
MATHEMATICS OF OPERATIONS RESEARCH

Vol. 34, No. 3, August 2009, pp. 737–757
issn 0364-765X �eissn 1526-5471 �09 �3403 �0737

informs ®

doi 10.1287/moor.1090.0397
©2009 INFORMS

Markov Decision Processes with Arbitrary Reward Processes

Jia Yuan Yu
Department of Electrical and Computer Engineering, McGill University, Montréal, Québec H3A 2A7, Canada,

jia.yu@mcgill.ca

Shie Mannor
Department of Electrical and Computer Engineering, McGill University, Montréal, Québec H3A 2A7, Canada, and

Technion, Technion City, 32000 Haifa, Israel, shie.mannor@mcgill.ca

Nahum Shimkin
Department of Electrical Engineering, Technion, Technion City, 32000 Haifa, Israel, shimkin@ee.technion.ac.il

We consider a learning problem where the decision maker interacts with a standard Markov decision process, with the
exception that the reward functions vary arbitrarily over time. We show that, against every possible realization of the reward
process, the agent can perform as well—in hindsight—as every stationary policy. This generalizes the classical no-regret
result for repeated games. Specifically, we present an efficient online algorithm—in the spirit of reinforcement learning—that
ensures that the agent’s average performance loss vanishes over time, provided that the environment is oblivious to the agent’s
actions. Moreover, it is possible to modify the basic algorithm to cope with instances where reward observations are limited
to the agent’s trajectory. We present further modifications that reduce the computational cost by using function approximation
and that track the optimal policy through infrequent changes.

Key words : Markov decision processes; online learning; no-regret algorithms
MSC2000 subject classification : Primary: 90C99; secondary: 93E99
OR/MS subject classification : Primary: Markov processes; secondary: dynamic programming, stochastic games
History : Received August 22, 2007; revised December 2, 2008. Published online in Articles in Advance August 6, 2009.

1. Introduction. No-regret algorithms for online decision problems have been a topic of much interest for
over five decades, dating back to Hannan’s seminal paper (Hannan [16]). A basic version of the online decision
problem consists of a finite set of actions A and an infinite sequence of reward vectors rt� A→�, t = 0�1�2� � � � �
A decision maker (or a corresponding online algorithm) chooses an action at ∈A at each decision instant t after
observing the previous values of the reward vectors. The average regret after T steps is defined as

LT =max
a∈A

1
T

T−1∑
t=0

rt�a�−
1
T

T−1∑
t=0

rt�at��

Thus, LT is the average difference between the reward that could be obtained by the best action in hindsight
(i.e., given complete knowledge of the reward sequence) and the reward that was actually obtained. A no-
regret algorithm satisfies LT → 0 as T → � with probability 1. Such algorithms have also been called regret
minimizing, Hannan consistent, and universally consistent (Fudenberg and Levine [15]).
Certain distinctions should be made between different variants of the basic problem. The above-mentioned

formulation, where the entire reward vector is observed, is closely connected to the problem of prediction with
expert advice (Littlestone and Warmuth [19]). In the adversarial multiarmed bandit variant (Auer et al. [1]),
only the component rt�at� of the reward vector rt is observed at each time step. The equivalent repeated game
formulation assumes a reward vector of the form rt�a�=R�a�bt�, where bt is the action chosen by an opponent,
R is a known payoff function, and observing the opponent’s action bt is equivalent to observing the reward
vector rt . Another important distinction exists between an oblivious opponent (or environment) and an adaptive
one. In the former case, the reward vector sequence is assumed to be fixed in advance but unknown, whereas in
the latter it is allowed to depend on previous choices of actions by the algorithm.
A variety of no-regret algorithms have been introduced over the years. These include Hannan’s perturbed

fictitious play (Hannan [16]), Blackwell’s approachability-based scheme (Blackwell [5]), smooth fictitious play
(Fudenberg and Levine [15]), calibrated forecasts (Filar and Vrieze [12]), multiplicative weights (Freund and
Schapire [13]), and online gradient ascent (Zinkevich [28]). For an overview, see Filar and Vrieze [12], and
Cesa-Bianchi and Lugosi [9]. A common theme in the work mentioned above is that the decision maker faces
an identical decision problem at each stage. This falls short of addressing realistic decision problems that often
take place in a dynamic and changing environment. Such an environment is commonly captured by a state
variable, which evolves as a controlled Markov chain. The model thus obtained is that of a Markov decision
process (MDP) augmented by arbitrarily varying rewards and (possibly) transitions. Furthermore, by modeling

737

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

mailto:jia.yu@mcgill.ca
mailto:shie.mannor@mcgill.ca
mailto:shimkin@ee.technion.ac.il

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
738 Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS

the arbitrary elements as the actions of an opponent (actual or virtual), the model takes the form of a two-person
stochastic game (Shapley [26]) played between the decision maker and an arbitrary opponent. In this work, we
consider MDPs where only rewards change arbitrarily. Such a model arises as a simple extension to a standard
online decision problem, as illustrated by the following example.
Example 1.1 (Multiarmed Bandit with Restrictions). Consider the standard adversarial multiarmed

bandit problem (Auer et al. [1]), with the additional restriction that switching from one arm to another takes
a certain number of time steps. This is easily captured within our MDP model by adding a state variable that
recalls the next arm and the remaining time to reach it. This model may similarly account for other restrictions,
such as bounds on the number of times a given arm can be chosen in a given interval, restrictions on the allowed
transitions between arms, and so forth.
Regret minimization in such dynamic environments has been the topic of only a handful of papers so far.

This may seem surprising, given the proliferation of interest in no-regret algorithms, on the one hand, and the
extensive literature on MDPs and stochastic games, on the other hand. In Mannor and Shimkin [20], the problem
has been considered within the general stochastic game model, where both the transition probabilities and the
rewards are affected by the actions of both players, the opponent is adaptive, and the opponent’s actions are
observed at traversed states only. (Appropriate recurrence assumptions are naturally required, and are assumed
in the rest of this discussion without further mention.) A central observation of that paper is that no-regret
strategies do not exist for the general model (where regret is defined relative to the best stationary policy of
the decision maker). An exception is the case where the transition probabilities are controlled by the opponent
only, which can be treated by applying a no-regret algorithm at each state separately and independently of other
states. For the general model, a relaxed goal was set and was shown to be attainable by using approachability
arguments. We note that similar conclusions hold true for the (essentially simpler) model of repeated games with
varying stage durations, as reported in Mannor and Shimkin [21]. Merhav et al. [22] have considered sequential
decision problems where the loss functions have memory, which correspond to special MDPs, where every state
is reachable from every other via a single action. They presented an algorithm using piecewise-constant policies
and provided regret-minimizing guarantees similar to ours.
The paper by Even-Dar et al. [11], whose model is closest to the present one, focuses on MDPs with arbi-

trarily varying rewards. Specifically, it assumes that (1) The state dynamics are known, namely, the state tran-
sition probabilities are determined by the decision maker alone; (2) Oblivious opponent: The reward functions,
although unknown to the decision maker, are fixed in advance; (3) Observed reward functions: The entire reward
function rt (for every state and action) is observed after each stage t. As mentioned in Even-Dar et al. [11],
a simpleminded approach to the problem could start by associating each deterministic stationary policy with
a separate expert, and applying existing experts algorithms in that setting. However, because the number of
such policies is prohibitive for all but the smallest problems, this approach is computationally infeasible and
slow to converge. Thus, more efficient algorithms must be devised. Under the above assumptions, Even-Dar
et al. propose an elegant no-regret algorithm, and provide finite-time bounds on the expected regret. The sug-
gested algorithm places an independent experts algorithm at each state; however, the feedback to each algorithm
depends on the aggregate policy determined by the action choices of all the individual algorithms and by the
value function that is computed for the aggregate policy.
Our work also relates to problems outside the regret-minimizing framework. Optimal control in MDPs with

unknown but stationary reward processes can be solved using reinforcement learning, e.g., model-based and
Q-learning algorithms (Watkins and Dayan [27]). In contrast to an ordinary stochastic game, the opponent in
our model is not necessarily rational or self-optimizing. Our emphasis is providing the agent with policies that
perform well against every possible opponent. A max-min solution to a zero-sum stochastic game, such as one
produced by the R-max algorithm of Brafman and Tennenholtz [8], may well be too conservative when the
opponent is not adversarial. It may be in the agent’s interest to exploit the nonadversarial characteristic of the
opponent. Our model corresponds to a stochastic game where an arbitrary opponent picks the reward functions,
but does not affect state transitions.
The basic model that we consider here is similar to Even-Dar et al. [11]. We start by examining the abovemen-

tioned assumptions, and show that the oblivious opponent requirement is necessary for the existence of no-regret
algorithms. This stands in sharp contrast to the standard (stateless) problem of prediction with expert advice,
where no-regret is achievable even against an adaptive opponent. We then propose for this model a new no-regret
algorithm in the style of Hannan [16], which we call the Lazy follow-the-perturbed-leader (FPL) algorithm. This
algorithm periodically computes a single stationary policy, as the optimal policy against a properly perturbed
version of the empirically observed reward functions, and applies the computed policy over a long-enough time
interval. We provide a modification to this algorithm (the Q-FPL algorithm) that avoids the exact computation

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS 739

of optimal policies by incorporating incremental improvement steps in the style of Q-learning (Bertsekas and
Tsitsiklis [4]). Next, we extend our results to the model where only on-trajectory rewards are observed; namely,
only the rewards along the actually traversed state-action pairs. Clearly, this is a more natural assumption in
many cases, and may be viewed as a generalization of the bandits problem to the dynamic setting. Finally,
we introduce a variant of our basic algorithm that minimizes regret with respect to nonstationary policies with
infrequent changes, in the spirit of Herbster and Warmuth [17].
Our emphasis in this paper is on asymptotic analysis and almost-sure convergence; namely, we show that the

long-term average regret vanishes with probability one. Explicit finite-time bounds on the expected regret are
provided as intermediate results or as part of the proofs. To summarize, the main contributions of this paper are
the following:

• Establishing the necessity of the oblivious opponent assumption in this model.
• A novel no-regret algorithm for MDPs with arbitrarily varying rewards that has diminishing computational

effort per time step.
• The first reported no-regret algorithm for the MDP model when only on-trajectory rewards are observed.
• The incorporation of Q-learning style incremental updates that alleviate the computational load and spread

out the load over time. Moreover, the Q-learning style updates eliminate the requirement of knowing the state
transition probabilities.
The rest of this paper is organized as follows. We describe the model in §2, and motivate our obliviousness

and ergodicity assumptions in §3. Section 4 describes and analyzes our main algorithm. The Q-FPL variant and
related approximation results are described in §5. The extension to the case of on-trajectory reward observations
is described in §6. In §7, we consider regret minimization with respect to a subset of nonstationary policies: the
policies with a limited number of changes from one step to another. Section 8 contains concluding remarks.

