case, the forecast yn ∈ã4Z5 is drawn at random according to �n.

The following is a standard definition of a calibrated forecaster (see, e.g., Foster and Vohra [12]).

Definition 11 (Calibrated Forecaster). A forecaster is calibrated if for every Borel measurable set Q ⊆

ã4Z5 and every strategy of the opponent, it holds that

lim
n→�

1
n

n
∑

k=1

	8yk ∈Q9414zk5− yk5= 01 a.s.1 (3)

where 14z5 is the probability vector in ã4Z5 concentrated on z.

No deterministic forecaster can be calibrated for all possible sequences of outcomes (Dawid [10]). However,
if the forecaster is allowed to randomize, calibration is possible. Several randomized calibrated forecasters were
proposed in the literature (see the overview in Cesa-Bianchi and Lugosi [9], as well as Mannor et al. [29] and
Foster et al. [13]). The common approach is to use a finite �-grid over ã4Z5, which is gradually refined in
order to fulfill the requirement of Definition 11. To achieve �-calibration, the algorithms usually process the
entire grid for each prediction. The only computationally efficient algorithms known in the literature are for
the case of binary sequences (Mannor et al. [29]). Moreover, it was recently shown in Hazan and Kakade [17]
that the existence of a general computationally efficient calibrated forecaster would imply the existence of an
efficient algorithm for computing approximate Nash equilibria, thus implying the unlikely conclusion that every
problem in PPAD (the class of problems that are polynomial time reducible to the problem of computing Nash
equilibrium in a two player game) is solvable in polynomial time.

The calibration property in (3) can be interpreted as a merging or averaging property of the forecast relative
to the pure actions of the opponent. The next lemma shows that a similar property holds with respect to the
mixed (rather than pure) actions.

Lemma 4. Let 8qk9
n
k=1 denote the mixed actions of the opponent. The calibration property (3) is equivalent to

lim
n→�

1
n

n
∑

k=1

	8yk ∈Q94qk − yk5= 01 a.s.
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Proof. The result follows by the strong law of large numbers, applied to the martingale difference sequence
Dk = 	8yk ∈Q9414zk5− qk5; see, e.g., Kalai et al. [19]. �

It will be convenient to reformulate the calibration property in Lemma 4 in terms of

�n
4

=
1
n

n
∑

k=1

�qk1 yk
∈ã4ã4Z5×ã4Z551

the joint empirical distribution of the opponent’s mixed actions 8qk9
n
k=1 and forecasts 8yk9

n
k=1 by time n. Specif-

ically, let

M 4

=

{

� ∈ã4ã4Z5×ã4Z552
∫

	8y ∈Q94q − y5d�4q1 y5= 01∀Q ⊆ã4Z5

}

(4)

denote the set of joint probability measures of the opponent’s mixed actions (q) and forecasts (y) that satisfy the
calibration property. We note that in this and subsequent definitions, we only refer to Borel-measurable sets Q.
Then, the statement of Lemma 4 is equivalent to the statement that �n “converges” to M in the sense that

lim
n→�

∫

	8y ∈Q94q − y5d�n4q1 y5= 01 ∀Q ⊆ã4Z50

We next provide an important equivalent characterization of the set M, and also prove variability ordering
property (see, e.g., Whitt [40]) of the marginal distributions of � ∈ M, that will be used in the sequel. For a
given � ∈M, let

�14dq5=

∫

y
�4dq1dy5 and �24dy5=

∫

q
�4dq1dy5 (5)

denote the marginal distributions of the mixed actions and forecasts, respectively. Also, let 4q1y5 denote a
random vector distributed according to �.

Lemma 5. 1. We have that � ∈M if and only if

Ɛ4q � y5= y1 �2-a.s.

2. For any � ∈M and any convex function V on ��Z�, we have that

∫

y
V 4y5�24dy5≤

∫

q
V 4q5�14dq50

Proof. To prove part 1 we use the following standard definition of the conditional expectation (see, e.g.,
Shiryaev [38, p. 220]). The conditional expectation of the random variable q under the condition that y = y is
any Borel-measurable function

E4y5 4

= Ɛ4q � y= y5

for which
∫

	8y ∈Q9q d�=

∫

y
	8y ∈Q9E4y5�24dy51 ∀Q ⊆ã4Z50 (6)

However, by the calibration property,

∫

	8y ∈Q9q d�=

∫

y
	8y ∈Q9y�24dy51 ∀Q ⊆ã4Z50

Therefore, E4y5= y satisfies (6), and the result follows by substituting y with the random variable y.
Now, part 2 of the lemma easily follows by part 1 and Jensen’s inequality. Indeed, for any convex function

V on ��Z�, it holds that

Ɛ6V 4y57= Ɛ6V 4Ɛ4q � y557≤ Ɛ6Ɛ4V 4q5 � y57= Ɛ6V 4q570 �

We illustrate the relation between the two distributions �1 and �2 using the following example.
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Example 9. Suppose that the empirical distribution of the opponent’s mixed actions converges to

�1 = ��q415 + �̄�q4251 � ∈ 601171 �+ �̄= 10

That is, in the long term, the opponent chooses � % of the time the mixed action q415, and �̄ % of the time he
chooses the mixed action q425. It is easy to see that in this case, the following two forecasters are calibrated:
(i) with �yk − qk� → 0, and (ii) with yk → �q415 + �̄q425 4

= q0. Indeed, the joint empirical distribution in the first
case converges to

�= ��q4151 q415 + �̄�q4251 q425

and in the second case to
�= ��q4151 q0

+ �̄�q4251 q0
0

It can be easily verified that, in both cases, � ∈M. Also, in the first case, obviously
∫

y
V 4y5�24dy5= �V 4q4155+ �̄V 4q4255=

∫

q
V 4q5�14dq5

since both marginal distributions are the same. However, in the second case
∫

y
V 4y5�24dy5= V 4q05≤ �V 4q4155+ �̄V 4q4255=

∫

q
V 4q5�14dq51

where the inequality follows by convexity of V . Namely, there is less variability in �2 than in �1. �

4.2. The calibrated approachability algorithm. Recall that p∗ denotes a regular response function rela-
tive to the given target set S (Definition 6). The algorithm that we analyze in the remainder of the paper is
conceptually simple—at each time n use the mixed action pn, which is specified by

pn = p∗4yn51 (7)

where yn is the calibrated forecast at time n. This algorithm was previously proposed by Perchet [34].

4.3. Approachability results. We show that the proposed algorithm is an approachability algorithm for
conv4S5 in general, and establish its opportunistic properties in case of a statistically restricted play of the
opponent. (The case of an empirically restricted opponent is analyzed in §5.)

In Theorem 4, we prove an abstract and general property of the calibrated approachability algorithm that
relates the empirical distribution of the mixed actions of the opponent to the empirical distribution of the forecasts
and the corresponding average reward. This result implies the general approachability result to conv4S5, as well
as the opportunistic property of the algorithm (see Corollary 2).

