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We address the modeling and analysis of abandonments from a queue that is invisible
to its occupants. Such queues arise in remote service systems, notably the Internet and

telephone call centers; hence, we refer to them as tele-queues. A basic premise of this paper is
that customers adapt their patience (modeled by an abandonment-time distribution) to their
service expectations, in particular to their anticipated waiting time. We present empirical
support for that hypothesis, and propose anM/M/m-based model that incorporates adaptive
customer behavior. In our model, customer patience depends on the mean waiting time in
the queue. We characterize the resulting system equilibrium (namely, the operating point in
steady state), and establish its existence and uniqueness when changes in customer patience
are bounded by the corresponding changes in their anticipated waiting time. The feasibility
of multiple system equilibria is illustrated when this condition is violated. Finally, a dynamic
learning model is proposed where customer expectations regarding their waiting time are
formed through accumulated experience. We demonstrate, via simulation, convergence to
the theoretically anticipated equilibrium, while addressing certain issues related to censored-
sampling that arise because of abandonments.
(Exponential Queues; Abandonment; Invisible Queues; Tele-Queues; Adaptive Customer Behavior;
Tele-Services; Call Centers)

1. Introduction
Customer characteristics in service systems are largely
dependent upon the system performance characteris-
tics as perceived by its users. For example, the arrival
rate is likely to increase as the typical waiting time
decreases. This dependence interacts with the queue-
ing process to determine the system operating point,
and may have a considerable effect on performance.
Our focus in this paper is on the modeling of cus-

tomer abandonments and their interplay with the
system performance. We consider a queueing sys-
tem with impatient customers, who may abandon
the queue if not admitted to service soon enough.

We assume that the queue is invisible, in the sense
that waiting customers do not obtain any information
regarding the queue size or their remaining waiting
time before admitted to service. Queues of this type
are especially relevant to remote service systems, such
as telephone call centers or Internet-based services;
hence, we refer to them as tele-queue. For a discus-
sion of the central role that customer patience plays
in tele-queues see Garnett et al. (1999).
The foundation for our model is the hypothesis that

customers’ patience significantly depends on their
expectations regarding the waiting time in the sys-
tem. These expectations, in turn, are formed through
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accumulated experience and affected by subjective
factors—time perception, the importance of the ser-
vice being sought, and so on. As an example, cus-
tomers who expect to wait a few seconds will behave
differently, in terms of their abandonment time, in
case they expect to wait several minutes or even
hours. These expectations, in turn, conceivably dif-
fer if past experience consists of short waits, or long
waits, or short and long waits intertwined. Patience
is obviously influenced by numerous factors related
to customer profiles and environment characteristics
(see, for example, Maister 1985, Zakay and Hornik
1996, Levine 1997). However, for the purpose of per-
formance analysis, most of these factors can be taken
as a priori given and fixed. The waiting time distri-
bution is singled out in this respect since it is the out-
come of the queueing process (hence, in fact, itself is
influenced by the patience profile).

Empirical Support—A Preview. Inconsistent with
the above adaptivity hypothesis, the prevalent
assumption in traditional queueing theory is that
patience (the time-to-abandon or its probability
distribution) is “assigned” to individual customers
independently of any system performance character-
istic (see Garnett et al. 1999 for a recent literature
review). In particular, patience is unaltered by pos-
sible changes in congestion. Such models, however,

Figure 1 Adaptive Behavior of IN (Experienced) Customers—Abandonment Probability vs. Average Wait (of Customers Who Waited a Positive Time)

Note. Each point corresponds to a 15-minute period of the weekdays, starting at 7:00 am, ending at midnight, and averaged over the whole year of 1999.

cannot accommodate the scatterplot in Figure 1 that
exhibits remarkable patience-adaptivity.
The data is from a bank call center as reported

in Mandelbaum et al. (2000); see also §4. We are
scatterplotting abandonment fraction against average
delay, for delayed customers (positive waiting time)
who seek technical Internet support. It is seen that
average delay during 8:30–8:45 a.m., 17:45–18:00 p.m.,
18:30–18:45 p.m., and 23:30–23:45 p.m. is about 100,
140, 180, and 240 seconds, respectively. Nonetheless,
the fraction of abandoning customers (among those
delayed) is remarkably stable at 38%, for all periods.
This stands in striking contrast to traditional queue-
ing models, where patience is assumed unrelated to
system performance: Such models would predict a
strict increase of the abandonment fraction with the
waiting time, as in Figure 3. The behavior indicated
in Figure 1 clearly suggests that customers do adapt
their patience to system performance.