2. Problem definition. We consider an agent facing a dynamic environment that evolves as a controlled
Markov process with an arbitrarily varying reward process. The reward process can be thought of as driven by
an abstract opponent, which may stand for the collective effect of other agents, or the moves of Nature. The
controlled state component is a standard Markov decision process (MDP) that is defined by a triple �S�A�P�,
where S is the finite set of states, A is the finite set of actions available to the agent, and P is the transition
probability—that is, P�s′ � s� a� is the probability that the next state is s′ if the current state is s and the action a
is taken.
The discrete steps are indexed by t = 0�1� � � � � We assume throughout the paper that the initial state at step 0

is fixed and denoted s0. At the tth step, the following happen:
(i) The opponent chooses a reward function rt� S×A→ �0�1	;
(ii) The state st is revealed;
(iii) The agent chooses an action at;
(iv) The entire reward function rt =
rt�s� a���s�a�∈S×A is revealed; the agent receives reward rt�st� at�;
(v) The next state st+1 is determined stochastically according to the transition function P .
Remark 2.1 (Notation). We associate random variables with a bold typeface (e.g., st), and their realizations

with a normal typeface (e.g., st).
In general, the opponent determines a sequence of reward functions r0� r1� � � � , where rt may be picked on the

basis of the past state-action history �s0� a0� � � � � st−1� at−1�. In most of the following development, we consider
oblivious opponents that pick the reward functions r1� r2� � � � independently of the past state-action history. This
assumption is made exact in the following section.
We are interested in policies that respond to the observed sequence of rewards. When choosing action at

at step t, we assume that the agent knows the current state st , as well as the past state-action history and the
past reward functions. Hence, we define a policy as a mapping from the reward history �r0� � � � � rt−1� and state-
action history �s0� a0� � � � � st−1� at−1� st� to an action in the simplex ��A�.1 A stationary policy is a function
� S → ��A� that depends solely on the current state st—and not on the history of the rewards or states. We
denote by � the set of stationary policies. A deterministic stationary policy is a mapping � S → A from the
current state to an action. We first present in §4 a policy for the agent that assumes that the transition probability
function P is known. However, this requirement is not crucial, and we shall dispense with it via simulation-based
methods in §5.
Let us consider a sequence of state-action pairs �st�at�t=0�1� � � � induced by following a stationary policy and

starting from the initial state s0. Let dt�� s0� denote the probability distribution of �st�at�. With respect to the

1 ��A� denotes the set of all probability vectors over A.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
740 Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS

stationary policy , if it admits a unique stationary state-action distribution, we denote the latter by ���. Given
an arbitrary reward function r� S×A→ �0�1	, we introduce the following inner product notations to denote the
expected reward at time step t starting from state s0 and following policy , and the expected reward according
to the stationary distribution associated with policy :

�r�dt�� s0���
∑

�s� a�∈S×A
r�s� a�P��st�at�= �s� a� � s0��

�r������ ∑
�s� a�∈S×A

r�s� a�����s�a��
(1)

2.1. Assumptions. Our main results require the following assumptions. Their necessity will become clear
from the counterexamples of §3. We begin with the following ergodicity assumption.

Assumption 2.1 (Uniform Ergodicity). The induced Markov chain is uniformly ergodic over the set of
stationary policies. This guarantees that there exists a unique stationary distribution ��� for each policy .
Moreover, there exists (cf. Bobkov and Tetali [6]) a uniform mixing time � ≥ 0; i.e., there exists a finite � ≥ 0
such that for every stationary policy ∈�, every initial state s0, and t ≥ 0, we have

dt�� s0�−���
1 ≤ 2e1−t/� �

Remark 2.2. The ergodic assumption is quite weak because it only requires that all recurrent states in the
Markov chain communicate and that the chain is aperiodic. However, there may exist transient states, which
may depend on the stationary policy employed.
The main results of this paper hold when the opponent is oblivious; in other words, the sequence of reward

functions does not depend on the state-action history. There are two justifications for this approach. First, from
a modeling perspective, the agent may interact with other agents that are truly oblivious, irrational, or have an
unspecified or varying objective. This renders their behavior “unpredictable” and seemingly arbitrary. Second, in
the presence of many agents, a single agent has little effect on the overall outcome (e.g., price of commodities,
traffic in networks) due to the effect of large numbers (Aumann [2]). Moreover, as Example 3.1 shows, the regret
cannot be made asymptotically small when the opponent is not oblivious. Formally, we state the obliviousness
assumption as follows.

Assumption 2.2 (Oblivious Opponent). The reward functions r0� r1� � � � are deterministic and fixed in
advance.

Remark 2.3. Alternatively, we may assume that the reward functions r0� r1� � � � are random variables on the
null �-algebra. Hence, every random variable Xt measurable by the �-algebra generated by �s0�a0� � � � � st�at�
satisfies the following:

Ɛ�rt�s� a�Xt	= rt�s� a�Ɛ�Xt	 for all �s� a� ∈ S×A� (2)

The following results can be shown to apply even when the reward functions are randomly chosen at each step,
independently of the state-action history, so that Equation (2) holds. This case can be handled similarly to the
deterministic one, at the expense of somewhat more cumbersome notation that we avoid here.

2.2. Regret. In general, the goal of the agent is to maximize its cumulative reward
∑T−1
t=0 rt�st�at� over a

long time horizon of T steps, where T need not be specified a priori. We shall focus on policies that minimize
the regret, which measures how worse off the agent is compared to the best stationary policy in retrospect. This
regret arises from the lack of prior knowledge on the sequence of reward functions picked by the opponent. We
present three related notions of regret that differ in how the sequence of reward functions is retained, and in the
choice of initial state. All three definitions of regret for our model collapse to the classical notion of regret for
repeated games (cf. Cesa-Bianchi and Lugosi [9]). Our basic definition for regret is the following.
Definition 2.1 (Worst-Case Regret). The worst-case average regret, with respect to the realization

r0� � � � � rT−1 of the reward process, is

LWT � sup
∈�

Ɛ

[
1
T

T−1∑
t=0

rt�s̃t� ãt�
]

− 1
T

T−1∑
t=0

rt�st�at�� (3)

where Ɛ denotes expectation over the sequence �s̃t� ãt� induced by the stationary policy . It is implicitly
understood that both sequences s̃t and st start at the initial state s0 and follow the transition kernel P . This regret
is a random quantity because the trajectory �st�at� is random.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS 741

The above definition of regret is one possible extension of the concept of regret introduced in Hannan [16].
However, it is not the only natural definition of regret, and we shall provide two additional notions of regret. An
alternative to defining the regret with respect to stationary policies is to take as basis for comparison an agent
that possesses only prior knowledge of the empirical frequency of reward functions. In this case, it is natural
to consider the MDP where the states, actions, and transition probabilities are as before, but where the reward
function at every step t is

�rT �s� a��
1
T

T−1∑
j=0

rj�s� a� for all �s� a� ∈ S×A�

With this concept, we present the following definitions.
Definition 2.2 (Steady-State and Empirical-Frequency Regret). The steady-state average regret is

LST � sup
∈�

��rT ����� − 1
T

T−1∑
t=0

rt�st�at�� (4)

The empirical-frequency average regret is

LET � sup
∈�

Ɛ

[
1
T

T−1∑
t=0

�rT �s̃t� ãt�
]

− 1
T

T−1∑
t=0

rt�st�at�� (5)

Under Assumptions 2.1 and 2.2, these three definitions are asymptotically equivalent, as established in the
following lemma. This result is independent of the agent’s learning algorithm. The proofs of this and other
lemmata are provided in the appendix.

Lemma 2.1 (Asymptotic Equivalence). If Assumptions 2.1 and 2.2 hold, then∣∣LET −LST
∣∣≤ 2e�/T

and ∣∣LWT −LST
∣∣≤ 2e�/T �

This equivalence allows us to employ throughout our analysis the simpler notion of steady-state regret (Equa-
tion (4)). We say that an agent’s policy is a no-regret policy, with respect to one of the three definitions of
regret, if the corresponding average regret tends to 0 with probability 1 as T → �.

3. Counterexamples. In this section, we present examples where vanishing average regret cannot be guar-
anteed. The first example considers a nonoblivious opponent that modifies the reward function according to the
agent’s action history. The second example displays a periodic state trajectory.
Example 3.1 (Nonoblivious Opponent). Let the states S =
1�2�3� be as in Figure 1. The agent has two

actions to choose from: whether to go left or right. The corresponding transition probabilities are shown in
Figure 1. The nonoblivious opponent assigns zero reward to state 1 at all stages. It gives a reward of 1 to state 2
if the agent took the action leading to state 3 at the previous time step; otherwise, it gives zero reward to state 2.
Similarly, the opponent gives a reward of 1 to state 3 if the agent took the action leading to state 2, and a
zero reward otherwise. Consequently, for every policy, the reward attained by the agent is

∑T−1
t=0 rt�st�at�= 0,

whereas we have either
∑T−1
t=0 Ɛ�rt�st� left�	≥ 1/2−p or

∑T−1
t=0 Ɛ�rt�st� right�	≥ 1/2−p. As a result, the average

worst-case regret is always positive and bounded away from 0. Because the MDP is ergodic, a similar argument
shows that the same holds true for the two other definitions of regret.
We note that this example is stronger than the counterexample presented in Mannor and Shimkin [20], where

the nonvanishing regret is attributed to lack of observation of the reward.