Recall the definitions of the set M in (4) and the corresponding marginal distributions �14 · 5 and �24 · 5 in (5).
Also, let

fn
4

=�n11 =
1
n

n
∑

k=1

�qk
∈ã4ã4Z55

denote the empirical distribution of the mixed actions 8qk9
n
k=1. For a given fn, we can define the following set

of possible reward vectors:
Rn

4

=
{

ƐY∼�2
6r∗4Y 572 � ∈M1�1 = fn

}

0

This is the set of all expected target rewards, where the expected value is with respect to a marginal distribution
of the forecasts, which is “compatible” with the calibration property (i.e., belongs to the set M in (4)) and with
the empirical distribution fn of 8qk9

n
k=1. We note that Rn is a convex set by definition of M. Still, in order to take

into account the possible jumps in r∗4y5 on the boundary of M, we need to augment Rn as follows (see also
Definition 8):

R+

n
4

=
{

ƐY∼�2
6F 4Y 572 F 2 ã4Z5→�`1 F 4y5 ∈R+48y951� ∈M1�1 = fn

}

0 (8)

Observe that under Assumption 2, R+
n ⊆ conv4S5. We note that R+

n can be interpreted as the closed convex image
of a set M under the function ƐY∼�2

6r∗4Y 57, constrained that the marginal distribution of the opponent’s actions
equal to fn. Also, observe that when r∗ is continuous, we have that R+

n =Rn.
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Theorem 4. Suppose that Assumption 2 holds. Then, if the agent uses the calibrated approachability algo-
rithm specified by (7), we have that

lim
n→�

d4r̄n1R
+

n 5= 01 (9)

almost surely, for any strategy of the opponent.

We defer the proofs to §4.4. The following example clarifies the essence of the result of Theorem 4.

Example 10 (Example 9 continued). Recall the setting of Example 9, where two possible calibrated fore-
casts were considered: (i) with �yk − qk� → 0, and (ii) with yk → �q415 + �̄q425 4

= q0. Observe that in the first
case, Theorem 4 implies that r̄n converges to R+48q4151 q42595. In particular, if r∗4q5 is continuous at q415 and q425,
r̄n converges to conv48r∗4q41551 r∗4q425595. In the second case, Theorem 4 implies that r̄n converges to R+48q095.
In particular, if r∗4q5 is continuous at q0, r̄n converges to r∗4q05 ∈ S. In the special case, where the opponent
chooses at each time instant the mixed action q415 with probability � and q425 with probability �̄, it is easy to see
that only the calibrated forecast of case (ii) above is possible, and hence Theorem 4 implies that r̄n converges
to R+48q095. �

The following corollary establishes the opportunistic approachability property of the calibrated approachability
algorithm illustrated by Example 10.

Corollary 2. Consider the setting of Theorem 4. For any strategy of the opponent, the following implication
holds true almost surely (i.e., on a set of probability 1): if the play of the opponent is statistically Q-restricted
as per Definition 4, then

lim
n→�

d4r̄n1R
+4Q55= 01

where R+4Q5 is the closed convex image of Q under r∗ (Definition 8).

That is, the strategy specified by the calibrated approachability algorithm is statistically opportunistic in the
sense of Definition 9. Specifically, if Q = 8q09, where q0 is a continuity point of the (piecewise continuous)
response map p∗4q5, we have that limn→� r̄n = r∗4q05 ∈ S.

4.4. Proofs.

Proof of Theorem 4. We prove below that, for a general opponent,

lim
n→�

∥

∥

∥

∥

r̄n −
1
n

n
∑

k=1

r4pk1 yk5

∥

∥

∥

∥

= 01 a.s. (10)

Now,
1
n

n
∑

k=1

r4pk1 yk5=
1
n

n
∑

k=1

r4p∗4yk51 yk5=
1
n

n
∑

k=1

r∗4yk5 ∈ conv4S50

But, by the definition of R+
n in (8),

lim
n→�

d

(

1
n

n
∑

k=1

r∗4yk51R
+

n

)

= 01

and the result of the theorem follows.
Fix � > 0. By compactness of ã4A5, there exists a partition of ã4A5 into a finite number l of measurable sets

P 11 P 21 : : : 1 P l, with the property that if p1p′ ∈ P i then �p−p′� ≤ �. That is, 8P i9 is an �-partition of ã4A5. Also,
let Qi = 4p∗5−14P i5. By our definition of p∗ (Definition 6), 8Qi9 are measurable sets that represent a partition of
ã4Z5 (although not necessarily an � partition), and since pk = p∗4yk5 we have 	8pk ∈ P i9= 	8yk ∈Qi9. Finally,
for every i, we fix a representative element pi ∈ P i (e.g., central point of P i). We have that

lim
n→�

∥

∥

∥

∥

r̄n −
1
n

n
∑

k=1

r4pk1 yk5

∥

∥

∥

∥

= lim
n→�

∥

∥

∥

∥

r̄n −
1
n

n
∑

k=1

l
∑

i=1

	8yk ∈Qi9r4pk1 yk5

∥

∥

∥

∥

≤ ��+ lim
n→�

∥

∥

∥

∥

r̄n −
1
n

n
∑

k=1

l
∑

i=1

	8yk ∈Qi9r4pi1 yk5

∥

∥

∥

∥

= ��+ lim
n→�

∥

∥

∥

∥

r̄n −

l
∑

i=1

r4pi1 ·5
1
n

n
∑

k=1

	8yk ∈Qi9yk

∥

∥

∥

∥
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= ��+ lim
n→�

∥

∥

∥

∥

r̄n −

l
∑

i=1

r4pi1 ·5
1
n

n
∑

k=1

	8yk ∈Qi914zk5

∥

∥

∥

∥

= ��+ lim
n→�

∥

∥

∥

∥

r̄n −
1
n

n
∑

k=1

l
∑

i=1

	8pk ∈ P i9r4pi1 zk5

∥

∥

∥

∥

≤ 2��+ lim
n→�

∥

∥

∥

∥

r̄n −
1
n

n
∑

k=1

l
∑

i=1

	8pk ∈ P i9r4pk1 zk5

∥

∥

∥

∥

= 2��0

In this sequence, the first inequality holds since when yk ∈Qi, we have pk ∈ P i and

�r4pk1 zk5− r4pi1 zk5� ≤ ��pk −pi
� ≤ ��1 (11)

where � is the span of the reward function (1). In the second equality, we use r4pi1 ·5 to denote the reward
matrix that corresponds to a mixed strategy pi, so that r4pi1 ·5yk = r4pi1 yk5. The third equality follows by
the calibration property (Definition 11). Finally, the second inequality above holds again by (11). Since this
inequality holds for any � > 0, the result follows. �

To prove Corollary 2, we need the following important result.

Lemma 6. For any strategy of the opponent, the following implication holds true almost surely: if the
sequence of the opponent’s mixed actions is statistically Q-restricted as per Definition 4, then the sequence of
calibrated forecasts 8yk9

�
k=1 is also statistically Q-restricted.

Proof. Recall that by Lemma 4, the joint empirical distribution �n “converges” to the set M defined in (4).
In addition, the Cesàro-convergence of qk is equivalent to convergence of the marginal empirical distribution fn
of 8qk9

n
k=1 to the set

{

�12
∫

d4q1Q5�14dq5= 0
}

0

Using Lemma 5 with V 4 · 5 being the (convex) Euclidean point-to-set distance d4·1Q5, we also have that the
marginal empirical distribution gn of 8yk9

n
k=1 satisfies

lim
n→�

1
n

n
∑

k=1

d4yk1Q5= lim
n→�

∫

d4y1Q5gn4dy5≤ lim
n→�

∫

d4q1Q5fn4dq5= 00 �

Proof of Corollary 2. The result follows by Lemma 6 since for n → �, the support of the empirical
distribution of the forecasts, gn

4

=�n12, is restricted to Q. Therefore

lim
n→�

d

(

1
n

n
∑

k=1

r∗4yk51R
+4Q5

)

= lim
n→�

d
(

ƐY∼gn
6r∗4Y 571R+4Q5

)

= 0

by the definition of R+4Q5. In particular, consider the case Q = 8q09, where q0 is a continuity point of
the (piecewise continuous) response map p∗4q5. Then, q0 is also a continuity point of r∗4q5, and R+4Q5 =

8r4p∗4q051 q059= 8r∗4q059 is a singleton by its definition. �

4.5. Additional remarks. The rate of convergence of (9) is that of the calibrated forecast used. E.g., for
�-calibration (and thus, � approachability) using internal regret minimization, the rate is the standard rate of
convergence of no-regret algorithms, that is of O41/

√
n5 (Cesa-Bianchi and Lugosi [9]).