A Descriptive Approach. Several recent papers
have proposed an optimization-based model for cus-
tomer patience, where abandonment decisions are
based on a personal cost function that balances service
utility against the cost associated with the expected
remaining time to service. In particular, Hassin and
Haviv (1995) and Haviv and Ritov (2001) analyze
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systems with a single customer type, and Mandel-
baum and Shimkin (2000) consider a heterogeneous
customer population, in terms of utility functions and
the resulting abandonment profiles. In these models,
the optimal abandonment decision depends on the
entire waiting-time distribution offered by the system.
Unlike this prescriptive approach, we consider here

a descriptive model, where the dependence of patience
on system performance is explicitly specified within
the model primitives, in much the same way that a
demand function is assumed to be given in economic
models. Such an explicit model can be more directly
related to experimental data, and is not restricted by
the assumption and consequences of strictly rational
behavior of the customers.
Our model is highly simplified by assuming that

customers’ patience depends on the waiting time in
the queue only through its average, namely the mean
wait; thus, the patience depends on a single perfor-
mance parameter rather than an entire distribution.
The motivation for this simplified model is threefold.
First, the mean arguably presents a natural parame-
ter that summarizes customers’ expectations regard-
ing their waiting time; indeed, a typical customer
can hardly be expected to form a clear estimate of
the entire waiting time distribution based on lim-
ited experience. Second, the dependence on a single
parameter makes it much easier to relate the model
to empirical data; see §4. And third, it offers a con-
siderable simplification in performance analysis (com-
pared, say, with Mandelbaum and Shimkin 2000).

Outline of the Paper. Section 2 presents the basic
queueing model, which incorporates the dependence
of the patience profile on the average waiting time,
and defines the system equilibrium point.1 We dis-
tinguish between the average waiting time assumed
by the customers (denoted x), which determines the
patience profile, and between the actual quantity,
namely the offered expected wait that results from this
patience profile. Simply put, equilibrium is achieved
when the two coincide.

1 The term equilibrium in this paper refers to an operating point of
the system, as used in standard market and supply-demand mod-
els, and should not be confused with the Nash equilibrium or other
game-theoretic concepts.

In §3, we analyze the equilibrium and its properties,
focusing first on existence and uniqueness. Assum-
ing that customer patience decreases as the (assumed)
average wait x increases, existence and uniqueness
of equilibrium follow from basic monotonicity con-
siderations, as shown in §3.1. The more interesting
case is when patience is allowed to increase with x
(§3.2). Here customers adjust their behavior to com-
ply with their expectations. When patience can grow
not more than proportionally with x, existence and
uniqueness of the equilibrium can still be established
and the equilibrium point may be calculated. When
this growth condition is violated, multiple equilibria
are feasible, as we explicitly demonstrate there.
In §3.3, we apply the proposed model to address

the following question: What is the required depen-
dence of customer patience, so that the abandonment
fraction is kept constant despite varying congestion
conditions. This question is motivated by the relative
insensitivity of the abandonment fraction that was
revealed in Figure 1.
Section 4 presents additional empirical support for

the dependence of customer patience on the antici-
pated waiting time. Section 5 provides a brief survey
of the literature on patience modeling.
Our basic equilibrium model assumes that the sys-