1 – p 1 – p

p

12 3

11

0

(a) Transition model if the
agent chooses to go left.

0

11

p

12 3

(b) Transition model if the
agent chooses to go right.

Figure 1. State transitions for Example 3.1.
Notes. Taking the left action in state 1 leads to state 2 with probability 1−p. There is a small probability p of staying in state 1, regardless
of the action taken, thus making the MDP aperiodic. From state 2 or 3, the agent moves to state 1 deterministically.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
742 Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS

1 2

w.p.1

w.p.1

Figure 2. State transitions for Example 3.2.

Example 3.2 (Periodic MDP). Consider an MDP with two states S =
1�2� as in Figure 2. The transition
from state 1 to state 2, and vice versa, occurs with probability 1. The agent has a number of identical actions
(same transitions and rewards). An oblivious opponent chooses the following rewards:

rt�1�= 1� rt�2�= 0� if t is even�

rt�1�= 0� rt�2�= 1� if t is odd�

It follows that �rT �1�→ 1/2 as T → �, and similarly for �rT �2�. If the initial state s0 is 1, then the agent’s
cumulative reward is T ; otherwise, if s0 is 2, the cumulative reward is 0. This implies that the regret is either
negative if s0 = 1, or positive (and bounded away from zero) if s0 = 2. Therefore, using the empirical-frequency or
steady-state notion of regret, zero regret cannot be achieved for periodic MDPs, even if the opponent is oblivious.
Nonetheless, in this example, the regret is zero if we adopt the notion of worst-case regret (Equation (3)). In this
example, the value of the accumulated reward depends solely on the initial state s0. Because we are interested
in characterizing regret with respect to policies, such pathological cases shall be excluded.
In light of these counterexamples, we preclude via Assumptions 2.1 and 2.2 periodic MDPs and nonoblivious

opponents.

4. Follow the perturbed leader. In this section, we present the basic algorithm of this paper and show that
it minimizes the regret under full observation of the reward functions.

4.1. Algorithm description. The proposed algorithm is based on the concept, due to Hannan [16], of
following the best action so far, subject to random perturbations that vanish with time. The algorithm works
in phases. We partition the time steps 0�1� � � � into phases (i.e., intervals of consecutive steps2), denoted by
�0� �1� � � � � We denote by M the number of phases up to step T . The phases are constructed long enough so that
the state-action distribution approaches stationarity. As a result, the number of phases M also becomes sublinear
in T . The phases are nonetheless short enough so that the agent adapts fast enough to changes in the reward
functions. This will be made precise in the results below. As a convention, we let the index t denote a step,
whereas m denotes the index of phase �m. Moreover, we write �0�m to denote the union of phases �0 ∪ · · · ∪ �m,
and ��0�m� to denote its length. For ease of notation, we write the cumulative and average reward over one or
more phases as

R�m�s� a��
∑
t∈�m

rt�s� a��

�r�m�s� a��
1

��m�R�m�s� a��

�r�0�m �s� a��
1

��0�m�
∑
t∈�0�m

rt�s� a��

for all �s� a� ∈ S ×A. The algorithm takes as input the step index t ∈ �m, the current state st , and the average
reward function �r�0�m−1

. It outputs a random action at . For the purpose of randomization, the algorithm samples
a sequence n1�n2� � � � of independent random variables in ��A�. The distribution of these random variables will
be specified later.

Algorithm 1 (Lazy FPL)
(i) (Initialize). For t ∈ �0, choose the action at according to an arbitrary stationary policy.

2 The partition is constructed such that the order between steps within each phase is preserved.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS 743

(ii) (Update.) At the start of phase �m, m= 1�2� � � � , solve the following linear program for ��m�hm�:

min
�∈�� h∈��S�

�

subject to: �+h�s�≥ r̂�0�m−1
�s� a�+ ∑

s′∈S
P�s′ � s� a�h�s′�� �s� a� ∈ S×A�

h�s+�= 0 for some fixed s+ ∈ S�

(6)

(iii) (Follow the perturbed leader). For t ∈ �m, m= 1�2� � � � , choose the action

at = argmax
a∈A

{
�r�0�m−1

�st� a�+ nt�a�+
∑
s′∈S
P�s′ � st� a�hm�s′�

}
� (7)

where the element of A with the lowest index is taken if the max is not unique.

Observe that the linear program (6) is a standard optimization problem for obtaining the optimal value function
(and hence an optimal policy) in an average-reward MDP (Bertsekas [3]). The Lazy FPL algorithm perturbs
the average reward function �r�0�m−1

with the random variable nt . Because the perturbing random variables nt are
identically distributed for all t ∈ �m, whereas the other terms on the right-hand side of Equation (7) are fixed,
it follows that the actions at follow the same mixed stationary policy over the phase �m. We denote this policy
by �m. The lazy aspect of this algorithm comes from the fact that it updates its policy only once each phase,
similar to other lazy learning schemes (e.g., Merhav et al. [22]).
Introducing randomness through perturbations guarantees that the stationary policies used in consecutive

phases do not change too abruptly. This approach is similar to other regret minimization algorithms (e.g.,
Hannan [16], Kalai and Vempala [18]) and smooth fictitious play (Fudenberg and Kreps [14]). The motivation
of increasing phase lengths is twofold. First, using a fixed policy over long phases is computationally efficient.
Second, in addition to vanishing expected regret, we show that the regret vanishes almost surely, provided that
the agent does not change its policy too often. One intuition is that, on the one hand, our bases for comparison
are the steady-state rewards of stationary policies; on the other hand, taking long phases ensures that the agent’s
accumulated reward in each phase approaches the steady-state reward of the corresponding policy.
It is important to observe that prior knowledge of the time horizon T is not necessary to run the Lazy FPL

algorithm. The only prerequisite is a preestablished scheme to partition every time interval into phases.

4.2. Results. In this section, we show that the Lazy FPL algorithm has the no-regret property. Our main
result shows that increasing phase lengths in the Lazy FPL algorithm yields not only an efficient implementation,
but also allows us to establish almost-sure convergence for the average regret. The proof relies on a probabilistic
bound on the regret, which is derived using a modified version of Azuma’s Inequality. The proof of this theorem
will come after a number of intermediate results.

Theorem 4.1 (No-Regret Property of Lazy FPL). Suppose that Assumptions 2.1 and 2.2 hold. Let the
time horizon 0�1� � � � be partitioned into phases �0� �1� � � � such that there exists an � ∈ �0�1/3� for which
��m� = �m1/3−�� for m= 0�1� � � � � Further, suppose that the random variables nt�a� for t = 1�2� � � � and a ∈A
are independent and uniformly distributed3 over the support �−1/�m�1/�m	, where �m �

√��0�m� and t ∈ �m.
Then, the average regret of the Lazy FPL algorithm vanishes almost surely, i.e.,

lim sup
T→�

LWT ≤ 0� w.p. 1�

Remark 4.1. Theorem 4.1 makes no assumption about the sequence of reward functions r0� r1� � � � except
for boundedness and obliviousness.
Remark 4.2. Observe that the partition of Theorem 4.1 can be constructed incrementally over time without

prior knowledge of the time horizon T . Moreover, having a slowly increasing phase length suffices for obtaining
convergence.

3 The random variable nt �a� has probability density function

fnt �a��z�=
{
�m/2� if z ∈ �−1/�m�1/�m	�

0� otherwise�

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
744 Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS

Theorem 4.1 builds upon the following proposition that establishes the rate of convergence of the expected
average regret under the Lazy FPL algorithm.

Proposition 4.1 (Expected Regret Bound). Suppose that the assumptions of Theorem 4.1 hold. In par-
ticular, suppose that there exists an � ∈ �0�1/3� such that ��m� = �m1/3−�� for m= 0�1� � � � � Then, the expected
average regret of the Lazy FPL algorithm is bounded as follows:

Ɛ�LWT 	≤ 4
3 �2e�+ 2 �A� + 4e+ 1+ 2��S� + 3� �A�2 � log�T ��T −1/4+�� (8)

Remark 4.3. The bound of Equation (8) is weaker than the O�T −1/2� bound that was obtained for the
algorithm of Even-Dar et al. [11]. This can be attributed to the fact that the Lazy FPL algorithm computes a
single policy each phase and follows it throughout increasingly long phases. It is a common feature of lazy
learning schemes (cf., e.g., Merhav et al. [22]).
The proof of Proposition 4.1 relies on the following lemmata. The proofs of the lemmata are provided in the

appendix. The first lemma gives a convenient expression for expected regret.

Lemma 4.1. Let s0 be an arbitrary state and be an arbitrary stationary policy. Let �st�at� be the state-
action pair at step t following policy and starting at initial state s0. If the opponent is oblivious (Assump-
tion 2.2), then for every j = 0� � � � � T − 1, we have

Ɛ�rj�st�at�	= �rj � dt�� s0��� (9)

where the expectation is taken over both the MDP transitions and the randomization of policy .

Let t ∈ �m. We define the following unperturbed counterpart to the action at of Equation (7):

a+
t = argmax

a∈A

{
�r�0�m−1

�st� a�+
∑
s′∈S
P�s′ � st� a�hm�s′�

}
�

where hm is part of the solution to the linear program (6). Note that at is a random variable, whereas a+
t is

deterministic given the reward sequence. We also define the following stationary policies for all �s� a� ∈ S×A:
�m�a� s�= Pr�at = a � st = s��
�+
m �a� s�= Pr�a+

t = a � st = s��
Note that �m is a mixed policy, whereas �+

m is a deterministic one. Both are determined by the sequence
of reward functions, and hence, independent of the state-trajectory. The following lemma—a consequence of
Bertsekas [3, §4.3.3]—asserts the optimality of �+

m .

Lemma 4.2 (Optimality). Suppose that Assumption 2.1 holds. In phase �m, the policy �
+
m is optimal against

the reward function �r�0�m−1
in the sense that

��r�0�m−1
����+

m �� ≥ sup
∈�

��r�0�m−1
����� �

where ���+
m � is the stationary state-action distribution corresponding to policy �+

m .