Our algorithm assumes that an exact calibration algorithms is used. If, instead, an �-calibration forecaster is
employed, our results carry over with minor modifications as follows. First, the set M should be replaced with

M�
4

=

{

� ∈ã4ã4Z5×ã4Z552
∥

∥

∥

∫

	8y ∈Q94q − y5d�4q1 y5
∥

∥

∥

2
≤ �1∀Q ⊆ã4Z5

}

0

Also, it is easy to see that the convergence results of Theorem 4 and Corollary 2 hold with limn→�4 · 5 = 0
replaced by lim supn→�4 · 5 ≤ �. Finally, instead of using the exact closed convex image of a set, R+4Q5, one
should use

R+

� 4Q5
4

= conv8r∗4q52 d4q1Q5≤ �90

This is required since in the case of �-calibration, Cesàro-convergence condition of Corollary 2 only implies that

lim sup
n→�

1
n

n
∑

k=1

d4yk1Q5≤ �1 a.s.
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5. Approachability using slowly varying calibration. In §4, we analyzed the behaviour of a basic cal-
ibrated approachability algorithm and proved its opportunistic properties against a statistically restricted play
of the opponent. In this section, we turn to the analysis of our algorithm in the case when the opponent’s
play is empirically restricted. In particular, we pose the following question: does the fact that the empirical
frequencies of the pure (observed) actions are restricted to a set Q in the sense of Definition 5 implies that the
calibrated approachability algorithm (7) converges to R+4Q5 (similarly to the result of Corollary 2 for the case
of statistically Q-restricted opponent)? The following example shows that this is not necessarily the case.

Example 11 (Example 6 continued). Recall the setting of Example 6, where the goal is to approach the
nonconvex set S = 4−�1−17∪ 611�5. Suppose that the opponent’s actions are 010111010111 : : : 1 implying that
q̄n → q0 = 2/3. An opportunistic approachability algorithm should ideally converge in this case to R+48q095 (see
Definition 10). Indeed, the fixed forecaster yn = 2/3 is calibrated, and the calibrated approachability algorithm
that uses this forecaster will approach

R+48q095= r4p∗4q051 q05= r
(

411051 4 2
3 1

1
3 5
)

= 4
3 1

where the first equality follows since q0 is a continuity point of the response function p∗ defined in (2). Now
since 4/3 ∈ S, the algorithm will approach S. However, consider a perfect forecaster that predicts yn = 14zn5.
If the calibrated approachability algorithm uses this forecaster, it approaches

2
3 r

∗4411055+
1
3 r

∗4401155=
2
3 r4411051 411055+

1
3 r4401151 401155=

2
3 1

which is not in S. Hence, in this case, only convergence to conv4S5 is guaranteed. �
This example illustrates the fact that a perfect forecaster is bad for the purpose of empirically opportunistic

approachability. In fact, we would prefer a fixed forecaster, or more generally, a slowly time-varying forecaster.
This motivates us to introduce the following assumption in terms of the probability distributions of the fore-
casts 8�n9. To this end, for any probability measures �11�2 ∈ã4ã4Z55, let

��1 −�2�TV
4

= sup
A⊆ã4Z5

��14A5−�24A5�

denote the total variation distance, where the suprimum is taken over Borel-measurable sets A⊆ã4Z5.

Assumption 3 (Slowly Varying Calibration Algorithm). The probability distribution �n is changing
slowly. Namely, there exists n0 <� such that for all n≥ n0,

��n −�n−1�TV ≤
C

n�
1

for some � > 0 and C <�.

We note that Assumption 3 is not probabilistic since it is stated in terms of the randomizing probabilities of
the calibrated forecaster (and not in terms of the actual forecasts, which are random). In §5.2, we will show
that there exists a specific calibration algorithm that satisfies this property (see Corollary 3). We leave open the
interesting question of whether some slow variation property, in the spirit of the above, is intrinsically related
to the calibration requirement, or is a property of the specific algorithm used.

5.1. Approachability result. The following theorem shows that if the calibrated approachability algorithm
uses a slowly varying calibrated forecaster, it is empirically opportunistic2 in the sense of Definition 10.

Theorem 5. Suppose that Assumption 2 holds, and a calibration algorithm satisfies Assumption 3 with a
parameter � > 0. For any strategy of the opponent, the following implication then holds true almost surely:
if the play of the opponent is empirically Q-restricted (as per Definition 5) with respect to a partition 8�m9
with either

(1) bounded blocks lengths �m ≤ �̄ <�, or
(2) growing blocks lengths �m =O4m�5 with � > 0, under the condition that � > �/4� + 15,

then,
lim
n→�

d4r̄n1R
+4Q55= 00

2 Note that it is statistically opportunistic as well, as follows by the result of Lemma 2.
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Below is an outline of the proof. We first claim in Lemma 7 that the calibration property (3) can be stated
in terms of the distributions of the forecasts �n (rather than the forecasts yn themselves). We then prove in
Lemma 8 that Assumption 3 actually implies a calibration property in terms of the empirical frequencies of
the actions (rather than pure or mixed actions themselves). Finally, we show that this last property implies
opportunistic approachability in terms of the empirical frequencies.

Lemma 7. The calibration property (3) is equivalent to the following lifted calibration property in terms of
the forecast distributions �n:

lim
n→�

1
n

n
∑

k=1

(

Ɛyk∼�k
6	8yk ∈Q9714zk5− Ɛyk∼�k

6	8yk ∈Q9yk7
)

= 00 (12)

The proof of Lemma 7 is based on standard analysis of a suitably defined martingale difference sequence.
See Appendix B for details.

Recall that nM
4

=
∑M

m=1 �m, and q̂m denotes the empirical distribution of the opponent’s actions at block m.
Also, let

�̃m = �km
1

be any sequence of forecast distributions with the corresponding (deterministic) index subsequence nm−1 + 1 ≤

km ≤ nm. We show below that Assumption 3 implies the following calibration property in terms of the empirical
distributions 8q̂m9.

Definition 12 (Calibration for Empirical Frequencies). A calibrated forecaster is said to be calibrated
for empirical frequencies on a given partition 8�m9, if the forecast distributions can be fixed during each block,
without violating the (lifted) calibration property (12). That is,

lim
M→�

1
nM

M
∑

m=1

nm
∑

k=nm−1+1

(

Ɛyk∼�̃m
6	8yk ∈Q9714zk5− Ɛyk∼�̃m

6	8yk ∈Q9yk7
)

= lim
M→�

1
nM

M
∑

m=1

�m
(

Ɛỹm∼�̃m
6	8ỹm ∈Q97q̂m − Ɛỹm∼�̃m

6	8ỹm ∈Q9ỹm7
)

= 01 (13)

for all 8�̃m9 with �̃m = �km
and nm−1 + 1 ≤ km ≤ nm, and all Borel-measurable Q ⊆ã4Z5.

