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Abstract We consider an overloaded multi-server multi-class queueing model where
customers may abandon while waiting to be served. For class i, service is provided at
rate μi , and abandonment occurs at rate θi . In a many-server fluid regime, we show
that prioritizing the classes in decreasing order of ciμi/θi asymptotically minimizes
an ergodic holding cost, where ci denotes the equivalent holding cost per unit time
for class i.
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1 Introduction

We consider a parallel server queueing model with I customer classes and multiple
servers. Each server is capable of serving any one of the customers, and each cus-
tomer has a single service requirement. Customers arrive according to independent
renewal processes. The service time for a customer of class i is exponentially distrib-
uted with mean 1/μi . A class-i customer may abandon the system while waiting to
be served, according to an exponential clock with mean 1/θi . A cost c̄i ≥ 0 per unit
time is incurred for holding a class-i customer in the queue, in addition to a penalty γi

for each abandonment of a customer of that class. In this paper we shall be interested
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in minimizing the corresponding long-term average cost. Our focus will be on the
overloaded system regime, where the total incoming work exceeds the service capac-
ity (while stability is maintained due to abandonment). First, we argue that the cost
is bounded below by the solution to a simple linear program. Then we specialize to a
Markovian model (by letting arrivals be Poisson), and consider the system in a fluid
limit regime where both the arrival rates and the number of servers grow without
bound. Our main result shows that the lower bound alluded to above is asymptoti-
cally achieved by a static priority policy which prioritizes classes in decreasing order
of ciμi/θi , where ci = c̄i + θiγi . This result applies with respect to the long term ex-
pected average cost, as well as for the ergodic (sample-path long term average) cost.
The lower bound alluded to above is also proved for a model with general service
time distribution under a non-interruptible service assumption.

The policy described above, referred to as the cμ/θ rule, was introduced in [1].
Both the results of [1] and those of the present paper establish optimality of this
policy in the limit as the time (t) and the number of servers (n) grow without bound,
where the difference lies in the order of the limits. The results of [1] state that, given
ε > 0, one can find t such that, as n tends to infinity, the (sample path, average cost)
performance of the proposed policy over the time interval [0, t], is guaranteed to
be optimal up to precision ε. The present paper, on the other hand, shows that for
sufficiently large n, the average cost over the infinite time interval [0,∞) is optimal
up to an arbitrary precision (depending on n). While the former approach emphasizes
finite-time behavior, the latter addresses steady state.

The results of this paper require different mathematical tools from those of [1]. The
lower bound (Propositions 2.1 and A.1 for exponential and general service time dis-
tribution, respectively), is proved via a sample path analysis of the queueing process.
The main tool for the upper bound (Theorem 2.2) is a Lyapunov function type argu-
ment (Lemma 3.1) that explicitly uses the form of the generator. Consequently, the
possible extension of the upper bound beyond the Markovian setting is not straight-
forward.

For further references and discussion regarding the problem and suggested policy,
the reader is referred to [1].

On our way to proving the main result, we analyze the Markovian model under an
arbitrary priority policy, and establish the convergence of the fluid scale steady state
distribution to that of the fluid model (Theorem 2.1). This result may be of interest
on its own right. Fluid limits of queueing networks under priority disciplines have
been considered in various works and textbooks. In [3, Sect. 9.3] a priority queue
is considered as one of a large class of processes for which convergence to a fluid
model holds. Further properties of priority queues in heavy traffic are analyzed in
[4, Sect. 5.10]. Related results appear also in [2, Sect. 10]. These references are all
concerned with convergence of fluid scale processes, uniformly on compact intervals
of time, and therefore these results are not sufficient for the convergence of steady
state distributions. One of the standard approaches to obtaining the latter is via the
construction of a Lyapunov function, satisfying geometric ergodicity estimates that
are uniform both in n and t . Our proof of Theorem 2.1 is based on this approach.

The rest of this paper is organized as follows. In the next section we introduce
the model with renewal arrivals, and state and prove a lower bound (Proposition 2.1).
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We then specialize to a Markovian setting, and state the result on fluid scale conver-
gence of the steady state (Theorem 2.1), as well as our main result (Theorem 2.2), of
asymptotic optimality of the cμ/θ rule. We also provide a bound on the rate of con-
vergence (Proposition 2.2) and an almost-sure version of the upper and lower bounds
(Proposition 2.3). Section 3 contains the proofs of Theorems 2.1 and 2.2 and Propo-
sitions 2.2 and 2.3. Finally, in the appendix, we prove an analogue of Proposition 2.1
(lower bound) for general service time distribution and non-interruptible service.

Notation For x ∈ R
I , the ith element is denoted by xi , and ‖x‖ = ∑I

i=1 |xi |. For
x, y ∈ R

I , x · y = ∑
xiyi . For x ∈ R, x+ = max(x,0), and R+ denotes the non-

negative real line. For X : R+ → R
I , we denote ‖X‖∗

T = supt≤T ‖X(t)‖.