Next, we bound the rate of change of the empirical average reward function.

Lemma 4.3 (Difference in Partial Averages). Let n and l be nonnegative integers such that n≥ l. Then,∥∥∥∥∥1n
n−1∑
j=0

rj −
1
l

l−1∑
j=0

rj

∥∥∥∥∥
�

≤ 2
n− l
n
�

The following lemma quantifies the change in policy of the Lazy FPL algorithm from phase to phase.

Lemma 4.4 (Policy Continuity). Suppose that the assumptions of Theorem 4.1 hold. Then, for
m= 0�1� � � � , every s ∈ S, and for every positive integer g,

�m+1�·� s�−�m�·� s�
1 = ��S� + 3� �A�2
(
�m+1

��m+1�
��0�m+1�

+ �m+1 − �m
�m+1

)

and

���m+1�−���m�
1 = ��S� + 3� �A�2
(
�m+1

��m+1�
��0�m+1�

+ �m+1 − �m
�m+1

)
g+ 4e1−g/��

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS 745

The following lemma characterizes the effect of randomization in the Lazy FPL algorithm on the expected
cumulative reward.

Lemma 4.5 (Effect of Randomization). Suppose that the assumptions of Theorem 4.1 hold. For phases
indexed m= 1�2� � � � , we have

�R�0�m−1
����m�� ≥ �R�0�m−1

����+
m �� − 2 �A� ��0�m−1�

�2m
�

We now prove Proposition 4.1 and Theorem 4.1.
Proof of Proposition 4.1. The proof proceeds along the following lines. The oblivious opponent assump-

tion makes stationary policies as good as any other within long phases. The ergodicity assumption allows us
to concentrate on the stationary distributions of the baseline policies, as well as the policies of the sequence
of phases. The perturbation noise enforces a certain continuity between policies of consecutive phases, yet it
vanishes quickly enough as not to severely affect the optimality of the stationary policy computed at each phase.
Letting M denote the number of phases up to time step T , we divide the proof into the following sequence of
bounds:

T−1∑
t=0

Ɛ�rt�st�at�	

≥
M−1∑
m=0

��R�m����m�� − 2e�� (Step 0) (10)

≥
M−2∑
m=0

��R�m����m+1�� − 2e�− 4e− 2��S� + 3� �A�2 � log�T �� (Step 1)

≥ T · sup
∈�

��rT ����� − �M − 1��2e�+ 4e+ 2��S� + 3� �A�2 � log�T �� (Step 2)

− 2�M − 1� �A� −M1/3� (11)

where the expectation Ɛ is over both the MDP transitions and the randomization through nt in Algorithm 1.
Equation (8) now follows from Equation (11) by Lemma 2.1 and the fact that because ��m� = �m1/3−�� for
m= 0� � � � �M − 1, we have M ≤ �4/3�T 3/4+�.
Step 0. Let s− denote the state at the beginning of phase �m. By Lemma 4.1 and Assumption 2.1, for every

phase �m, we have ∑
t∈�m

Ɛ�rt�st�at� � s−	 = ∑
t∈�m

�rt� dt��m� s−��

≥ ∑
t∈�m

�rt����m�� −
��m�−1∑
t=0

2e1−t/�

≥ �R�m����m�� − 2e��

as in Equation (10).
Step 1. By Lemma 4.4 with �m =√��0�m� for m= 0�1� � � � , and by picking g = � log���0�m+1��, we obtain

���m�−���m+1�
1 ≤ g��S� + 3� �A�2
(
�m+1

��m+1�
��0�m+1�

+ �m+1 − �m
�m+1

)
+ 4e1−g/�

≤ 2��S� + 3� �A�2 � ��m+1� log���0�m+1��
��0�m+1�1/2

+ 4e

��0�m+1�
�

It follows that

M−1∑
m=0

�R�m����m�� ≥
M−2∑
m=0

��m� ��r�m����m+1�� − ��m�
(
2��S� + 3� �A�2 � ��m+1� log���0�m+1��

��0�m+1�1/2
+ 4e

��0�m+1�
)

≥
M−2∑
m=0

��R�m����m+1�� − 2��S� + 3� �A�2 � log�T �− 4e��

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
746 Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS

where the second inequality follows from the construction of the partition. Indeed, choosing ��m� = �m1/3−�� for
m= 0� � � � �M − 1 implies that

��m� ��m+1� log���0�m+1��≤ log�T � ��0�m+1�1/2 �
Step 2. In this step, we show that by taking into account rewards for phases �m+1� � � � � �M−1, we cannot

improve the expected reward for phases �1� � � � � �m−1. To this end, we show by induction on J = 0� � � � �M − 2
that

M−2∑
m=0

�R�m����m+1�� ≥
M−2∑
m=0

�R�m����M−1�� − 2�M − 2� �A� � (12)

For the base case of J = 0, we clearly have

�R�0����1�� ≥ �R�0����1���
Assume that for some J , we have

J∑
m=0

�R�m����m+1�� ≥
J∑
m=0

�R�m����J+1�� − 2J �A� �

Then,

J∑
m=0

�R�m����m+1�� ≥ �R�0� J ����J+1�� − 2J �A�

≥ �R�0� J ����+
J+1�� − 2 �A� ��0� J �

�2J+1

− 2J �A�

≥ �R�0� J ����J+2�� − 2�J + 1� �A� �
where the first inequality follows by definition, the second inequality follows from Lemma 4.5, and the
third inequality uses the assumption that �m = √��0�m� and the optimality of the policy �+

J+1. Finally, adding
�R�J+1

����J+2�� to both sides of the above inequalities, we complete the induction step:

J+1∑
m=0

�R�m����m+1�� ≥
J+1∑
m=0

�R�m����J+2�� − 2�J + 1� �A� �

and Equation (12) follows.
Finally, observe that

M−2∑
m=0

�R�m����M�� − 2�M − 2� �A� ≥
M−1∑
m=0

�R�m����+
M�� − 2�M − 2� �A� − 2 �A� − ��M−1� (13)

by Lemma 4.5 and the fact that �+
M is an optimal policy in an MDP with reward function �rT � �r�0�M−1

.
Equation (13) uses the fact that the reward attained in phase �M−1 is bounded by ��M−1� ≤M1/3. The required
result of Equation (11) follows by observing that

M−1∑
m=0

�R�m����+
M�� = T ��rT ����+

M�� = T · sup
∈�

��rT ������

where the first equality is due to the linearity of the inner product and the definition of �rT , and the second
equality is due to the optimality of �+

M against �rT . �

Proof of Theorem 4.1. The proof relies on a modified version of Azuma’s Inequality (Cesa-Bianchi and
Lugosi [9, Appendix A.6]). We first define

Vm = ∑
t∈�m

Ɛ�rt�st�at�	− rt�st�at��

WM−1 =
M−1∑
m=0

Vm�

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS 747

By Assumption 2.1, for all m, we have (with probability 1)

Ɛ�Vm � st�at for t ∈ �0�m−1	= 0�

Next, observe that for every real-valued x,

Ɛ�exWM−1 	 = Ɛ�exWM−2Ɛ�exVM−1 � st�at for t ∈ �0�M−2		

≤ Ɛ�exWM−2 	 exp
(
x2

8
4 ��M−1�2

)
�

where the inequality follows from Cesa-Bianchi and Lugosi [9, Lemma A.1]. By recursion on M , we obtain

Ɛ�exWM−1 	≤ exp
(
x2

2

M−1∑
m=0

��m�2
)
�

By Chebychev’s Inequality, for every real x, we obtain

Pr
(
1
T
WM−1 >�

)
≤ Ɛ�exWM−1 	

ex�T

≤ exp
(

− ��T �2

2
∑M−1
m=0 ��m�2

)
� (14)

where the second inequality is obtained by choosing x to minimize the exponent. Next, observe that the phase
partition ��m� = �m1/3−�� defined in Proposition 4.1 implies that M ≤ �4/3�T 3/4+� for every � > 0. Hence, we
have

∑M−1
m=0 ��m�2 ≤ �3/5�M5/3 ≤ �4/5�T 5/4+5�/3. Following substitutions, we obtain

Pr
(
1
T

T−1∑
t=0

Ɛ�rt�st�at�	−
1
T

T−1∑
t=0

rt�st�at� > �
)

≤ exp
(

− �2T 2

�8/5�T 5/4+5�/3

)

= exp�−�5/8��2T 3/4−5�/3��

Therefore, by picking � small enough, the right-hand side of Equation (14) is summable over nonnegative integers
T for every �> 0. An application of Proposition 4.1 and the Borel-Cantelli Lemma completes the proof. �

5. Approximate algorithms. In many cases of interest, computing the exact policy �m at each phase �m
of the Lazy FPL algorithm might be intractable due to the size of the state space. One solution is to compute
an approximation �m to �m. The policy �m is still computed once every phase, but by using a computationally
efficient method. We consider the approach of approximating the optimal state-action value function or Q-
function. Recall that in average-reward MDPs, the Q-function Q� S × A → � represents the relative utility
of choosing a particular action at a particular state. Let ��m�hm� denote the optimal solution to the linear
program (6) at the start of phase �m. The corresponding optimal Q-function is therefore defined as

Q∗
m�s�a�= �r�0�m−1

�s� a�+ ∑
s′∈S
P�s′ � s� a�hm�s′��

Definition 5.1. Let � and � be nonnegative constants. Consider an algorithm that computes an approximate
Q-function Qm for each phase �m and chooses an action

at = argmax
a∈A

Qm�st� a�+ nt�a��

at every step t in phase �m, with the random variable nt distributed as in Theorem 4.1. Such an algorithm is an
�����-approximation algorithm if there exists an integer N such that, for m≥N ,

Pr
(
Qm�s� ·�−Q∗

m�s� ·�
1 ≤ � for every s ∈ S)≥ 1− �� (15)

where Q∗
m is the optimal Q-function.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
748 Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS

The following corollary (proved in the appendix) relaxes the need for an exact optimization procedure.