The following lemma shows that a calibration algorithm is calibrated for empirical frequencies if it is slowly
varying.

Lemma 8. Suppose that a calibration algorithm satisfies Assumption 3 with a parameter � > 0. Then, it is
calibrated for empirical frequencies (as per Definition 12) for any partition with either

(1) bounded blocks lengths �m ≤ �̄ <�, or
(2) growing blocks lengths �m =O4m�5 with � > 0, under the condition that � > �/4� + 15.

The proof of Lemma 8 is based on fixing the forecast distribution during each block and employing the slow
varying calibration property to bound the difference of the corresponding expected values. The detailed proof
can be found in Appendix B.

Finally, we prove Theorem 5.

Proof of Theorem 5. Let �̃M be the empirical joint distribution of 8q̂m9 and 8�̃m9 using the partition 8�m9,
that is

�̃M =
1
nM

M
∑

m=1

�m�q̂m1 �̃m
∈ã

(

ã4Z5×ã4ã4Z55
)

0

(I.e., �̃M is a distribution over pairs 4q1�5, where q is a probability vector in ã4Z5 and � is a distribution over
probability vectors in ã4Z5.) Note that Lemma 8 implies that �̃M “converges” to

M̄ 4

=

{

� ∈ã
(

ã4Z5×ã4ã4Z55
)

2
∫

(

Ɛy∼�6	8y ∈Q97q − Ɛy∼�6	8y ∈Q9y7
)

d�4q1�5= 01∀Q ⊆ã4Z5

}

for any choice of 8�̃m9, in the sense that

lim
M→�

∫

(

Ɛy∼�6	8y ∈Q97q − Ɛy∼�6	8y ∈Q9y7
)

d�̃M4q1�5= 01 ∀Q ⊆ã4Z50
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Now, since the opponent’s play satisfies Definition 5, it holds that

lim
M→�

∫

d4q1Q5�̃M114dq5= lim
M→�

1
nM

M
∑

m=1

�md4q̂m1Q5= 00 (14)

Also, it can be easily verified that an analogue of Lemma 5 holds for the set M̄. In particular, we have that
� ∈ M̄ if and only if

Ɛ4q � y5= y1 �-a.s. (15)

where 4q1y5 denote a pair of random variables distributed according to �. Indeed, by the definition of the
conditional expectation Ɛ4q � y= y5, we have that

Ɛ6	8y ∈Q9q7= Ɛ6	8y ∈Q9Ɛ4q � y= y571 ∀Q ⊆ã4Z50 (16)

Now, � ∈ M̄ if and only if
Ɛ6	8y ∈Q9q7= Ɛ6	8y ∈Q9y71 ∀Q ⊆ã4Z51

implying that (15) holds. Consequently, for any convex function V , it holds that

Ɛ6V 4y57= Ɛ6V 4Ɛ4q � y557≤ Ɛ6Ɛ4V 4q5 � y57= Ɛ6V 4q571

or, equivalently
∫

�
Ɛy∼�6V 4y57�24d�5≤

∫

q
V 4q5�14dq50

We use this last result to prove the restriction property of 8yn9 as in the proof of Lemma 6. In particular,
using V 4q5= d4q1Q5 and (14), we have that

lim
M→�

1
nM

M
∑

m=1

�m Ɛỹm∼�̃m
d4ỹm1Q5 = lim

M→�

∫

Ɛy∼�6d4y1Q57�̃M124d�5

≤ lim
M→�

∫

d4q1Q5�̃M114dq5= 00

Therefore,

lim
M→�

1
nM

nM
∑

k=1

Ɛyk∼�k
d4yk1Q5≤ lim

M→�

1
nM

M
∑

m=1

�m Ɛy∗
m∼�∗

m
d4y∗

m1Q5= 01

where
�∗

m ∈ arg max
nm−1+1≤k≤nm

Ɛyk∼�k
d4yk1Q50

Consequently,

lim
M→�

1
nM

nM
∑

k=1

d4yk1Q5= 01 a.s.

by the strong law of large numbers applied to the martingale difference sequence Ɛyk∼�k
d4yk1Q5 − d4yk1Q5,

and the result of the theorem follows similarly to the proof of Corollary 4. �

Remark 5. Observe that if the forecast distribution is fixed during each block, then Definition 12 is equiv-
alent to the definition of calibration (see (12)). In general, this is of course not true. Lemma 8 shows that
Definition 12 is satisfied for slowly varying calibrated forecasters. In fact, it is sufficient that the requirement
(13) of Definition 12 holds for a given sample path of the opponent’s play in order to obtain the result of
Theorem 5.

5.2. The existence of slowly varying calibration algorithms. In this section, we show that there exists a
calibration algorithm that satisfies Assumption 3. The algorithm that we analyze is based on a specific method
for internal regret minimization. We present a general connection between calibration and internal no-regret
in §5.2.2. But first, we prove a result of independent interest that establishes a slowly varying property of a
specific internal no-regret algorithm.
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5.2.1. Slowly varying internal regret minimization. Consider, as before, a repeated two-person game
between an agent and an arbitrary opponent. At time instant n, the agent chooses its action In from a finite
set 81121 : : : 1N 9 randomly according to a probability distribution �n ∈ ã481121 : : : 1N 95, while the opponent
chooses its action zn ∈Z. The average expected loss incurred by the agent up to time n is

¯̀
n =

1
n

n
∑

k=1

`4�k1 zk51

where `4i1 z5 is a given one-stage loss function, and `4�1 z5 is its expected value with respect to �.
For each i 6= j ∈ 80111 : : : 1N 9, let �i→j

n ∈ã480111 : : : 1N 95 be defined by

�i→j
n 4l5=











01 l = i1

�n4i5+�n4j51 l = j1

�n4l51 otherwise0

(17)

That is, this is a probability distribution that transfers the weight of i to j . We say that the agent minimizes
internal no-regret with respect to the loss function ` if

lim sup
n→�

{

1
n

n
∑

k=1

`4�k1 zk5− min
i 6=j

1
n

n
∑

k=1

`4�
i→j
k 1 zk5

}

≤ 01 (18)

for any strategy of the opponent. See Cesa-Bianchi and Lugosi [9] for an overview of internal no-regret
algorithms.

Below, we analyze a specific internal no-regret algorithm from Cesa-Bianchi and Lugosi [9] that uses expo-
nentially weighted average strategy to define �n. In particular, let

ã4i1 j51 n
4

=
exp4−�n

∑n−1
k=1 `4�

i→j
k 1 zk55

∑

l 6=l′ exp4−�n

∑n−1
k=1 `4�

l→l′

k 1 zk55
(19)

with �n = 1/
√
n. Also, define the stochastic matrix Pn with the following elements:

4Pn5i1 j
4

=

{

ã4i1 j51 n1 i 6= j
∑

l 6=i1 l′ 6=lã4l1 l′51 n1 i = j0
(20)

Note that 4Pn5i1 j can be interpreted as a transition probability from i to j in the sense of transferring the weight
from i to j in the previously used strategies �k, k = 11 : : : 1 n − 1. The internal regret minimizing strategy at
time n, �n, is then defined as a solution of the fixed point equation

�> = �>Pn1
∑

i

�4i5= 10 (21)

Therefore, �n is a stationary distribution of the Markov chain that corresponds to Pn. Note that this solution is
unique.