2 Model and main results

2.1 Model

The queueing model consists of a parallel server system with I classes of customers
and n homogeneous servers. It is defined on a probability space (Ω, F ,P), where
expectation is denoted by E. The arrivals are modeled as renewal processes Ai , where
the inter-arrivals have finite mean 1/λi . Service durations for class-i customers are
i.i.d. exponential random variables with finite mean 1/μi . Namely, for a standard
(rate 1) Poisson process D̃i , the number of service completions of class-i jobs by
time t is given as

Di(t) = D̃i

(

μi

∫ t

0
Zi(s) ds

)

, (1)

where Zi(t) denotes the number of class-i customers in service at time t . Customers
waiting to be served are said to be in the queue. While customers are in the queue
they may lose patience and abandon the system. For a class-i customer, the patience
is assumed to be exponentially distributed, with mean 1/θi , where θi > 0. This is
modeled by introducing standard Poisson processes R̃i , and assuming that the number
of abandoning customers from buffer i by time t is given as

Ri(t) = R̃i

(

θi

∫ t

0
Qi(t)

)

, (2)

where Qi denotes the class-i queue length.
Let Xi(t) denote the total number of class-i customers present in the system

at time t . The initial conditions X1(0),X2(0), . . . ,XI (0) are assumed to be fi-
nite random variables. The 3I processes Ai , D̃i and R̃i , and the initial condition
X(0) = (X1(0),X2(0), . . . ,XI (0)), referred to as the stochastic primitives, are fur-
ther assumed to be mutually independent. The sample paths of Ai , D̃i and R̃i are
assumed to be right-continuous.

The above processes clearly satisfy the following relations

Xi(t) = Xi(0) + Ai(t) − Ri(t) − Di(t), (3)
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Qi(t) = Xi(t) − Zi(t) ≥ 0, (4)

Zi(t) ≥ 0,

I∑

i=1

Zi(t) ≤ n. (5)

Service to customers may be interrupted by the system controller, so as to allow a
customer of another class to be served, and resumed at a later time (provided that the
customer has not abandoned in the meantime). A preempted customer waiting to be
re-assigned a server is considered to be in the queue, and may abandon in accordance
with the model (2). One can interpret this model as if the patience time is determined
once for each customer, and the clock runs only at times when the customer is in
the queue. An alternative interpretation is that the patience time is drawn anew each
time the customer returns to the queue; as is well known, these two interpretations
are equivalent due to the memoryless property of the exponential distribution.

A control policy may be defined as a rule for allocating servers to customers, with
Z understood to be the control variable. We will find it convenient to take a more
abstract view, and identify any collection of processes

π = (D,R,X,Q,Z) (6)

that comply with the description above as a policy. Let constants c̄i ≥ 0 and γi ≥ 0
be given, denoting holding cost per unit time, and abandonment cost, respectively,
for class-i customers. For a policy π = (D,R,X,Q,Z) consider the corresponding
expected long term average costs

C(π) = lim inf
T →∞

1

T
E

[∫ T

0
c̄ · Q(t) dt + γ · R(T )

]

,

C(π) = lim sup
T →∞

1

T
E

[∫ T

0
c̄ · Q(t) dt + γ · R(T )

]

.

Using (2), it may be seen that E(R(T )) = E(
∫ T

0 θiQi(t) dt). We can therefore repre-
sent both cost components as holding costs with weights ci = c̄i + θiγi , namely,

C(π) = lim inf
T →∞

1

T
E

[∫ T

0
c · Q(t) dt

]

, (7)

C(π) = lim sup
T →∞

1

T
E

[∫ T

0
c · Q(t) dt

]

. (8)

In what follows we shall always refer to the equivalent form (7)–(8) of the costs.

2.2 A lower bound

Proposition 2.1 For any policy π ,

C(π) ≥ Vn,
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where

Vn = inf

{

c · q: q ∈ R
I+, θiqi + μizi = λi, i = 1, . . . , I, z ∈ R

I+,
∑

i

zi ≤ n

}

. (9)

Remark 2.1 The bound above is meaningful when the system is overloaded, in the
sense that

∑
i λi/μi > n. Otherwise, it may be easily seen that Vn = 0, which is ob-

tained for zi = λi/μi and qi = 0. Hence, our interest in this paper is in the overloaded
regime. We note that queue stability is maintained in this regime as well, due to the
non-zero abandonment rates of all classes.

Proof Fix a policy π . By Fatou’s lemma, it suffices to prove that, with probability 1,
U ≥ Vn, where

U = lim inf
t→∞

1

t

∫ t

0
c · Q(s)ds.

Let {tk}k∈N be a (random) sequence increasing to infinity, for which t−1
k

∫ tk
0 c ·

Q(s)ds → U . Note by (5) that the random variables t−1
∫ t

0 Zi(s) ds remain bounded,
and choose a subsequence of {tk} along which each of these random variables con-
verges. Denote the respective limits as Ẑi and note that they take values in [0, n].
By choosing a further subsequence it can be ensured, in addition, that each of the
r.v.’s tk

−1
∫ tk

0 Qi(s) ds converges to a random variable taking values in [0,∞]. These

respective limits are denoted by Q̂i . It will also be argued below that, for each i,

t−1Xi(t) → 0 as t → ∞, a.s. (10)