Corollary 5.1. Let P� denote the matrix whose �s′� s�-element is P�s′ � s���s��, i.e., the transition matrix
induced by the stationary policy �� S→ A. Let Z� denote the fundamental matrix (cf. Schweitzer [25]) asso-
ciated with the same transition kernel P�s′ � s���s��. In other words,

Z� � �I − P� + P�
� 	

−1� where P�
� � lim

K→�
1
K

K∑
k=1

Pk� �

Further, let the norm
M
� of a matrix M denote its maximum absolute row-sum. Suppose that the assump-
tions of Theorem 4.1 hold. The average regret of an �����-approximation algorithm is bounded as follows:

lim sup
T→�

LWT ≤ sup
�∈�

Z�
� ��+ ��� w.p. 1�

Remark 5.1. If an algorithm is an �����-approximation for every pair of positive numbers � and �, then the
average regret tends to zero almost surely. It is also possible to obtain almost-sure convergence of the average
regret to zero if the Q-functions Qm computed by an approximation algorithm improve in accuracy from phase
to phase, such that Equation (15) holds for sequences �m and �m that decrease quickly enough to zero.
In the following algorithm, we use Q-learning (Bertsekas and Tsitsiklis [4, Chapter 7]) to compute an approx-

imation �m to the policy �m of the Lazy FPL algorithm. In essence, Q-learning is employed as a method of
solving the linear program of the Lazy FPL algorithm. It is well known that Q-learning is an iterative simulation-
based method that does not need to keep track of the transition probabilities. Let Qt denote the sequence of
Q-functions, and Q�0�m−1

denote the Q-function obtained at the last step of phase �m−1. During every step t of
phase �m, we choose our action to maximize the Q-function Q�0�m−1

obtained over the previous phases, perturbed
by a random term nt; simultaneously, we update the sequence of Q-functions Qt at every step.

Algorithm 2 (Q-FPL)
(i) (Initialize.) For t ∈ �0, set Qt = 0 and choose action at according to an arbitrary deterministic policy

� S→A.
(ii) (Update.) At every step t ∈ �m, for m= 1�2� � � � , set �m = 1/

√
m and update Qt iteratively as follows:

Qt�st−1� at−1�= �1−�m�Qt−1�st−1� at−1�+�m��r�0�m−1
�st−1� at−1�+max

a∈A
Qt−1�st� a�−Qt−1�s

′� a′��� (16)

where s′ and a′ are fixed, and the term Qt−1�s
′� a′� serves the purpose of normalization.

(iii) (Perturb.) At every step t ∈ �m, for m= 1�2� � � � , choose action

at = argmax
a∈A

Q�0�m−1
�st� a�+ nt�a���

where the random variables nt are distributed as in Theorem 4.1.

Remark 5.2. As for the Lazy FPL algorithm, the reward function r̂�0�m−1
is fixed throughout phase �m.

The sequence �m is selected such that it satisfies the conditions for stochastic approximation (cf. §4.3 of
Borkar and Meyn [7]). Let Q∗

�0�m−1
denote the optimal Q-function against the fixed reward function �r�0�m−1

. By
Borkar and Meyn [7, Theorem 2.4], within each phase where the reward function is fixed and the length is long
enough, for every �> 0 and � > 0, we have

Pr�
Q�0�m−1
−Q∗

�0�m−1

1 >��< �� (17)

so that Equation (15) holds.4 We observe that the Q-FPL algorithm is in fact an �����-approximation algorithm
for every positive � and �, which leads to the following corollary by an argument similar to Theorem 4.1.

Corollary 5.2. Suppose that the assumptions of Theorem 4.1 hold. Then, the average regret of the Q-FPL
algorithm tends to zero almost surely.

Other algorithms, especially some actor-critic algorithms that are equivalent to Q-learning (Crites and
Barto [10]), may be used as well, as long as they are �����-approximations for every pair of positive � and �.
Remark 5.3 (Computational Load). The Q-FPL algorithm has a fixed computational load per step. This

complexity is less demanding than that of Even-Dar et al. [11], although the latter is also fixed per step. In

4 To be accurate, for the off-policy Q-function evaluation in Step 2 of the Q-FPL algorithm to converge at the end of each phase, we must
ensure that the policy induced by Step 3 performs sufficient exploration. Hence, we sample an independent perturbation nt at every time
step.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS 749

comparison, the Lazy FPL algorithm requires solving an MDP at the beginning of every phase, but it has the
advantage of diminishing the per-step complexity.

6. Observing rewards only on trajectory. In this section, we present a modification of the Lazy FPL
algorithm in the spirit of Auer et al. [1] to deal with instances where the reward functions are partially observed.
More precisely, we consider the case where the agent only observes the value of the reward function sequence
on the traversed state-action trajectory. Consequently, we restrict the space of the agent’s policies to those that
map the observed reward-history r0�s0� a0�� � � � � rt−1�st−1� at−1� and the current state st to a mixed action.

Our approach is to construct an unbiased estimate of �r�0�m−1
at each phase �m. Following an initialization

phase �0, we construct a random reward function at every step t. The length of the phase �0 and the policy
adopted therein are such that, for t ≥ ��0�, Pr��st�at�= �s� a� � s0� > 0 for all �s� a� ∈ S×A. For all t ≥ ��0� and
�s� a� ∈ S×A, we let

zt�s� a�=

⎧⎪⎨
⎪⎩

rt�s� a�

Pr��st�at�= �s� a� � s0�
� if �st�at�= �s� a��

0� otherwise�

Observe that only the value of rt at the traversed state-action pair �st�at� is required to evaluate zt . The probability
Pr��st�at� = �s� a� � s0� is readily computed recursively using the transition probabilities associated with the
policy followed at step t − 1. From the sequence zj , we construct �zt � �1/t�

∑t−1
j=0 zj as an estimate of �rt =

�1/t�
∑t−1
j=0 rj . In conformance with our notation, �z�0�m−1

denotes �zt , where t is the first step of phase �m.

Algorithm 3 (Exploratory FPL)
(i) (Initialize). Let the length of phase �0 be long enough so that Pr��st�at�= �s� a� � s0� > 0 for t ≥ ��0� and

�s� a� ∈ S×A. For t ∈ �0, choose action at uniformly at random over A.
(ii) (Estimate). At every step t = 1�2� � � � , compute the estimate �zt recursively.
(iii) (Sample). At the start of phase �m, for m= 1�2� � � � , sample an independent Bernoulli random variable xm

that takes value 1 with probability �m.
(iv) (Lazy FPL). If xm = 0, by substituting �z�0�m−1

for �r�0�m−1
, solve the linear program (6) and follow the policy

of Equation (7) throughout phase �m.
(v) (Explore). If xm = 1, for t ∈ �m and m= 1�2� � � � , choose action at uniformly at random over A.

The following corollary (see the appendix for a proof outline) asserts a result analogous to Theorem 4.1 for
the Exploratory FPL algorithm (Algorithm 3).

Corollary 6.1 (No-Regret Property of Exploratory FPL). Suppose that the assumptions of Theo-
rem 4.1 hold. Let M denote the number of phases up to time step T . Suppose that the agent follows the
Exploratory FPL algorithm with a sequence �m > 0, for m= 0� � � � �M−1, ensuring infinitely many exploration
phases, and such that

M−1∑
m=0

��m��m =O�M�� (18)

Then, the average regret of the Exploratory FPL algorithm vanishes almost surely.

Remark 6.1. If �m is set to a positive constant, then the Exploratory FPL algorithm reduces to an approxi-
mation algorithm governed by Corollary 5.1.
Remark 6.2. Corollary 6.1 guarantees that the Exploratory FPL algorithm minimizes regret in generalized

multiarm bandit problems with a state variable.

7. Regret with respect to dynamic policies. In this section, we consider a more general notion of regret
that encompasses some dynamic policies. Consider a sequence of policies � = �0� � � � �T−1�, where every
element j of the sequence is a deterministic policy j� S→A. Let the number of switches in this sequence of
policies be

K� ��=
T−1∑
j=1

1�j−1 �=j 	�

Let K0 be a fixed integer. A more challenging baseline of comparison for the cumulative reward is

�T �K0�� sup
�0 � � � � �T−1��

K� ��≤K0

Ɛ

[T−1∑
t=0

rt�s̃t�t�s̃t��
]
� (19)

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
750 Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS

where �s̃0�0�s̃0��� � � � � �s̃T−1�T−1�s̃T−1�� denote state-action pairs induced by the sequence of policies
0� � � � �T−1, and the maximum is taken over all possible sequences of policies with at most K0 switches.
If K0 = 0, then Equation (19) reduces to the baseline considered so far (cf. Equation (3)). We present an
algorithm that guarantees a reward consistent with the above baseline. This algorithm adapts the fixed-share
algorithm of Herbster and Warmuth [17] to the MDP framework.

Algorithm 4 (Tracking FPL)
(i) (Initialize). Fix � ∈ �0�1	. For t ∈ �0, choose action at according to an arbitrary deterministic policy

� S→A.
(ii) (Sample). At the outset of phase �m, for m = 1�2� � � � , sample a Bernoulli random variable xm with

Pr�xm = 1�= �.
(iii) (Fixed-share). If xm = 0, sample a policy ym uniformly at random from the set of deterministic policies

� S→A�, then follow the policy ym throughout phase �m.
(iv) (Lazy FPL). If xm = 1, solve the linear program (6) and follow the policy of Equation (7) throughout

phase �m.

Remark 7.1. Observe that, as before, the algorithm elects a single policy in each phase and follows it
throughout. The fixed-share scheme occurs once in each phase—at the outset. Observe also that the uniformly
random policy ym can be constructed efficiently. As in the fixed-share algorithm of Herbster and Warmuth [17],
the action at each step is equal to the previous action with probability 1−�+�/ �A�, and equal to each different
action with probability �/ �A�.
Remark 7.2. In the MDP setting, the most obvious extension of the fixed-share algorithm of Herbster and

Warmuth [17] is to associate an expert to every deterministic policy � S → A. This creates an exponential
number of such experts, which our approach avoids.
The following analog of Theorem 4.1 guarantees that the regret with respect to the reward achieved by the

best sequence of policies with a finite number of switches vanishes asymptotically if the agent employs the
Tracking FPL algorithm.