Lemma 9. The Markov chains that correspond to Pn are irreducible and aperiodic, and therefore there exists
a unique solution to (21) for all n.

Proof. Note that the state space is finite, and for all n

�n

n−1
∑

k=1

`4�
i→j
k 1 zk5 <�0

Therefore, 4Pn5i1 j > 0 for all i1 j , and in particular 4Pn5i1 i > 0. Hence the chains are irreducible and aperiodic. �
The next theorem establishes that the distributions of the agent’s actions change slowly with time.

Theorem 6. The distributions �n satisfy Assumption 3 for all n≥ 3.

Proof Outline. This theorem follows by the smoothness property of the transition matrices Pn, which in
turn implies smoothness of the corresponding stationary distributions �n. The detailed proof is rather involved
and can be found in Appendix C. �



Bernstein, Mannor, and Shimkin: Opportunistic Approachability
Mathematics of Operations Research 39(4), pp. 1057–1083, © 2014 INFORMS 1075

5.2.2. Calibration and internal no-regret. Next, we outline a general connection between calibration and
internal no-regret. For simplicity, we focus on the binary case Z = 80119 and �-calibration algorithms. The
results for exact calibrated forecasters and for general action set Z follow by the arguments similar to those in
Cesa-Bianchi and Lugosi [9].

For brevity, we let yn ∈ 60117 denote the forecast of zn = 1. As was mentioned, the construction of the
calibration algorithm starts from discretization of 60117 into N intervals. For a fixed N , an �-calibration algorithm
is then constructed, where � → 0 as N → �. A calibrated forecast can then be obtained by using a simple
application of the doubling trick, letting N → �.

We present the connection between any �-calibration algorithm and internal regret minimization of the squared
loss function. Assume that the �-calibrated forecaster is given by

yn =
In
N
1

where In ∈ 80111 : : : 1N 9 is randomly selected according to a probability distribution

�n ∈ã480111 : : : 1N 950

The following result was shown in Cesa-Bianchi and Lugosi [9], using the so-called Brier score.

Lemma 10. A forecaster is �-calibrated if and only if it minimizes the internal regret with respect to the loss
function

`4i1 z5
4

=

(

i

N
− z

)2

0 (22)

Hence, we have the following corollary that establishes the existence of slowly varying calibrated forecasters.

Corollary 3. The calibrated forecaster that is based on internal regret minimization technique presented
in §5.2.1 satisfies Assumption 3 for all n≥ 3.

Proof. The result follows by Theorem 6 and Lemma 10. �

6. Constrained regret minimization. We next apply our opportunistic approachability framework to the
problem of regret minimization subject to average cost constraints (Mannor et al. [30]).

Consider first the standard (unconstrained) regret minimization problem, where as before, the agent faces an
arbitrarily varying environment (the opponent). The repeated game model is the same as above, except that the
vector reward function r is replaced by a scalar reward (or utility) function u2 A×Z→�. Let ūn

4

= n−1∑n
k=1 uk

denote the average reward by time n. The goal of the agent is to maximize ūn. Suppose that the agent knew in
advance that the empirical distribution q̄n of the opponent’s actions is say q̄n = q. He could then maximize its
average reward by repeatedly choosing the action that solved

u∗4q5= max
p∈ã4Z5

u4p1q5= max
a∈Z

u4a1q50

However, in the online setting, when the actions of the opponent can be arbitrary and are not known in advance,
a suitable goal introduced in Hannan [15] is to minimize the regret, namely, to ensure that

lim sup
n→�

4u∗4q̄n5− ūn5≤ 01 (23)

almost surely, for every strategy of the opponent. Right after Hannan’s seminal paper, Blackwell [6] used
approachability theory in order to elegantly show the existence of regret minimizing algorithms. Define the
vector-valued rewards rn

4

= 4un114zn55 ∈�×ã4Z5. The corresponding average reward is then r̄n
4

= n−1∑n
k=1 rk =

4ūn1 q̄n5. Finally, define the target set

S =
{

4u1 q5 ∈�×ã4Z52 u≥ u∗4q5
}

0

It can be easily verified that this set is a D-set, and it is convex by the convexity of u∗4q5. Hence, S is
approachable, and by the continuity of u∗4q5, an algorithm that approaches S also minimizes the regret in the
sense of (23).

In the constrained regret minimization problem, in addition to the scalar reward function u, we are given a
vector-valued cost function c2 A×Z → �s . We are also given a closed and convex set â ⊆ �s , the constraint
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set, defining the allowed values for the long-term average cost (see below). The typical case is that of linear
constraints, that is â =

{

c ∈�s2 ci ≤ �i1 i = 11 : : : 1 s
}

for some vector � ∈�s . The constraint set is assumed to
be feasible, in the sense that for every q ∈ã4Z5, there exists p ∈ã4A5, such that c4p1q5 ∈ â .

Let c̄n
4

= n−1∑n
k=1 ck denote the average cost by time n. The agent is required to satisfy the cost constraints, in

the sense that limn→� d4c̄n1 â5= 0 must hold, irrespectively of the opponent’s play. Subject to these constraints,
the agent wishes to maximize his average reward ūn.

Suppose the agent knew in advance that the empirical distribution q̄n equals to q. He could then maximize
its expected average reward subject to the constraints by always choosing the mixed action p that solved the
following program:

u∗

â 4q5
4

= max
p∈ã4A5

{

u4p1q52 c4p1 q5 ∈ â
}

0 (24)

We consider u∗
â 4q5 as the best-reward-in-hindsight for the constrained problem. The goal of the agent would be

then to attain u∗
â in the following sense.

Definition 13 (Constrained No-Regret). A strategy of the agent � is a constrained no-regret strategy
with respect to a function u∗

â if (i) lim supn→�4u
∗
â 4q̄n5− ūn5≤ 0; and (ii) limn→� d4c̄n1 â5= 0 both hold almost

surely, for every strategy of the opponent. If such a strategy exists, we say that u∗
â 4 · 5 is attainable.3

The problem of attaining u∗
â 4 · 5 can be formulated as an approachability problem, which extends Black-

well’s original formulation for the unconstrained case presented above. Define the vector-valued rewards rn
4

=

4un1 cn114zn55 ∈ �s+1 × ã4Z5. The corresponding average reward becomes r̄n
4

= n−1∑n
k=1 rk = 4ūn1 c̄n1 q̄n5.

Finally, define the target set

S = 84u1 c1 q5 ∈�s+1
×ã4Z52 u≥ u∗

â 4q51 c ∈ â90 (25)

It is easily verified that an algorithm that approaches S also attains u∗
â 4q5 if u∗

â 4q5 is continuous. Furthermore,
the set S is a D-set by construction (see below). However, the function u∗

â 4q5 is not convex in general, which
implies that the set S is not convex. Therefore, one cannot invoke the dual condition to infer approachability
of S, but only of its convex hull. Indeed, it was shown in Mannor et al. [30] that S is not approachable in
general.