Note that Ai(t)/t → λi a.s., while D̃i(t)/t → 1 and R̃i(t)/t → 1 a.s. Dividing by t

in (3), and using (10), it follows that

λi = lim
t→∞

[
R̃i(θi

∫ t

0 Qi(s) ds)
∫ t

0 Qi(s) ds

∫ t

0 Qi(s) ds

t
+ D̃i(μi

∫ t

0 Zi(s) ds)
∫ t

0 Zi(s) ds

∫ t

0 Zi(s) ds

t

]

= θiQ̂i + μiẐi, (11)

where the limit is taken along the subsequence. Note that on the event that∫ tk
0 Qi(s) ds remains bounded as k → ∞, one cannot use the convergence

R̃i(t)/t → 1 to conclude (11). However, (11) is still valid, since in this case Q̂i = 0.
A similar remark holds for Ẑi . Since we assumed θi > 0, it follows from (11) that
each of the Q̂i is a.s. finite. The inequalities Q̂i ≥ 0, Ẑi ≥ 0 and

∑
Ẑi ≤ n are clearly

satisfied a.s. Thus by (9) and (11), U = c · Q̂ ≥ Vn a.s.
It remains to prove (10). In the appendix, we provide a proof of this fact, based

on comparison of the process Xi to the G/M/∞ queue and an argument that an
analogous property holds for the latter model. This completes the proof. �
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2.3 Asymptotic results as n → ∞
Our main result will be concerned with a specific policy, and show that it achieves
the lower bound developed above, in an appropriate asymptotic sense. To present
the result, we specialize to a Markovian setting. That is, we will assume in what
follows that the arrival processes, Ai , are Poisson. We refer to this setting as the
Markovian model. The result will be concerned with a sequence of models, indexed
by the number of servers, n. The parameters of the model, as well as the stochastic
processes, will receive a superscript n, to denote their dependence on the parameter.
An exception is the processes D̃i and R̃i , which are still standard Poisson. Thus, for
example, (1) defining the departure process, will now be written as

Dn
i (t) = D̃i

(

μn
i

∫ t

0
Zn

i (s) ds

)

,

and An
i will be a Poisson with rate λn

i . The parameters λn
i , μn

i and θn
i and the initial

conditions Xn(0) will be assumed to satisfy the following properties.

Assumption 2.1

(i) There exist positive constants λi,μi, θi such that, as n → ∞,

λn
i /n → λi, μn

i → μi, θn
i → θi, i = 1,2, . . . , I. (12)

(ii) E[‖Xn(0)‖2] < ∞ for every n.

Note that the lower bound from the previous subsection can be applied to this
setting as follows. From (9), it follows that

Vn

n
= inf

{

c · q: q ∈ R
I+, θn

i qi + μn
i zi = λn

i /n, i = 1, . . . , I, z ∈ R
I+,

∑

i

zi ≤ 1

}

.

Hence by Proposition 2.1, under any sequence πn of policies,

lim inf
n→∞ n−1Cn

(
πn

) ≥ V1, (13)

where

V1 = inf

{

c · q: q ∈ R
I+, θiqi + μizi = λi, i = 1, . . . , I, z ∈ R

I+,
∑

zi ≤ 1

}

. (14)

To the end of showing that this lower bound is asymptotically achievable, we first
present a convergence result under any priority policy. For the nth system, we de-
note by πpr,n the work conserving policy that gives preemptive priority to classes in
increasing order of the labels. This means, in particular, that if a customer of some
class i > 1 is in service then no class-j customer is in the buffer, for any j < i. This
is achieved by allowing interruption of service to customers, which are moved to the
buffer to wait until there is an opportunity for them to be served again, or otherwise
abandon.
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Under the priority policy, the infinitesimal generator of Xn is given by

Lnf (x) =
I∑

i=1

λn
i

(
f (x + ei) − f (x)

)

+
I∑

i=1

μn
i Zn

i (x)
(
f (x − ei) − f (x)

)

+
I∑

i=1

θn
i Qn

i (x)
(
f (x − ei) − f (x)

)
, x ∈ Z

I+, (15)

where Zn,Qn : R
I+ → R

I+ are defined as

Zn
i (x) = xi ∧

(

n −
i−1∑

j=1

xj

)+
, Qn

i (x) =
[

xi −
(

n −
i−1∑

j=1

xj

)+]+
. (16)

In the expression for the generator, the first, second and third terms correspond to
transitions according to arrival, service and abandonment, respectively. The absolute
priority is reflected in the expressions for Zn and Qn, given in terms of the quantity
(n − ∑i−1

j=1 xj )
+. This quantity represents the number of servers available to serve

class i, taking into account that
∑i−1

j=1 xj servers are occupied with higher priority
customers.

Denote

z∗ =
(

λ1

μ1
, . . . ,

λi0−1

μi0−1
,1 −

i0−1∑

j=1

λj

μj

,0, . . . ,0

)

, (17)

q∗ =
(

0, . . . ,0,
λi0 − μi0zi0

θi0

,
λi0+1

θi0+1
, . . . ,

λI

θI

)

, (18)

where i0 = max{i ∈ [1, I + 1] : ∑i−1
j=1

λj

μj
< 1}, with the convention

∑0
1 = 0. Let

x∗ = q∗ + z∗. The vectors z∗, q∗ and x∗ are simply the equilibrium point of the
underlying fluid model [1]

ẋi = λi − μizi − θiqi, zi = Z1
i (x), qi = Q1

i (x).