tem is in steady state, in the sense that the system
characteristics are stationary and the customers are
well acquainted with those characteristics that are rel-
evant to their behavior. In §6, we complement the
static equilibrium viewpoint with a dynamic learning
model, which incorporates the additional ingredient
of learning by the customers, and traces the sys-
tem evolution towards a possible equilibrium. Indeed,
the average waiting time parameter x is not initially
known, but may be estimated by the customers based
on their accumulated experience. We briefly address
the issue of censored sampling that arises here: In those
customer’s visits that end up with abandonment, the
offered wait itself is not observed but rather a lower
bound on it, namely the abandonment time. As con-
sistent estimation of the mean is quite complicated
in this case, we also consider a simpler nonconsis-
tent estimator and its effect on the equilibrium point.
The dynamics of the queueing system which incor-
porates the proposed learning process is examined
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via simulation, and its convergence to the anticipated
equilibrium is demonstrated. We conclude in §7 with
a brief summary and comments concerning future
work.

2. Model Formulation
Consider an M/M/m queue with Poisson arrivals at
rate �, and an exponential service time with mean �−1

at each of the m servers. The service discipline is first-
come-first-served. Waiting customers may abandon
the queue at any time before admitted to service.
Potential abandonment times of individual customers
are assumed independent and identically distributed,
according to a probability distribution G�·	 over the
nonnegative real line. We shall refer to G as the
patience distribution function. Let �G = 1−G denote
the survival function; thus �G�t	 is the probability that
a waiting customer will not abandon within t time
units. We allow G to depend on a parameter x to be
specified below, so that G�t	 = G�x� t	. When conve-
nient, we shall suppress the dependence on x. While
we assume here for simplicity that the arrival rate �
is constant, our model and analysis easily extend to
the case where � depends on the same parameter x;
see the remark at the end of §3.
Let V denote the offered waiting time, or offered

wait, which is the time that a (nonabandoning) cus-
tomer would have to wait until admitted to service.
We assume throughout that the system is in steady
state, so that the distribution of V is the same for
all customers. Under the stability condition m� >
��G��	, the density F ′

V of V is given by (Baccelli and
Hebuterne 1981)

F ′
V �t	= �Pm−1 exp�J �t		� t > 0� (1)

with Pm−1 specified below, and

J �t	=−
∫ t
0
�m�−��G�s		 ds� (2)

Let Pj denote the stationary probability for exactly
j occupied servers; thus, V has an atom at 0, with
P�V = 0	=∑m−1

j=0 Pj . The normalization condition is

m−1∑
j=0
Pj+

∫ �

0
F ′
V �t	 dt = 1� Pj =

(
�

�

)j 1
j!P0�

It follows that

F ′
V �t	=

exp�J �t		
Km
�
+ ∫�

0 exp�J �s		 ds
� (3)

where

Km =
m−1∑
j=0

�m−1	!
j!

(
�

�

)j−m+1
� (4)

We shall also refer to the distribution F0 of �V 	V > 0	,
namely the distribution of the waiting time V given
that the customer is not immediately admitted to ser-
vice; the corresponding density is obviously given by
the expression (3) with Km set to zero.
Consider next the dependence of the patience func-

tion G on system performance. As discussed in the
introduction, we focus here on a simplified model
which assumes that this dependence is expressed
through a single parameter x, corresponding to the
average offered wait in the system. Specifically, we
shall consider the following two alternatives:
1. x = E�V 	, the expected wait.
2. x = E�V 	V > 0	, the expected wait given that the

wait is nonzero (all servers busy upon arrival).
These two options correspond to slightly different
evaluations of the waiting time, and lead to some
differences in the analysis. The expected waiting
time may be the most natural single parameter that
comes to mind as a summary of waiting time perfor-
mance. Still, the probability of finding a vacant server
upon arrival becomes irrelevant to customers who are
required to wait, and therefore the second option may
turn out to be more appropriate.
We remark that for modeling purposes, it may be

useful to specify the dependence of G on x in two
steps. First, let G� be some parameterized family of
probability distributions. For example, G� may be the
set of exponential distributions, with � the expected
value. Or it may the set of degenerate distributions,
where now � is the deterministic time of abandon-
ment. Further, let the parameter � be determined by
the value of the performance parameter x, namely
� = ��x	. The actual patience distribution G is thus
selected out of the family G� and it depends on x
according to G = G��x	. This parameterization will be
employed in some of our examples.