A feasible (approachable) target set is then the convex hull of S. This may be written as

conv4S5=
{

4u1 c1 q5 ∈�s+1
×ã4Z52 u≥ conv4u∗

â 54q51 c ∈ â
}

1 (26)

where the function conv4u∗
â 5 is the lower convex hull of u∗

â 4 · 5 (i.e., the largest convex function over ã4Z5 that
is smaller than u∗

â ). Now, since conv4S5 is approachable, it follows that conv4u∗
â 54q5 is attainable, in the sense

of Definition 13.
Two algorithms were proposed in Mannor et al. [30] for attaining the relaxed goal function conv4u∗

â 5. The
first is a standard approachability algorithm for conv4S5, which requires the demanding calculation of projection
directions to the convex hull of S. Further, this algorithm is not opportunistic, in the sense described below.
The second algorithm relies on computing calibrated forecasts of the opponent’s actions, and as we show below
is actually equivalent to our calibration-based approachability algorithm when used for this special case. Our
opportunistic convergence results thus apply to this algorithm.

To apply our algorithm, a regular response function p∗ (Definition 6) is required. It is easily seen that any
choice of

p∗4q5 ∈ arg max
p∈ã4A5

8u4p1q52 c4p1 q5 ∈ â9

yields a response function, in the sense that r4p∗4q51 q5 ∈ S. A regular (piecewise continuous) selection can be
induced, for example, by imposing a lexicographic precedence over the coordinates of p in case the maximizing
set is not a singleton. The goal function in this case is then

r∗4q5= 4u∗

â 4q51 c4p
∗4q51 q51 q50 (27)

Thus, our calibrated approachability algorithm can be applied, and the results of §§4 and 5 imply that the
algorithm approaches conv4S5, hence attains the relaxed goal function conv4u∗

â 5. In particular, Corollary 2 and
Theorem 5 show that S itself is approached whenever the opponent is either statistically or empirically restricted
to a singleton Q = 8q09 that is a continuity point of p∗4q5. Interestingly, in the present case the last continuity
requirement can be removed.

3 The term “attainability” was recently used by Lehrer et al. [24] in a different context, to describe a certain kind of approachability. In this
paper, we, however, use this term as in Mannor and Shimkin [25] and Mannor et al. [30] to describe the goals of a generalized no-regret
algorithm.
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Lemma 11. For the model of the present section, R+48q95⊆ S (rather than conv4S5) for every q ∈ã4Z5.

Proof. Observe that the first component of r∗ (defined in (27)) is continuous in q (see Mannor et al. [30]).
Also, note that the jumps of c4p∗4q51 q5, the second component of r∗, lie entirely in S. This is true since, for the
fixed first component, the induced set is convex because of convexity of â . Consequently, the jumps of r∗4q5
around a given q ∈ã4Z5 lie in S, which implies that R+48q95⊆ S by its definition. �

This brings us back to our requirement for a constrained no-regret algorithm, in Definition 13. Although this
requirement cannot be attained for any strategy of the opponent, we have just seen that it is attained whenever
the opponent is asymptotically stationary, in the sense that its actions are (statistically or empirically) converging
to a singleton. In that case, the algorithm attains u∗

â 4q5, the best-reward-in-hindsight, rather than a relaxed goal,
while satisfying the average cost constraints.

Example 4Classification with specificity constraints5. In Bernstein et al. [4], we considered the
online problem of merging the output of multiple binary classifiers, with the goal of maximizing the true-positive
rate, while keeping the false-positive rate under a given threshold 0 <� < 1. As shown there, this problem may
be formulated as a constrained regret minimization problem, and provides a concrete learning application for
the theory developed here.

7. Conclusion and future work. In this paper, our central goal was to formulate the concept of opportunistic
approachability. We have also devised a class of calibration-based approachability algorithms and shown that
they are opportunistic in the sense advocated here. The presented algorithms are computationally challenging
in that they require the computation of calibrated forecasts. In addition, a procedure for the computation of
the response function p∗ is required, the complexity of which is problem dependent. However, given these two
components, the computational burden is much lighter than standard approachability that requires computing the
projection to the target set and solving a zero-sum game in every stage. Specifically, it is sometimes difficult to
compute the projection to the convex hull of a nonconvex set; a step that our approach avoids.

We have applied our opportunistic approachability framework to the problem of regret minimization subject
to average cost constraints, and shown that the best-reward-in-hindsight (rather than its convex relaxation) is
attained when the opponent turns out to be stationary in our sense.

Below we present some topics of future interest. Our calibration-based algorithm is conceptually simple and of
general applicability. However, Although considerable progress has been made recently toward the efficient com-
putation of calibrated forecasts (Mannor and Stoltz [27], Rakhlin et al. [36], Abernethy et al. [1]), this remains
a demanding task. Therefore, it should be of interest to devise alternative algorithms that are computationally
efficient and have optimal convergence rates. Initial results on a new class of opportunistic approachability algo-
rithms that is based on online convex optimization methods appear in Bernstein et al. [5]. In addition, the work
in Bernstein and Shimkin [3] focuses on designing simple and efficient algorithms that are based on the concept
of a response function (rather than projection), which are however not opportunistic in the sense advocated in
this paper.

We note that there are several other regret minimization problems where our framework can be applied, such
as online learning with global cost functions (Even-Dar et al. [11]), regret minimization in variable duration
repeated games (Mannor and Shimkin [26]), and regret minimization in stochastic game models (Mannor and
Shimkin [25]). In particular, as in the problem of constrained regret minimization, the best-reward-in-hindsight
is not attainable in these models in general, but only its convex relaxation. Our approach only requires that
we can compute the response function, and this can be done efficiently in these cases. Of course some tech-
nical adaptation is needed to account for the models’ dynamics in the two latter cases, which is a subject of
future work.

Acknowledgments. This research has been supported by the Israel Science Foundation [Grants 1319/11 and 920/12].
The authors wish to thank the reviewers and the editorial team for many useful comments on this paper.

Appendix A. Proof of Lemma 2. Let 8�m9 be a given partition and set

�̄m
4
= �−1

m

nm
∑

k=nm−1+1

qk0

First, observe that, by the convexity of the point-to-set Euclidean distance to a convex set, Definition 4 implies that

lim
M→�

1
nM

M
∑

m=1

�md4�̄m1Q5= 00
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This is equivalent to

lim
M→�

1
nM

M
∑

m=1

�m	8d4�̄m1Q5 > �9= 01 ∀ � > 00 (A1)

Fix � > 0. We have that,

1
nM

M
∑

m=1

�m�8d4q̂m1Q5 > �9 =
1
nM

M
∑

m=1

�m�8d4q̂m1Q5 > �9	8d4�̄m1Q5≤ �/29

+
1
nM

M
∑

m=1

�m�8d4q̂m1Q5 > �9	8d4�̄m1Q5 > �/290

Now, the second term above converges to zero by (A1). The first term above can be bounded as follows:

1
nM

M
∑

m=1

�m�8d4q̂m1Q5 > �9	8d4�̄m1Q5≤ �/29

≤
1
nM

M
∑

m=1

�m�8�q̂m − �̄m�> �/29	8d4�̄m1Q5≤ �/29

≤
1
nM

M
∑

m=1

�m
∑

z∈Z

�

{

�q̂m4z5− �̄m4z5�>
�

2
√

�Z�

}

≤ 2�Z�
1
nM

M
∑

m=1

�m exp
(

−
�m�

2

8�Z�

)

1

where the second inequality holds by union bound for Euclidean distance, and the last inequality follows by Hoeffding’s
inequality for the average of the martingale difference sequence

Dn4z5= 	8zn = z9− qn4z50

Thus, for all � > 0 and all superlogarithmically growing blocks lengths 8�m9,

lim
M→�

1
nM

M
∑

m=1

�m�8d4q̂m1Q5 > �9= 0

implying that

lim
M→�

1
nM

M
∑

m=1

�m	8d4q̂m1Q5 > �9= 01 a.s.

by the almost sure convergence to zero of the mean of the martingale difference sequence Dm = �m	8d4q̂m1Q5 > �9 −

�m�8d4q̂m1Q5 > �9. This completes the proof. �

Appendix B. Proofs of Lemmas 7 and 8.