The following result relates them to the probabilistic model.

Theorem 2.1 Consider the Markovian model, and let Assumption 2.1 hold. Then,
under policy πpr,n,

lim
n→∞ lim sup

t→∞
E

[∥
∥n−1Xn(t) − x∗∥∥2] = 0, (19)
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and

lim
n→∞ lim sup

t→∞
E

[∥
∥n−1Qn(t) − q∗∥∥2] = 0. (20)

Remark 2.2 Under policy πpr,n, the process Xn is an ergodic Markov chain. Denote
by P

pr,n
s its stationary distribution. Moreover, all moments of Xn(t) and Qn(t) are fi-

nite under this distribution, i.e., E
pr,n
s [‖Xn(t)‖k] < ∞, k ∈ N. These facts can be ver-

ified by standard techniques (such as [3, Theorem 8.6]) using the abandonment ingre-
dient of the model that makes the process stable. Recalling that by Assumption 2.1(i),
E[‖Xn(0)‖2] < ∞, similar arguments show that, for every n, supt E[‖Xn(t)‖2] < ∞
under πpr,n.

We note that the estimates in the last result hold also under the stationary distribu-
tion, namely limn→∞ E

pr,n
s [‖n−1Xn(t)−x∗‖2] = 0, and similarly for Qn(t). Indeed,

since (19) and (20) hold for any initial conditions satisfying Assumption 2.1(ii), they
also hold for the invariant distribution. However, under this initial condition, the laws
of Xn(t) and Qn(t) do not depend on t , hence the statements in (19) and (20) imply
their stationary counterparts.

For the nth system, the costs defined in (7) are denoted by

Cn(π) = lim inf
T →∞

1

T
E

[∫ T

0
c · Qn(t) dt

]

,

C
n
(π) = lim sup

T →∞
1

T
E

[∫ T

0
c · Qn(t) dt

]

,

where c ≥ 0 does not depend on n. As a consequence of Remark 2.2, we can associate
with πpr,n the stationary cost Cn

s (πpr,n) = E
pr,n
s [c · Qn(t)], and obtain

Cn
(
πpr,n) = Cn

s

(
πpr,n) = C

n(
πpr,n) 
= Cpr,n. (21)

Thus, all three costs coincide, and are commonly denoted by Cpr,n in the following.
The proposed policy, referred to as the preemptive cμ/θ priority rule [1], will be

denoted by π∗,n for the nth system. π∗,n is the work conserving policy that gives
preemptive priority to classes in decreasing order of the quantities ciμi/θi . In other
words, π∗,n is identical to πpr,n under re-labeling of the classes according to

c1μ1

θ1
≥ c2μ2

θ2
≥ · · · ≥ cIμI

θI

. (22)

We write C∗,n for the average cost corresponding to π∗,n.
As a corollary of Theorem 2.1, we obtain our main result.

Theorem 2.2 Consider the Markovian model, and let Assumption 2.1 hold. Then

lim sup
n→∞

n−1C∗,n ≤ V1.
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which implies, together with (13), that

lim
n→∞n−1C∗,n = V1.

In view of (13), this result expresses the asymptotic optimality of the proposed
policy.

We can give a bound on the rate of convergence of the cost in the above result. Let
rn = ‖θn − θ‖ + ‖μn − μ‖ + ‖n−1λn − λ‖.

Proposition 2.2 Let the conditions of Theorem 2.2 hold. Then, for every n,

V1 − c0rn ≤ n−1C∗,n ≤ V1 + c0
(
n−1 + rn

)1/2
,

where c0 is a constant not depending on n.

Remark 2.3 When the nth system parameters are chosen nominally at θn = θ ,
μn = μ and λn = nλ, we obtain rn = 0. In that case the implied convergence rate
of the average cost is O(n−1/2).

Finally, we state a sample-path version of Proposition 2.1 and Theorem 2.2, in terms
of the ergodic cost function.

Proposition 2.3 Under any sequence of policies πn,

lim inf
n→∞ lim inf

T →∞
1

T

∫ T

0
c · Qn(t) dt ≥ V1, a.s.

Moreover, let the assumptions of Theorem 2.2 hold. Then, under π∗,n,

lim sup
n→∞

lim
T →∞

1

T

∫ T

0
c · Qn(t) dt ≤ V1, a.s.

and consequently,

lim
n→∞ lim

T →∞
1

T

∫ T

0
c · Qn(t) dt = V1, a.s.