Theorem 7.1 (No-Regret Property of Tracking FPL). Suppose that the assumptions of Theorem 4.1
hold. Let K0 be a positive integer. Suppose further that the agent follows the Tracking FPL algorithm with the
parameter � = K0/��T /�T 1/3�� − 1�. Then, the average regret with respect to the baseline of Equation (19)
vanishes almost surely, i.e.,

lim sup
T→�

{
1
T
�T �K0�−

1
T

T−1∑
t=0

rt�st�at�
}

≤ 0� w.p.1�

Remark 7.3. Although we only consider the case of a fixed number of switches K0 and a fixed parameter �,
it can be shown, by using the doubling trick of Cesa-Bianchi and Lugosi [9, §3.2], that the result of Theorem 7.1
holds as long as the number of switches K0 increases slowly enough in T .
The proof of this theorem hinges on a bound on the rate of convergence of the expected regret simi-

lar to Proposition 4.1. To derive this bound, we first prove a bound for a different hypothetical—and less
practical—algorithm. Consider Algorithm 5: a modified version of the exponentially weighted average forecaster
(Cesa-Bianchi and Lugosi [9]), which also resembles the algorithm of Even-Dar et al. [11]. To every determin-
istic policy � S→A, we associate a weight wm�� that is updated at every phase �m for m= 0�1� � � � � Once
at the start of every phase, the algorithm picks a deterministic policy with probability proportional to its weight,
and follows this policy throughout the phase. The weights are adjusted in the spirit of the Fixed-share algorithm
(Herbster and Warmuth [17]) to track infrequent changes in optimal policy.

Algorithm 5 (Lazy Tracking Forecaster)
(i) (Initialize.) Fix � ∈ �0�1	 and � ∈ �0���. For every deterministic policy � S→A, set

w0��=
1

�A��S� �

(ii) (Update weights and choose policy). At the start of every phase �m, for m= 1�2� � � � , evaluate

wm��=wm−1�� exp���R�m−1
������ for every � S→A� (20)

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS 751

Sample a random variable qm over the set of deterministic policies
 � S→A� and with the following probability
measure:5

Pr�qm =�= �1−�� wm��∑
′ � S→A wm�

′�
+� 1

�A��S� for all � S→A� (21)

(iii) (Follow chosen policy). For t ∈ �m and m= 1�2� � � � , choose the action at = qm�st�.

Remark 7.4. The main problem with the Lazy Tracking Forecaster algorithm is that the number of weight
variables �A��S� is exponential in the size of the state space.

Remark 7.5. The term �R�m−1
����� in Equation (20) approximates the expected reward accumulated by

following policy over the course of phase �m−1. The weights are updated recursively according to each policy’s
reward over the previous phase. The probability measure defined in Equation (21) tracks the optimal policy in
the fashion of the fixed-share algorithm (Herbster and Warmuth [17]).
Remark 7.6. In contrast to the algorithms presented in the previous sections, the length of every phase

is kept the same. By using the doubling trick of Cesa-Bianchi and Lugosi [9, §3.2], we can adapt the Lazy
Tracking Forecaster algorithm to problems where the time horizon T is unknown. This technique partitions the
time horizon into periods of exponentially increasing length and runs the Lazy Tracking Forecaster algorithm
on each period independently.
As asserted in the following proposition, the Lazy Tracking Forecaster (Algorithm 5) minimizes the regret

with respect to the new baseline of Equation (19). The proof (see the appendix) derives from existing results on
the fixed-share algorithm of Herbster and Warmuth [17].

Proposition 7.1 (Expected Regret of Lazy Tracking Forecaster). Let the length of all phases be
��� = �T 1/3�. Suppose that Assumptions 2.1 and 2.2 hold. If the agent follows the Lazy Tracking Forecaster
algorithm with parameters �= T −2/3 and �=K0/��T /�T 1/3��−1�, then the following cumulative regret bound
holds for large enough T :

�T �K0�−
T−1∑
t=0

Ɛ�rt�st�at�	≤ �S� log��A���K0 + 1�T 2/3 + 2K0 log�T
2/3/K0�T

2/3 + 1
2T

2/3 + �2e��T 2/3�

Remark 7.7. Observe that this bound is tighter than the bound of Proposition 4.1.
We now prove Theorem 7.1.
Proof of Theorem 7.1. Consider the Tracking FPL algorithm (Algorithm 4) and the Lazy Tracking

Forecaster (Algorithm 5) with their parameters � set equal. Let all phases for the Lazy Tracking Forecaster
algorithm have fixed length � . Let M denote the number of phases for the Tracking FPL algorithm. By their
definition, at every given step t and with probability �, the two algorithms follow a policy chosen uniformly
at random. Hence, the difference in their expected cumulative reward is 1−� times the same difference when
the parameters � are set to 0. We will proceed to bound this latter quantity.
Observe that the Tracking FPL algorithm with �= 0 is simply the Lazy FPL algorithm. The Lazy Tracking

Forecaster with �= 0 is just an exponentially weighted average forecaster (Cesa-Bianchi and Lugosi [9]) with
one phase as the fundamental time step. Let at and bt denote the actions generated by the Lazy Tracking
Forecaster and the Tracking FPL algorithms, respectively. By setting the argument K0 to the baseline �T to 0,
we shall derive the following bounds on their respective cumulative regrets:

��
√
T log��A���≤�T �0�−

T−1∑
t=0

Ɛ�rt�st�at�	≤ �S� log��A��
�

+ ��T / ���� ���2
2

� (22)

��
√
T log��A���≤�T �0�−

T−1∑
t=0

Ɛ�rt�st�bt�	≤
4
3
�2e�+ 2 �A� + 4e+ 1+ 2��S� + 3� �A�2 � log�T ��T 3/4+�� (23)

The upper bound of Equation (22) follows from an argument similar to Cesa-Bianchi and Lugosi [9, Theo-
rem 2.1]; that of Equation (23) follows from Proposition 4.1. Both lower bounds are due to instances where the
regret is no less than of the order of ��T 1/2� (Cesa-Bianchi and Lugosi [9, Theorem 3.7]). The above bounds

5 As in the fixed-share algorithm of Herbster and Warmuth [17], the action at each step is equal to the previous action with probability
1−�+�/ �A�, and equal to each different action with probability �/ �A�.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
752 Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS

combine to give∣∣∣∣∣
T−1∑
t=0

Ɛ�rt�st�at�	−
T−1∑
t=0

Ɛ�rt�st�bt�	

∣∣∣∣∣
≤ �S� log��A��

�
+ ��T / ���� ���2

2
+ 4

3

(
2e�+ 2 �A� + 4e+ 1+ 2��S� + 3� �A�2 � log�T �)T 3/4+�� (24)

because the lower bounds are superseded by the upper bounds for all phase-partitions consistent with the
assumptions of Proposition 4.1. By substituting the values ��� = �T 1/3� and � = T −2/3 and compounding the
bound of Equation (24) to that of Proposition 7.1, we obtain the following bound:

�T �K0�−
T−1∑
t=0

Ɛ�rt�st�at�	 ≤ �S� log��A���K0 + 2�T 2/3 + 2K0 log�T
2/3/K0�T

2/3 + T 2/3 + �2e��T 2/3

+ 4
3

(
2e�+ 2 �A� + 4e+ 1+ 2��S� + 3� �A�2 � log�T �)T 3/4+�� (25)

At last, the claimed result follows by an argument similar to the proof of Theorem 4.1. �

Remark 7.8. The bound on expected cumulative regret of the Tracking FPL algorithm (cf. Equation (25))
is of the same order as that afforded by the Lazy FPL algorithm (cf. Proposition 4.1). This indicates that the
critical factor in the convergence of the algorithm is its “laziness.”

8. Conclusions. In this paper, we considered no-regret policies within the extended model of MDPs with
arbitrarily varying rewards. We showed that a simple reinforcement learning algorithm achieves diminishing
average regret against any oblivious opponent. In contrast to most of the online learning literature, the obliv-
iousness of the opponent plays a key role in characterizing the performance that the agent can achieve. The
algorithms presented in the different sections introduce techniques dealing with various possible challenges. The
Lazy FPL algorithm deals with the Markovian dynamics and an unknown time horizon T . The Q-FPL algorithm
circumvents the need to calculate the exact value functions. The Exploratory FPL algorithm overcomes partially
observable reward functions. The Tracking FPL algorithm surmounts a more ambitious comparison baseline of
regret composed of dynamic policies with infrequent changes. The salient features of all these algorithms can
be combined to deal with combinations of the mentioned challenges.
An oblivious environment and a completely nonoblivious (i.e., omnipotent) environment are two opposite

extremes. It would be interesting to model different levels of obliviousness and study their effect on the achiev-
able regret. For example, one can consider opponents that select reward functions depending on delayed infor-
mation or imperfect monitoring of the history (e.g., opponents that only observe visits by the agent to particular
states). The main focus in this paper was computational efficiency from the reinforcement learning perspective,
where low complexity per stage is desired. Optimizing the convergence rate of the regret remains an open topic
for further research.