Proof of Lemma 7. We first write

1
n

n
∑

k=1

(

Ɛyk∼�k
6	8yk ∈Q9714zk5− Ɛyk∼�k

6	8yk ∈Q9yk7
)

=
1
n

n
∑

k=1

	8yk ∈Q9414zk5− yk5+
1
n

n
∑

k=1

(

Ɛyk∼�k
6	8yk ∈Q97− 	8yk ∈Q9

)

14zk5

+
1
n

n
∑

k=1

(

	8yk ∈Q9yk − Ɛyk∼�k
6	8yk ∈Q9yk7

)

0

The first term in this equation converges to zero (almost surely) by (3), and the two other terms converge to zero (almost
surely) by the strong law of large numbers, applied to the martingale difference sequences

D
415
k =

(

Ɛyk∼�k
6	8yk ∈Q97− 	8yk ∈Q9

)

14zk5

and
D

425
k = 	8yk ∈Q9yk − Ɛyk∼�k

6	8yk ∈Q9yk71

respectively. �



Bernstein, Mannor, and Shimkin: Opportunistic Approachability
Mathematics of Operations Research 39(4), pp. 1057–1083, © 2014 INFORMS 1079

Proof of Lemma 8. On a given partition 8�m9, fix a sequence 8�̃m9 with the corresponding (deterministic) index sub-
sequence nm−1 + 1 ≤ km ≤ nm. We have that

1
nM

M
∑

m=1

nm
∑

k=nm−1+1

(

Ɛyk∼�̃m
6	8yk ∈Q9714zk5− Ɛyk∼�̃m

6	8yk ∈Q9yk7
)

=
1
nM

nM
∑

k=1

(

Ɛyk∼�k
6	8yk ∈Q9714zk5− Ɛyk∼�k

6	8yk ∈Q9yk7
)

+
1
nM

M
∑

m=1

nm
∑

k=nm−1+1

14zk5
(

Ɛỹm∼�̃m
6	8ỹm ∈Q97− Ɛyk∼�k

6	8yk ∈Q97
)

+
1
nM

M
∑

m=1

nm
∑

k=nm−1+1

(

Ɛyk∼�k
6	8yk ∈Q9yk7− Ɛỹm∼�̃m

6	8ỹm ∈Q9ỹm7
)

0 (B1)

Now, the first term above converges to zero by (12). We prove that the other two terms also converge to zero under
Assumption 3. Let us assume, without loss of generality, that n0 of Assumption 3 equals to 1. The result for any finite n0

follows similarly. We start by observing that, for any bounded function V , we have

�Ɛ�k 6V 4yk57− Ɛ�k−1
6V 4yk−157� ≤ Vmax��k −�k−1�TV0 (B2)

Fix m≥ 2 and k11 k2 ∈ 6nm−1 + 11 nm7. It holds that

��k1
−�k2

�TV ≤

nm
∑

k=nm−1+2

��k −�k−1�TV ≤C
nm
∑

k=nm−1+1

1
k�

≤
C�m

n
�
m−1

1

where the second inequality follows by Assumption 3. Using this inequality and (B2) in (B1), and taking the limit, we
obtain that

∥

∥

∥

∥

lim
M→�

1
nM

M
∑

m=1

nm
∑

k=nm−1+1

(

Ɛyk∼�̃m
6	8yk ∈Q9714zk5− Ɛyk∼�̃m

6	8yk ∈Q9yk7
)

∥

∥

∥

∥

≤ 2 lim
M→�

(

�1

nM

+
C

nM

M
∑

m=2

�2
m

n
�
m−1

)

0 (B3)

Now, to prove that the bound in (B3) converges to zero, consider the two cases of the partition mentioned in the hypothesis
of the lemma. First, if �m ≤ �̄ <� for all m, we have that

C

nM

M
∑

m=2

�2
m

n
�
m−1

≤
C4�̄52

M

M
∑

m=2

1
4m− 15�

≤



















C4�̄52

M

[

1
1 − �

4M1−�
− 15+ 1

]

=
C4�̄52

41 − �5

(

1
M�

−
�

M

)

1 � 6= 1

C4�̄52 logM
M

1 � = 11

where the first inequality holds since nm ≥m and in the second inequality integral upper bound of a sum is used. Thus, the
bound in (B3) goes to zero in this case.

For the second case, suppose �m =m� . Using integral approximation of a sum, we have that

1
� + 1

M�+1
≤ nM

4
=

M
∑

m=1

m�
≤M�+10

Therefore, the right-hand side of (B3) can be bounded by

�1

nM

+
C

nM

M
∑

m=2

�2
m

n
�
m−1

≤
� + 1
M�+1

[

1 +C4� + 15�
M
∑

m=2

m2�

4m− 154�+15�

]

≤
� + 1
M�+1

[

1 +C4� + 15�2�+1
M
∑

m=2

1
m4�+15�−2�

]

≤



















O

(

logM
M�+1

)

1 4� + 15� − 2� = 1

O

(

1
M 4�+15�−�

)

1 otherwise1

where the second inequality holds since m− 1 ≥m/2 for m≥ 2, and the third inequality follows by integral approximation
of a sum. Hence, the bound in (B3) goes to 0 for M → � whenever 4� + 15� − � > 0, or � > �/4� + 15. �
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Appendix C. Proof of existence of slowly varying internal no-regret algorithms. Below we prove Theorem 6. We
first express the sensitivity of change in the stationary distribution �n due to the changes in the transition matrices Pn defined
in (20). As a second step, we provide a bound on �Pn −Pn−1��, where �A�� is the `� induced norm of matrix A, namely,

�A��

4
= max

i

∑

j

�aij �0

Since the measures �n are discrete, we identify them with the corresponding probability vectors, and provide bounds for the
`� distance ��n −�n−1��. The total variation distance can be then bounded by

��n −�n−1�TV ≤N��n −�n−1��0

For the first step, we follow Meyer [31] and introduce the following definitions.

Definition 14 (Group Inverse). Let A be a given squared matrix with rank4A25 = rank4A5. The group inverse of A

is the unique matrix A# such that A2A# =A, A#AA# =A#, and AA# =A#A.

Definition 15 (Limiting Condition Number). The limiting condition number of the sequence of irreducible and ape-
riodic Markov chains 8Pn9 is given by

�
4
= sup

n≥1

{

max
i1 j

64I −Pn5
#7i1 j

}

<�0

Using these definitions, the bound on the variation of �n can be expressed as follows.

Proposition 1. We have that,
��n −�n−1�� ≤ ��Pn −Pn−1��

for all n.