Remark 2.4 While the results above were derived for the optimal priority policy,
similar convergence properties may be seen to hold for any priority policy πpr,n, af-
ter replacing the constant V1 with a (larger) value V (πpr). The latter is defined by
reordering the class indices according to the specified priority, computing the corre-
sponding fluid solution (18), and letting V (πpr) = c · q . In particular, the estimates
in Theorem 2.1 may be established as before with these modified definitions, and
similarly for the upper bound in Proposition 2.2. However, the lower bound of that
proposition would have to be weakened, as the proof of Proposition 2.1 is not valid
here. Rather, one can obtain the bound n−1Cpr,n ≥ V (πpr) − c0(n

−1 + rn)
1/2, analo-

gous to the upper bound in Proposition 2.2. The easiest way to see this is by replacing
c with −c in this result, and noting that the proof is indifferent to the sign on c.
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3 Proofs

Throughout this section, the ordering (22) of the class indices is assumed, and, unless
indicated otherwise, all stochastic processes are specified under π∗,n (equivalently,
πpr,n). The linear program (14) can easily be seen to be solved by (17) and (18) (see
[1] for more details). Moreover, since q∗ and z∗ attain the infimum (14), we have

V1 = c · q∗, (23)

and

θiq
∗
i + μiz

∗
i = λi, i = 1,2, . . . , I. (24)

The analysis of the policy π∗,n will be based on the fact that the process Xn,
under π∗,n, is Markovian. We let f n(x) = ∑I

i=1 βi(xi − x∗
i n)2, where βi > 0 are

constants, not depending on n or x, to be determined later. Our main estimate will be
the following.

Lemma 3.1 Under the assumptions of Theorem 2.2, the constants βi > 0 can be
chosen so that

Lnf n(x) ≤ −af n(x) + a1‖x‖ + δnn
2, x ∈ Z

I+, n ≥ n0, (25)

where a > 0, a1 and n0 are constants not depending on x or n, and δn is a sequence
that is independent of x and converges to zero.

Proof of Lemma 3.1 Notice first that

μn
i Zn

i (x) + θn
i Qn

i (x) = μn
i xi + (

θn
i − μn

i

)
Qn

i (x).

Using this in (15), along with the identities (a ± 1)2 − a2 = ±2a + 1 yields

Lnf n(x) =
I∑

i=1

2βi

(

xi − x∗
i n + 1

2

)

λn
i

−
I∑

i=1

2βi

(

xi − x∗
i n − 1

2

)
[
μn

i xi + (
θn
i − μn

i

)
Qn

i (x)
]
. (26)

Let Y(x,n) = x − x∗n. To simplify the notation, we write Y for Y(x,n). Note that
with this notation, f n(x) = ∑

βiY
2
i . With C1 a constant not depending on n or x (but

depending on {βi}), we have

Lnf n(x) =
I∑

i=1

βiλ
n
i +

I∑

i=1

βi

[
μn

i xi + (
θn
i − μn

i

)
Qn

i (x)
]

+ 2
I∑

i=1

βiYi

[
λn

i − μn
i xi − (

θn
i − μn

i

)
Qn

i (x)
]
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≤ C1
(
n + ‖x‖) + 2

I∑

i=1

βiYi

[
λn

i − μn
i xi − (

θn
i − μn

i

)
Qn

i (x)
]

= C1
(
n + ‖x‖) − 2

I∑

i=1

βiμ
n
i Y

2
i

+ 2
I∑

i=1

βiYi

[
λn

i − μn
i x

∗
i n − (

θn
i − μn

i

)
Qn

i (x)
]
. (27)

Recall that x∗ = z∗ + q∗ and that, by (24), θiq
∗
i + μiz

∗
i = λi . Therefore

n−1λn
i − μn

i x
∗
i = n−1λn

i − μn
i

(
z∗
i + q∗

i

)

= (
θn
i − μn

i

)
q∗
i + εn.

Here, εn → 0, by Assumption 2.1. Thus, the last term on the r.h.s. of (27) is given by

2
∑

βiYi

[
nεn + (

θn
i − μn

i

)(
nq∗

i − Qn
i (x)

)]

= 2
∑

βiYi

[
nεn + (

θn
i − μn

i

)(
Qn

i (nx∗) − Qn
i (x)

)]
,

where we used the equality nq∗
i = Qn

i (nx∗), which can be directly verified using the
explicit form of q∗, z∗ and x∗. By the definition of Qn, and the fact that for any
a, b ∈ R there exists ρ ∈ [0,1] such that a+ − b+ = ρ(a − b), it is not hard to see
that, for any n ∈ N and x, x̃ ∈ R

I+, one has

Qn
i (x) − Qn

i (x̃) = ρ(xi − x̃i ) + η

i−1∑

j=1

(x̃j − xj ), (28)

where ρ,η ∈ [0,1] may depend on n, x and x̃. Using this property, we can find
functions ρi, ηi : R

I → [0,1] that may depend on n, such that, with δn = |εn|,

Lnf n(x) ≤ C1
(
n + ‖x‖) + C2‖Y‖nδn

− 2
I∑

i=1

βi

[(
1 − ρi(x)

)
μn

i + ρi(x)θn
i

]
Y 2

i

+ 2
I∑

i=1

βi

(
θn
i − μn

i

)
ηi(x)Yi

i−1∑

j=1

Yj .

Note that, for every ρ ∈ [0,1], (1 − ρ)μn
i + ρθn

i ≥ min(θn
i ,μn

i ) ≥ 1
2 min(θi,μi) =:

mi > 0, provided that n is sufficiently large. Thus,
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Lnf n(x) ≤ C1
(
n + ‖x‖) + C2‖Y‖nδn − 2

I∑

i=1

βimiY
2
i

+ 2
I∑

i=1

βi

(
θn
i − μn

i

)
ηi(x)Yi

i−1∑

j=1

Yj .