Appendix. Proofs.
Proof of Lemma 4.1. By introducing indicator functions, we obtain

Ɛ�rj�st�at�	 = Ɛ

{ ∑
�s� a�∈S×A

rj�s� a�1��st �at �=�s� a�	

}
(26)

= ∑
�s� a�∈S×A

rj�s� a�Ɛ1��st �at �=�s� a�	 (27)

= ∑
�s� a�∈S×A

rj�s� a�Pr��st�at�= �s� a��� (28)

where Equation (26) follows by definition and the use of indicator functions, Equation (27) is justified by
Assumption 2.2, and Equation (28) follows again by definition. �

Proof of Lemma 2.1. By Lemma 4.1, for a stationary policy ∈�, we have

1
T

T−1∑
t=0

Ɛ�rt�st�at�	=
1
T

T−1∑
t=0

�rt� dt�� s0���

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS 753

By Assumption 2.1 and the summability of the sequence e1−t/� , we have∣∣∣∣∣ 1T
T−1∑
t=0

�rt� dt�� s0�� − 1
T

T−1∑
t=0

�rt�����
∣∣∣∣∣≤ 1

T

T−1∑
t=0

2e1−t/� = 2e�/T �

By definition, we have

1
T

T−1∑
t=0

�rt����� = ��rT ������

Putting these pieces together, we obtain∣∣∣∣∣ 1T
T−1∑
t=0

Ɛ�rt�st�at�	− ��rT �����
∣∣∣∣∣ ≤ 2e�/T �

By a similar argument, we have∣∣∣∣∣ 1T
T−1∑
t=0

Ɛ��rT �st�at�	− ��rT �����
∣∣∣∣∣≤ 2e�/T �

The two claims follow from taking the supremum over the set of stationary policies. �

Proof of Lemma 4.3. For nonnegative integers n and m such that n≥m, algebraic manipulation yields∥∥∥∥∥1n
n−1∑
j=0

rj −
1
l

l−1∑
j=0

rj

∥∥∥∥∥
�

=
∥∥∥∥∥1n

l−1∑
j=0

rj +
1
n

n−1∑
j=l
rj −

1
l

l−1∑
j=0

rj

∥∥∥∥∥
�

≤ 1
n

∥∥∥∥∥
n−1∑
j=l
rj

∥∥∥∥∥
�

+
∣∣∣∣n− l
n

∣∣∣∣
∥∥∥∥∥1l

l−1∑
j=0

rj

∥∥∥∥∥
�

≤ 2
n− l
n
�

where the last inequality follows from the fact that r0� r1� � � � , are bounded by 1. �

Proof of Lemma 4.4. Let t′ ∈ �m+1 and t ∈ �m. By the assumption of Theorem 4.1, the cumulative distribu-
tion functions of nt′�a� and nt�a� satisfy the following bounds for all z� z′ ∈�:

∣∣Fnt′ �a��z�− Fnt �a��z�∣∣≤ �m+1 − �m
2�m+1

�

∣∣Fnt′ �a��z�− Fnt′ �a��z′�∣∣≤ �m+1

2
�z− z′��

Likewise, for a�a′ ∈A, we have

∣∣Fnt′ �a�−nt′ �a′��z�− Fnt �a�−nt �a′��z�
∣∣≤ �m+1 − �m

2�m+1

� (29)

∣∣Fnt′ �a�−nt′ �a′��z�− Fnt′ �a�−nt′ �a′��z
′�
∣∣≤ �m+1

2
�z− z′�� (30)

By Lemma 4.3, we have ∥∥�r�0�m+1
− �r�0�m

∥∥
� ≤ 2 ��m+1�/ ��0�m+1� � (31)

Observe that the linear programs (cf. Equation (6)) at the mth and m+1th phases differ only in their right-hand
constraint vectors, whose difference is bounded by Equation (31). It follows by Renegar [23, Theorem 1.1] that
the optimal values �m and �m+1 satisfy

��m+1 −�m� ≤ ∥∥�r�0�m+1
− �r�0�m

∥∥
� �

Likewise, by Robinson [24, Corollary 3.1], the solutions hm+1 and hm differ as follows:

hm+1 −hm
� ≤ ��S� + 1�
∥∥�r�0�m+1

− �r�0�m
∥∥

� (32)

≤ 2��S� + 1� ��m+1�/ ��0�m+1� � (33)

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
754 Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS

Starting from the definition of Algorithm 1, for every s ∈ S, a ∈A, and m= 0�1� � � � ,

�m+1�a� s� � Pr�at′ = a � st′ = s�

= Pr
(

�r�0�m+1
�s� a�+ ∑

s′∈S
P�s′ � st� a�hm�s′�+ nt′�a� > �r�0�m+1

�s� a′�

+ ∑
s′∈S
P�s′ � st� a′�hm�s

′��hm+1�st+1�	+ nt′�a
′� for all a′ �= a

)
(34)

= ∏
a′ �=a

Pr
(
nt′�a�− nt′�a

′� > �r�0�m+1
�s� a′�− �r�0�m+1

�s� a�

+ ∑
s′∈S
P�s′ � st� a′�hm�s

′�− ∑
s′∈S
P�s′ � st� a�hm�s′�

)
� (35)

where the probability measure is over the randomization nt′ , whereas the expectation is over the transition
probabilities of the MDP. Equation (34) is due to the definition of Algorithm 1 (Equation (7)). Equation (35)
is obtained by independence of the random variables nt′�a� for a ∈A. By comparing Equations (35) applied to
�m+1 and �m, and using Equations (31), (33), (29), and (30), we obtain

�m+1�·� s�−�m�·� s�
� ≤ ��A� − 1�
(
�m+1

2
�4+ 2��S� + 1��

��m+1�
��0�m+1�

+ �m+1 − �m
2�m+1

)

for all s ∈ S. For the 1-norm, we have

�m+1�·� s�−�m�·� s�
1 ≤ ��S� + 3� �A� ��A� − 1�
(
�m+1

��m+1�
��0�m+1�

+ �m+1 − �m
�m+1

)
(36)

for all s ∈ S.
For the second part of the lemma, let P be the transition matrix associated with a stationary policy � S→A.

The element of P in row �s′� a′� and column �s� a� is the probability that the next state-action pair is �s′� a′�
if the current one is �s� a� and policy is followed. Let d ∈ ��S ×A� be a probability vector specifying the
initial state-action pair �s0��s0��. We first show by induction that

Pj�m+1
d− Pj�md
1 ≤ j��S� + 3� �A�2

(
�m+1

��m+1�
��0�m+1�

+ �m+1 − �m
�m+1

)
(37)

for j = 1�2� � � � � Let e1� � � � � e�S×A� denote the elementary vectors in ��S×A�. For the base case j = 1, we have∥∥P�m+1
d− P�md

∥∥
1

≤ max
n=1� � � � � �S×A�

∥∥P�m+1
en − P�men

∥∥
1

= max
�s� a�∈S×A

∣∣∣∣ ∑
�s′� a′�∈S×A

P�s′ � s� a��m+1�a
′� s′�−P�s′ � s� a��m�a′� s′�

∣∣∣∣
= max

�s� a�∈S×A

∣∣∣∣∑
s′∈S
P�s′ � s� a�∑

a′
�m+1�a

′� s′�−�m�a′� s′�
∣∣∣∣

≤ max
s′∈S

∣∣∣∣∑
a′∈A

�m+1�a
′� s′�−�m�a′� s′�

∣∣∣∣
= max

s′∈S

�m+1�·� s′�−�m�·� s′�
1

≤ ��S� + 3� �A�2
(
�m+1

��m+1�
��0�m+1�

+ �m+1 − �m
�m+1

)
�

where the last inequality follows from Equation (36). Next, suppose that for some j , we have

∥∥Pj�m+1
d− Pj�md

∥∥
1
= j��S� + 3� �A�2

(
�m+1

��m+1�
��0�m+1�

+ �m+1 − �m
�m+1

)
�

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS 755

By the triangle inequality and the same argument as the base case, we obtain∥∥Pj+1
�m+1

d− Pj+1
�m
d
∥∥
1

≤ ∥∥P�m+1
Pj�m+1

d− P�mP
j
�m+1

d
∥∥
1
+ ∥∥P�mPj�m+1

d− P�mP
j
�m
d
∥∥
1

= ��S� + 3� �A�2
(
�m+1

��m+1�
��0�m+1�

+ �m+1 − �m
�m+1

)

+ j��S� + 3� �A�2
(
�m+1

��m+1�
��0�m+1�

+ �m+1 − �m
�m+1

)
�

which establishes Equation (37). At last, by the triangle inequality, Equation (37), and Assumption 2.1, it follows
that for every positive integer g, and every initial state s0 and corresponding distribution d,

���m+1�−���m�
1 = ∥∥Pg�m+1
d− Pg�md

∥∥
1
+ ∥∥���m+1�− Pg�m+1

d
∥∥
1
+ ∥∥���m�− Pg�md

∥∥
1

≤ g��S� + 3� �A�2
(
�m+1

��m+1�
��0�m+1�

+ �m+1 − �m
�m+1

)
+ 4e1−g/�� �

Proof of Lemma 4.5. Let t ∈ �m; let action a+
t follow policy �+

m , and action at follow �m. Recall that the
action a+

t is an optimal action against an MDP with fixed reward function �r�0�m−1
. Let us consider the following

random variables for �s� a� ∈ S×A:
�r�0�m−1

�s� a�+ ∑
s′∈S
P�s′ � st� a�hm�s′�+ nt�a�� (38)

For ease of notation, we define, for �s� a� ∈ S×A,
�m�s�a�= �r�0�m−1

�s� a�+ ∑
s′∈S
P�s′ � st� a�hm�s′��

Observe that �m�s�a
+
t � ≥ �m�s�a� for every a �= a+

t by definition. Let denote the interval over which the
supports of the random variables nt�a

+
t �+ �m�s�a+

t � and nt�a�+ �m�s�a� overlap. This interval has length
2/�m− ��m�s�a+

t �−�m�s�a��. Combining this fact with the fact that nt�a
+
t � and nt�a� are independent and have

uniform distributions specified by the assumption of Theorem 4.1, we have, for every s ∈ S,
Pr�at = a � st = s� = Pr�nt�a�+ �m�s�a� > nt�a

+
t �+ �m�s�a+

t ��

= 1
2 Pr�nt�a

+
t �+ �m�s�a+

t � ∈ �nt�a�+ �m�s�a� ∈ �

≤
⎧⎨
⎩
�m
4
�2/�m − ��m�s�a+

t �− �m�s�a���2� if �m�s�a
+
t �− �m�s�a�≤ 2/�m�

0� otherwise.
(39)