Proof. Given the result of Lemma 9, this proposition follows by applying the results for two perturbed Markov chains,
presented, e.g., in Meyer [31], to a sequence of Markov chains. �

As a second step, we provide a bound on �Pn − Pn−1��, where Pn is given in (20). The potential difficulty in providing
such a bound is the fact that the denominator in the exponentially weighted forecaster (19) can in principle go to zero as
n goes to infinity. To overcome this difficulty, we introduce a modified definition of this forecaster. Let 8�n9 be a given
sequence, and set

�4i1 j51 n
4
= exp

(

�n

[n−1
∑

k=1

�k −

n−1
∑

k=1

`4�
i→j
k 1 zk5

])

0

It is easy to see that the exponentially weighted forecaster (19) is equivalent to

ã4i1 j51 n
4
=

�4i1 j51 n
∑

l 6=l′ �4l1 l′51 n

0 (C1)

We first argue that we can construct the sequence 8�n9 so that the maxi 6=j �4i1 j51 n is bounded from below and above in the
limit. Indeed, consider the following history-dependent sequence:

(i) Starting from time n= 0, set �n = 0 as long as

∃ i 6= j2
n−1
∑

k=1

`4�
i→j
k 1 zk5≤

√
n0

(ii) If at time instance n0 the above condition fails to hold true, set

�n0
= max

i 6=j
`4�i→j

n0
1 zn0

50

Set �n = �n0
for all n> n0, until

∃ i 6= j2
n−1
∑

k=1

�k −

n−1
∑

k=1

`4�
i→j
k 1 zk5≥ 00

(iii) Suppose that the above condition is first satisfied at time instance n1. Then, set �n = 0 for n≥ n1 as long as

∃ i 6= j2
n−1
∑

k=1

�k −

n−1
∑

k=1

`4�
i→j
k 1 zk5≥ −

√
n0

When the above condition fails to hold true, go to (ii).
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Hence, for all n
n−1
∑

k=1

�k −

n−1
∑

k=1

`4�
i→j
k 1 zk5≤ 01 ∀ i 6= j1

and

∃ i 6= j2
n−1
∑

k=1

�k −

n−1
∑

k=1

`4�
i→j
k 1 zk5≥ −

√
n1

for any sample path of the play. This implies that

1
e

≤ max
i 6=j

�4i1 j51 n ≤ 11 ∀n1 (C2)

for any sample path of the play.
With this at hand, we prove the following lemma.

Lemma 12. We have that

�Pn −Pn−1�� ≤ 16eN4N 2
+ 15

1
√
n

for n≥ 3.

Proof. First observe that by (20), we have that

�Pn −Pn−1�� ≤ 2N max
i 6=j

�ã4i1 j51 n −ã4i1 j51 n−1�0 (C3)

Also, by Equation (C1), it holds that

�ã4i1 j51 n −ã4i1 j51 n−1� ≤
1

∑

l 6=l′ �4l1 l′51 n−1
��4i1 j51 n −�4i1 j51 n−1�

+
�4i1 j51 n

4
∑

l 6=l′ �4l1 l′51 n54
∑

l 6=l′ �4l1 l′51 n−15

∑

l 6=l′

��4l1 l′51 n −�4l1 l′51 n−1�

≤ 4e+ eN 25max
l1 l′

��4l1 l′51 n −�4l1 l′51 n−1�1 (C4)

where the second inequality follows by (C2). However,

�4i1 j51 n = exp
(

�n−1L4i1 j51 n−1
�n

�n−1

)

exp
(

�n6�n−1 − `4�
i→j
n−11 zn−157

)

= 4�4i1 j51 n−15
�n/�n−1 exp

(

�n6�n−1 − `4�
i→j
n−11 zn−157

)

1

where

L4i1 j51 n−1
4
=

n−2
∑

k=1

�k −

n−2
∑

k=1

`4�
i→j
k 1 zk50

The rest of the proof is technical: it provides an explicit upper bound for the difference

�4i1 j51 n−1 −�4i1 j51 n =�4i1 j51 n−1 − 4�4i1 j51 n−15
�n/�n−1 exp

(

�n6�n−1 − `4�
i→j
n−11 zn−157

)

(C5)

in terms of n.
Now, since

lim
n→�

�n

�n−1
= lim

n→�

√
n− 1
√
n

= 1

and
lim
n→�

exp
(

�n6�n−1 − `4�
i→j
n−11 zn−157

)

= 11

we use Taylor series of the first order to approximate the function

f 4x1 y5=�− y�x

around 4x01 y05= 41115. We have that

f 4x1 y5 = 0 + 4x− 154−� log�5+ 4y− 154−�5+R14x̃1 ỹ5

= � log�41 − x5+�41 − y5+R14x̃1 ỹ51
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where

R14x̃1 ỹ5 =
1
2

(

¡2f

¡x2
4x− x̃52

+ 2
¡2f

¡x¡y
4x− x̃54y− ỹ5+

¡2f

¡y2
4y− ỹ52

)

=
1
2
4−4x− x̃52ỹ�x̃ log2 �− 24x− x̃54y− ỹ5�x̃ log�5

is the Lagrange remainder, and 4x̃1 ỹ5 is a point with x̃ between x and 1 and ỹ between y and 1.
By (C2), 0 <�< 1. Since x =

√
n− 1/

√
n ∈ 61/

√
2115, it is easily verified (by taking derivatives) that � log41/�5≤ 1/e,

�x log2 �≤ 8/e2, and �x log41/�5≤
√

2/e. Therefore,

�f 4x1 y5� ≤ �� log���1 − x� +��1 − y� + 0054x− x̃52ỹ�x̃ log2 �+ �x− x̃��y− ỹ��x log41/�5

≤ 41/e541 − x5+ �1 − y� + 0054x− 152e48/e25+ 41 − x5�1 − y�4
√

2/e5

≤
1
e
41 − x5+ �1 − y� +

4
e
4x− 152

+

√
2
e

41 − x5�1 − y�0 (C6)

Now, since x < 1, 4x− 152 ≤ 1 − x. Also,

�1 − y� =
∣

∣1 − exp
(

�n6�n−1 − `4�
i→j
n−11 zn−157

)

∣

∣

≤ exp
(

1
√
n

)

− 1

since −1 ≤ �n−1 − `4�
i→j
n−11 zn−15≤ 1. Using these results and (C6) for (C5) yields

��4i1 j51 n−1 −�4i1 j51 n� ≤
5
e

(

1 −

√

n− 1
n

)

+

(

exp
(

1
√
n

)

−1
)

+

√
2
e

(

1 −

√

n− 1
n

)(

exp
(

1
√
n

)

− 1
)

0

Finally, it can be verified that

1 −

√

n− 1
n

≤ exp
(

1
√
n

)

− 11 ∀n1

and, trivially,

exp
(

1
√
n

)

− 1 < 11 ∀n≥ 30

This results in the following upper bound:

��4i1 j51 n−1 −�4i1 j51 n� ≤

(

5 +
√

2
e

+ 1
)(

exp
(

1
√
n

)

− 1
)

1 ∀n≥ 30 (C7)

To conclude this proof, we use again Taylor series of the first order to approximate the function exp4x5− 1 around x = 0.
Namely,

exp4x5− 1 = 0 + x+
1
2 exp4x̃54x− x̃521

where x̃ is between x and 0. Since x = 1/
√
n≤ 1, this yields the upper bound

exp
(

1
√
n

)

− 1 ≤
1

√
n

+
e

2
1
n

≤
1 + e/2

√
n

0

By plugging this inequality in (C7), we obtain

��4i1 j51 n−1 −�4i1 j51 n� ≤

(

5 +
√

2
e

+ 1
)(

1 +
e

2

)

1
√
n

≤
8

√
n
1 ∀n≥ 30

Combining this inequality with (C4) and (C3) completes the proof. �

Proof of Theorem 6. Combining the results of Proposition 1 and Lemma 12, we have that

��n −�n−1�TV ≤N��n −�n−1�� ≤ 16e�N 24N 2
+ 15

1
√
n

for n≥ 3. �
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