Denote A = supn |θn
i − μn

i | < ∞. Using the inequality xy ≤ 1
2bx2 + 1

2b−1y2, which
holds for x, y ∈ R and b > 0, we bound the last term on the above display by

Bn(x) := 2A

I∑

i=1

βi

[

biY
2
i + b−1

i

(
i−1∑

j=1

|Yj |
)2]

≤ 2A

I∑

i=1

[

βibiY
2
i + βib

−1
i C3

i−1∑

j=1

Y 2
j

]

,

where C3 depends only on I . Now choose bi so that 2Abi = mi/2, i = 1,2, . . . , I .
Next, determine βi inductively, as follows. Let β1 = 1. For i = 2,3, . . . , I , let βi

(depending on β1, . . . , βi−1) be determined by

2Aβib
−1
i C3 = 1

2I
min

j≤i−1
βjmj .

Then

Bn(x) ≤
I∑

i=1

[
1

2
βimiY

2
i + 1

2I

i−1∑

j=1

βjmjY
2
j

]

≤
I∑

i=1

βimiY
2
i .

Letting m = mini mi > 0, we obtain

Lnf n(x) ≤ C1
(
n + ‖x‖) + C2‖Y‖nδn −

I∑

i=1

βimiY
2
i

≤ C1
(
n + ‖x‖) + C2

2
δn‖Y‖2 + C2

2
δnn

2 − m

I∑

i=1

βiY
2
i

≤ C1
(
n + ‖x‖) + C2δnn

2 − m

2

I∑

i=1

βiY
2
i ,

for all sufficiently large n. Thus

Lnf n(x) ≤ C1
(
n + ‖x‖) + C2δnn

2 − m

2
f n(x).

This completes the proof. �
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Lemma 3.2 Let the assumptions of Theorem 2.2 hold. Then, for some positive con-
stants C̄ and C̃, not depending on n or t , E[‖Xn(t)‖] ≤ E[‖Xn(0)‖]e−C̃t + C̄n, for
all t ≥ 0 and all sufficiently large n.

Proof In this proof, we remove the dependence of the processes on n from the no-
tation. By (1), (2) and (3), recalling that under the assumptions of Theorem 2.2 the
setup is Markovian, we have

E
[
Xi(t)

] = E
[
Xi(0)

] + λn
i t − θn

i

∫ t

0
E

[
Qi(s)

]
ds − μn

i

∫ t

0
E

[
Zi(s)

]
ds.

Hence ξi(t) := E[Xi(t)] is differentiable, and, denoting mi = min(θi,μi)/2, we have

dξi(t)

dt
≤ 2nλi − miE

[
Qi(t) + Zi(t)

] = 2nλi − miξi(t),

provided n is sufficiently large, where we used Assumption 2.1 and then (4). Hence
for ξ(t) = ∑

i ξi(t) we have

dξ(t)

dt
≤ Ln − Mξ(t), ξ(0) = E

[∥
∥X(0)

∥
∥
]
, (29)

where L and M are positive constants not depending on n or t . By standard compari-
son of solutions to ordinary differential equations, ξ(t) ≤ ν(t) must hold for all t ≥ 0,
where ν solves

dν(t)

dt
= Ln − Mν(t), ν(0) = E

[∥
∥X(0)

∥
∥
]
,

that is,

ξ(t) ≤ E
[∥
∥X(0)

∥
∥
]

exp{−Mt} + Ln

M

(
1 − exp{−Mt}), t ≥ 0.

(Note that this bound can alternatively be obtained by applying Gronwall’s inequality,
in differential form, to (29).) This completes the proof. �

Proof of Theorem 2.1 Since Xn is Markovian with generator Ln, the process

f
(
Xn(t)

) −
∫ t

0
Lnf

(
Xn(s)

)
ds

is a martingale whenever f is a bounded function on Z
I+. It is easy to see by (3)

that Xn
i (t) ≤ Xn

i (0) + An
i (t), and since the second moment of Xn(0) is assumed to

be finite, and clearly E supt≤T [‖An(t)‖2] < ∞ for every n and T , the martingale
property holds also for the quadratic function f n. Hence

Ef n
(
Xn(t)

) = Ef
(
Xn(0)

) + E

∫ t

0
Lnf n

(
Xn(s)

)
ds. (30)
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Let us prove that

lim sup
t→∞

E
[∥
∥n−1Xn(t) − x∗∥∥2] ≤ δ̄n, (31)

where δ̄n is a sequence converging to zero. To this end, note by (30) that Ef n(Xn(t))

is differentiable with respect to t . Denote Yn(t) := n−2
Ef n(Xn(t)). Then Yn(t) < ∞

for every t and n. Moreover, dividing by n2 in (30) and using Lemma 3.1, we have

dYn(t)

dt
≤ −aYn

t + a1

n2
E

[∥
∥Xn(t)

∥
∥
] + δn, t ≥ 0.