Observe next that∣∣�R�0�m−1
����m�−���+

m ��
∣∣ = ��0�m−1�

∣∣��r�0�m−1
����m�� − ��r�0�m−1

����+
m ��

∣∣
≤ ��0�m−1�max

s∈S
∑
a�=a+

t

��m�s�a
+
t �− �m�s�a��Pr�at = a � st = s�

≤ ��0�m−1� ��A� − 1��2/�m�
�m
4
�2/�m�

2

≤ 2 �A� ��0�m−1�
�2m

�

where the second-to-last inequality follows by Equation (39).
Proof of Corollary 5.1 (Outline). The desired result follows an approach similar to Proposition 4.1 and

Theorem 4.1. First, let �m denote the policy induced by the �����-approximation algorithm for the mth phase.
Let P�m and ���m� denote the transition probability matrix and the stationary distribution associated with �m;
and likewise for �m. Observe that, by Definition 5.1,∥∥P�m − P�m

∥∥
� ≤max

s∈S

�m�·� s�−�m�·� s�
1 ≤ �+ ��

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
756 Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS

By Schweitzer [25, §6], the stationary distributions ���m� and ���m� satisfy

���m�−���m�
1 ≤ ∥∥Z�m∥∥�
∥∥P�m − P�m

∥∥
� ≤ sup

�∈�

Z�
� ��+ ���

Hence, we have

T−1∑
t=0

Ɛ�rt�st�at�	 ≥
M−1∑
m=0

��R�m����m�� − 2e��

≥
M−1∑
m=0

��R�m����m�� − 2e��− sup
�∈�

Z�
� ��+ ��T �

where the first inequality is justified by the same argument as Step 0 of the proof of Proposition 4.1. This bound
is similar to Equation (10) of the proof of Proposition 4.1 with one additional term. The claimed result follows
by arguments similar to the proofs of Proposition 4.1 and Theorem 4.1. �

Proof of Corollary 6.1 (Outline). By introducing exploration phases as described above, we ensure that
zt is an unbiased estimator for rt . Indeed, observe that for every �s� a� ∈ S×A and t large enough,

Pr��st�at�= �s� a� � s0� = Pr�st = s � s0�Pr�at = a � st = s�
≥ Pr�st = s � s0��m/ �A� �

Next, observe that the ergodicity assumption (Assumption 2.1) guarantees that there exists an � > 0 such that
for every s ∈ S and large enough t,

Pr�st = s � s0� > ��
Moreover, we have �m > 0 by assumption. Hence, if the opponent is oblivious and for large enough t, we obtain

Ɛ�zt�s� a�	= rt�s� a� for all �s� a� ∈ S×A�
and in turn,

Ɛ

[
1
t

t−1∑
j=0

zj �s� a�
]

= �rt�s� a� for all �s� a� ∈ S×A�

Therefore, we conclude by Lemma 4.2 that the policy induced by the Exploratory FPL algorithm is still optimal
against �r�0�m−1

+ nt . All the remaining steps of the proof of Proposition 4.1 hold unchanged if we exclude
the exploration phases. Because these phases incur an overhead of the order of O�M� by Equation (18), we
obtain a bound analogous to Equation (8). Finally, the claim follows by the same argument as the proof of
Theorem 4.1. �

Proof of Proposition 7.1. For ease of notation, we write M = �T / ���� to denote the number of phases
of the Lazy Tracking Forecaster algorithm. Observe that Lazy Tracking Forecaster is the same as the tracking
forecaster of Herbster and Warmuth [17], with the exception that the fundamental time step is an entire phase
in our new setting. Our claim follows from Cesa-Bianchi and Lugosi [9, Theorem 5.2 and Corollary 5.1] by
adjusting the time scale.
The crucial observation is that at Step 2 of Algorithm 5, the weights are not updated according to the

aggregate reward obtained by following policy over each phase �m, but according to the expected reward
in the stationary state-action distribution of each policy in each phase �m. Consequently, Cesa-Bianchi and
Lugosi [9, Theorem 5.2] gives the bound

�T �K0�−
M−1∑
m=0

�R�m���qm�� ≤ �S� log��A��
�

�K0 + 1�+ 1
�
�M − 1�H

(
K0

M − 1

)
+ �M ���2

2
�

The required result follows by observing that we can approximate∑
j∈�m

Ɛ�rj�sj �aj � � s−	�

where the actions aj follow policy qm and s− is the state of the MDP at the beginning of phase �m, by

�R�m���qm���
∑
j∈�m

�rj ���qm���

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

Yu, Mannor, and Shimkin: MDPs with Arbitrary Reward Processes
Mathematics of Operations Research 34(3), pp. 737–757, © 2009 INFORMS 757

As shown in Step 0 of the proof of Proposition 4.1, we have∣∣∣∣∣
∑
j∈�m

Ɛ�rj�sj �aj � � s−	− �R�m���qm��
∣∣∣∣∣≤ 2e�

for m= 0� � � � �M−1, which accounts for the term 2e�M . Finally, the claim follows by substituting ��� = �T 1/3�
and �= T −2/3, and observing that for 0≤ p < 1/2, we have

H�p� < 2p log�1/p��

so that for large enough T ,

H

(
K0

�T / ���� − 1

)
< 2

K0

�T / ���� − 1
log

(�T / ���� − 1
K0

)
� �

Acknowledgments. This research was partially funded by the NSERC Postgraduate Graduate Scholarship,
the McGill Engineering Doctoral Award, ISF Undergrant 890015, and the Horev Fellowship.

References

[1] Auer, P., N. Cesa-Bianchi, Y. Freund, R. E. Schapire. 2002. The nonstochastic multiarmed bandit problem. SIAM J. Comput. 32(1)
48–77.

[2] Aumann, R. J. 1964. Markets with a continuum of traders. Econometrica 32 39–50.
[3] Bertsekas, D. P. 2001. Dynamic Programming and Optimal Control, 2nd ed, Vol. 2. Athena Scientific, Nashua, NH.
[4] Bertsekas, D. P., J. N. Tsitsiklis. 1996. Neuro-Dynamic Programming. Athena Scientific, Nashua, NH.
[5] Blackwell, D. 1956. An analog of the minimax theorem for vector payoffs. Pacific J. Math. 6(1) 1–8.
[6] Bobkov, S. G., P. Tetali. 2006. Modified logarithmic Sobolev inequalities in discrete settings. J. Theoret. Probab. 19(2) 289–336.
[7] Borkar, V. S., S. P. Meyn. 2000. The O.D.E. method for convergence of stochastic approximation and reinforcement learning. SIAM

J. Control Optim. 38(2) 447–469.
[8] Brafman, R. I., M. Tennenholtz. 2003. R-max—A general polynomial time algorithm for near-optimal reinforcement learning.

J. Machine Learning Res. 3 213–231.
[9] Cesa-Bianchi, N., G. Lugosi. 2006. Prediction, Learning, and Games. Cambridge University Press, New York.

[10] Crites, R. H., A. G. Barto. 1995. An actor/critic algorithm that is equivalent to Q-learning. Advances in Neural Information Processing
Systems 7. MIT Press, Cambridge, 401–408.

[11] Even-Dar, E., S. Kakade, Y. Mansour. 2004. Experts in a Markov decision process. Advances in Neural Information Processing
Systems 17. MIT Press, Cambridge, 401–408.

[12] Filar, J., K. Vrieze. 1997. Competitive Markov Decision Processes. Springer-Verlag, New York.
[13] Freund, Y., R. E. Schapire. 1999. Adaptive game playing using multiplicative weights. Games Econom. Behav. 29(12) 79–103.
[14] Fudenberg, D., D. M. Kreps. 1993. Learning mixed equilibria. Games Econom. Behav. 5(3) 320–367.
[15] Fudenberg, D., D. K. Levine. 1998. The Theory of Learning in Games. MIT Press, Cambridge.
[16] Hannan, J. 1957. Approximation to Bayes risk in repeated play. Contributions to the Theory of Games, Vol. 3. Princeton University

Press, Princeton, NJ, 97–139.
[17] Herbster, M., M. K. Warmuth. 1998. Tracking the best expert. Machine Learning 32(2) 151–178.
[18] Kalai, A., S. Vempala. 2005. Efficient algorithms for online decision problems. J. Comput. System Sci. 71(3) 291–307.
[19] Littlestone, N., M. K. Warmuth. 1994. The weighted majority algorithm. Inform. Comput. 108(2) 212–261.
[20] Mannor, S., N. Shimkin. 2003. The empirical Bayes envelope and regret minimization in competitive Markov decision processes.

Math. Oper. Res. 28(2) 327–345.
[21] Mannor, S., N. Shimkin. 2008. Regret minimization in repeated matrix games with variable stage duration. Games Econom. Behav.

63(1) 227–258.
[22] Merhav, N., E. Ordentlich, G. Seroussi, M. J. Weinberger. 2002. On sequential strategies for loss functions with memory. IEEE Trans.

Inform. Theory 48(7) 1947–1958.
[23] Renegar, J. 1994. Some perturbation theory for linear programming. Math. Programming 65(1) 73–91.
[24] Robinson, S. M. 1973. Bounds for error in the solution set of a perturbed linear program. Linear Algebra Its Appl. 6 69–81.
[25] Schweitzer, P. J. 1968. Perturbation theory and finite Markov chains. J. Appl. Probab. 5 410–413.
[26] Shapley, L. 1953. Stochastic games. Proc. National Acad. Sci. 39(10) 1095–1100.
[27] Watkins, C., P. Dayan. 1992. Q-learning. Machine Learning 8 279–292.
[28] Zinkevich, M. 2003. Online convex programming and generalized infinitesimal gradient ascent. Proc. Twentieth Internat. Conf. Machine

Learning. AAAI Press, Cambridge, MA, http://www.hpl.hp.com/conferences/icml2003/titlesAndAuthors.html.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.

http://www.hpl.hp.com/conferences/icml2003/titlesAndAuthors.html

	Introduction.
	Problem definition.
	Assumptions.
	Regret.

	Counterexamples.
	Follow the perturbed leader.
	Algorithm description.
	Results.

	Approximate algorithms.
	Observing rewards only on trajectory.
	Regret with respect to dynamic policies.
	Conclusions.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