By Lemma 3.2, for every sufficiently large n there exists Tn < ∞ such that
E[‖Xn(t)‖] ≤ 2C̄n, t ≥ Tn. Hence, denoting δ̃n = 2C̄a1n

−1 + δn, for some n0 and
all n ≥ n0,

dYn(t)

dt
≤ −aYn

t + δ̃n, t ≥ Tn.

By the comparison principle for solutions of differential inequalities, Yn
t is bounded

above, on [Tn,∞), by the solution y to the differential equation

dy

dt
= −ay + δ̃n, t ≥ Tn, y(Tn) = Yn(Tn).

Hence, for some constant C1, for all n ≥ n0 and t ≥ Tn,

E
[∥
∥n−1Xn(t) − x∗∥∥2] ≤ C1Y

n(t) ≤ C1y(t)

≤ C1Y
n(Tn) exp

{−a(t − Tn)
} + C1a

−1δ̃n.

This proves (31), and hence (19) follows.
To establish (20), note that we have for every n,

Qn(t) = Qn
(
Xn(t)

)
, t ≥ 0.

With the notation (16), the map Q1 : R
I+ → R

I+, is given by

Q1
i (x) =

[

xi −
(

1 −
i−1∑

j=1

xj

)+]+
,

and we have n−1Qn(t) = Q1(n−1Xn(t)), t ≥ 0. Noting that Q1(x∗) = q∗, using the
global Lipschitz continuity of Q1, we have by (31),

lim sup
t→∞

E
[∥
∥n−1Qn(t) − q∗∥∥2] ≤ C4δ̄n, (32)

for some C4 depending only on I . This shows (20). �
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Proof of Theorem 2.2 The asserted equality follows from (21). Next, keeping the
notation of the proof of Theorem 2.1, the inequality (32) implies

lim sup
t→∞

E
[∥
∥n−1Qn(t) − q∗∥∥] ≤ (C4δ̄n)

1/2,

hence

C
n
(π∗,n)

n
= lim sup

T →∞
1

T

∫ T

0

c · E[Qn(t)]
n

dt ≤ c · q∗ + ‖c‖(C4δ̄n)
1/2.

Sending n → ∞, lim supn→∞ n−1C
n
(π∗,n) ≤ c · q∗ = V1, where the last equality

follows by (23). �

Proof of Proposition 2.2 Recall the definition of V1 in (14), and write V1(θ,μ,λ) to
denote its dependence on the parameters. It follows from Proposition 2.1 that, for any
n and any policy πn for the nth system, n−1Cn(πn) ≥ V1(θ

n,μn, λn

n
). It is easy to

see that V1 is Lipschitz continuous w.r.t. the three parameters. Hence the lower bound
stated in the proposition follows.

For the upper bound, a review of the proofs of Theorems 2.1 and 2.2, shows that
the cost n−1C

n
(π∗,n) is bounded above by V1 + C5(δ̃n)

1/2 ≤ V1 + C6(n
−1 + δn)

1/2,
where C5, C6 are constants, δ̃n is as in the proof of Theorem 2.1, and δn is as in the
proof of Lemma 3.1. By the proof of Lemma 3.1, δn is bounded by a constant times
rn. Using (21), this completes the proof. �

Proof of Proposition 2.3 The lower bound follows directly from the proof of Propo-
sition 2.1, which establishes the inequality in an a.s. sense. The upper bound follows
from Theorem 2.2 and the fact that under π∗,n, for every n,

lim
T →∞

1

T

∫ T

0
c · Qn(t) dt = lim

T →∞
1

T
E

[∫ T

0
c · Qn(t) dt

]

, a.s.,

which in turn follows from the ergodicity of the Markov chain Xn under this policy
(Remark 2.2). �
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Appendix

A.1 Lower bound for general service time distribution

We will argue that the lower bound stated in Proposition 2.1 is valid for general ser-
vice time distribution, under a non-interruptible service assumption. We shall thus
model service durations for class-i customers as i.i.d. positive random variables with
finite mean 1/μi . To this end, assume we are given nI renewal processes D̃i,k ,
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i = 1,2, . . . , I , k = 1,2, . . . , n, that are mutually independent and independent of
the other stochastic primitives. For each of these processes, the inter-event time has
mean 1. Assume that the number of i-class jobs that server k completes by time t is
given as

Di,k(t) = D̃i,k

(

μi

∫ t

0
Zi,k(s) ds

)

, (33)

where the process Zi,k takes values in {0,1}, and Zi,k(t) = 1 if a class-i customer is
served by server k at time t . The relations (3)–(5) are still valid, and in addition, for
each i, we have

N∑

k=1

Zi,k = Zi,

N∑

k=1

Di,k = Di. (34)

Unlike Sect. 2, we shall assume here that interruption of service is not possible. Thus
whenever a server is assigned a new customer, it serves the customer until completion
of the service requirement. The reason we do not allow interruption is that an inter-
rupted customer may return to a different server, or even abandon the system before
ever returning to service, in which cases (33) is not a valid description of the service
process under an interruptible service policy (except in the exponential case), and the
state description becomes more involved.

Proposition A.1 For any non-interruptible policy π ,

C(π) ≥ Vn,

where Vn is as in Proposition 2.1.

Proof The proof follows closely that of Proposition 2.1. We will only indicate where
the argument differs. For each k, D̃i,k(t)/t → 1 a.s. Keeping the notation from the
proof of Proposition 2.1, one can find a subsequence of {tk} along which the random
variables t−1

∫ t

0 Qi(s) ds, t−1
∫ t

0 Zi,k(s) ds, k = 1,2, . . . ,N , and t−1
∫ t

0 Zi(s) ds

converge to limits Q̂i , Ẑi,k and Ẑi , taking values in [0,∞], [0,∞) and [0,∞), re-
spectively. The argument for t−1Xi(t) → 0 a.s. holds precisely as in the proof of
Proposition 2.1. Thus dividing by t in (3), and using (34),

λi = lim
t→∞

[
R̃i(θi

∫ t

0 Qi(s) ds)
∫ t

0 Qi(s) ds

∫ t

0 Qi(s) ds

t

+
N∑

k=1

D̃i,k(μi

∫ t

0 Zi,k(s) ds)
∫ t

0 Zi,k(s) ds

∫ t

0 Zi,k(s) ds

t

]

= θiQ̂i +
N∑

k=1

μiẐi,k = θiQ̂i + μiẐi,
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a.s., where the limit in the first line of the above display is along the subsequence.
The proof is completed as that of Proposition 2.1. �

A.2 Addendum to the proof of Proposition 2.1

The claim t−1Xi(t) a.s. will be proved by comparing the process Xi(t) to the number-
in-system process, Q̃(t), for the G/M/∞ model (in step 1 below), and then ar-
guing that an analogous property holds for the latter, namely t−1Q̃(t) → 0 a.s. (in
steps 2–4).

1. Fix i. Recall that Xi(t) = Qi(t)+Zi(t), where Zi(t) ≤ n. It is easy to see that one
can couple (Xi,Qi,Zi) with a triplet (X̂, Q̂, Ẑ) representing number-in-system,
queue-length and number-in-service for a system in which all n servers have ser-
vice time = +∞, while keeping Ẑ(t) = Zi(t) and Q̂(t) ≥ Qi(t) for all times.

Next, a further coupling argument can be used to show that X̂(t) is stochas-
tically dominated by the number-in-system in the infinite service time model al-
luded to above, operating under the policy that keeps at all times Z = min(n,X)

(i.e., as many customers as possible in the ‘limbo’ of the n idle servers). It is not
hard to see that for such a system all servers will forever be busy working on the
first n customers. As a result, X̂(t) ≤ n + Q̃(t), where Q̃ is the number-in-system
for a G/M/∞ system with service rate θ (with a suitable initial condition).

2. Consider then Q̃(t), the G/M/∞ process with service rate θ per customer, i.i.d.
inter-arrival times with finite mean λ−1, and finite initial conditions Q̃(0).

It suffices to show limt→∞ t−1Q̃(t) = 0 (a.s.). We were unable to deduce
this from known results regarding the stability of the G/M/∞ model in a direct
way. The argument we provide below is based on consideration of the embedded
Markov chain and a standard second moment estimate.

Let (tn) denote the arrival time sequence, and consider the embedded Markov
chain Qn = Q̃(tn) at these arrival times. Noting that Q̃(t) is non-increasing
between arrival times, and that n−1tn → λ−1 (a.s.), it suffices to show that
limn→∞ n−1Qn = 0 (a.s.).

3. The second moment of (Qn) is uniformly bounded, namely M2

=

supn E(Q2
n) < ∞. To see this, note that Qn+1 = 1 + Qn − Dn, where Dn is the

number of served customers on the nth interval [tn, tn+1). Note that each of the
Qn customers present at tn is served by an exponential server of rate μ. Let p

be the probability that such a customer does not complete its service during that
interval (given by p = ∫ ∞

t=0 exp(−θt) dFT (t), where FT is the inter-arrival distri-

bution function). Note that 0 < p < 1. Then Dn = ∑Qn

i=1(1 − Zi), where (Zi) are
independent Bernoulli random variables with P(Zi = 1) = 1 − P(Zi = 0) = p,
and Qn+1 = 1 + ∑Qn

i=1 Zi . Therefore

E
(
Q2

n+1|Qn

) = var
(
Q2

n+1|Qn

) + E(Qn+1|Qn)
2

= Qn var(Zi) + (1 + Qnp)2

= p(1 − p)Qn + (1 + Qnp)2.



144 Queueing Syst (2011) 67: 127–144

Since p < 1, the last equation implies existence of some p < γ < 1 and a finite
constant M1 so that

E
(
Q2

n+1|Qn

) ≤ γQ2
n + M1 (a.s.).

By iteration, it follows that E(Q2
n) ≤ max{Q2

0,
M1

1−γ
} 
= M2 < ∞ for all n.

4. Therefore, by Chebychef’s inequality, for any ε > 0,

∞∑

n=0

P

(
Qn

n
> ε

)

≤
∞∑

n=0

M2

n2ε2
< ∞.

It now follows by the Borel–Cantelli Lemma that n−1Qn → 0 (a.s.).

This completes the proof of the claim t−1Xi(t) → 0 a.s.
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