Management Science/Vol. 48, No. 4, April 2002 569
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We have thus parameterized the patience distri-
bution G in terms of the performance parameter x,
which may be one of the two options itemized above.
This completes the model description. We can now
consider the ensuing operating point of the system
in equilibrium. Note that the operating point is fully
specified once the value of the parameter x has been
determined.
We proceed to characterize the equilibrium condi-

tions explicitly. Of the two options specified above,
first consider the case of x = E�V 	. For each x > 0,
define

v1�x	= Ex�V 	�
where Ex is the expectation induced by the distribu-
tion (3), with G = G�x� ·	. Thus, v1�x	 is the expected
waiting time that would be induced by the patience
distribution associated with x. The equilibrium con-
dition requires that the customers’ evaluation of the
expected waiting time (x) coincide with the actual
value, namely

x = v1�x	� (5)

This gives a scalar equation in the single variable x.
The questions of existence and uniqueness of an equi-
librium point are thus equivalent to the existence and
uniqueness of a fixed point in Equation (5).
Similarly, when the performance parameter x is

taken as the conditional waiting time E�V 	V > 0	,
define

v2�x	= Ex�V 	V > 0	�

The equilibrium condition is then

x = v2�x	� (6)

We assume throughout that the stability condition
�G�x��	 < m� holds for some x. Both expected values
vi�x	 are finite at these values of x.

3. Equilibrium Analysis
We now turn to examine the system equilibrium and
analyze its properties—focusing first on the questions
of existence and uniqueness of the equilibrium point.
We shall then employ the model to address some per-
formance analysis issues, related to the feasibility of
maintaining a constant abandonment fraction despite
different load conditions, as depicted in Figure 1.

The equilibrium analysis proceeds in two steps.
Recall that the customer patience distribution depends
on a performance parameter x, which represents the
expected wait in the queue. In §3.1, we address the
relatively simple case where patience is decreasing in
the performance parameter x (Assumption 1). This
dependence may be interpreted as intolerance of the
customer population to service degradation: When
the waiting time becomes longer, customers find it
less appealing to keep waiting and react by aban-
doning earlier. This behavior can also be explained
within a “rational” model for abandonments as pre-
sented in Mandelbaum and Shimkin (2000), since the
expected return per unit wait becomes smaller as
time progresses. Still, in practice one often observes
an opposite tendency of customers who adapt their
patience to comply with the expected waiting time in
the system. This was indeed observed in the empiri-
cal results of §4. In §3.2, we extend our analysis to the
“increasing patience” case.

3.1. Decreasing Patience
We assume first that the customer patience is decreas-
ing in the performance parameter x, in the sense of
stochastic ordering. Recall the following definitions
(Shaked and Shanthikumar 1994). Given two real-
valued random variables Y1 and Y2 with distributions
F1 and F2, we say that Y1 stochastically dominates Y2,
denoted Y1 ≥st Y2, if �F1�t	 ≥ �F2�t	 for all t (here �Fi =
1− Fi). Y1 strictly dominates Y2, denoted Y1 >st Y2, if,
in addition, �F1 �= �F2. We shall also adopt the corre-
sponding notations �F1 ≥st �F2 and �F1 >st �F2 to denote
these relations. Note that E�Y1	 ≥ E�Y2	 is implied in
the former case, and E�Y1	 > E�Y2	 in the latter. A set
of random variables �T �x	� in the real parameter x
is said to be decreasing in stochastic order if x1 < x2
implies T�x1	 ≥st T �x2	, and is strictly decreasing if the
latter dominance relation is strict.

Assumption 1. The set of patience distribution func-
tions �G�x� ·	� is decreasing in x in stochastic order. That
is, x1 > x2 implies that �G�x1� t	≤ �G�x2� t	, for all t ≥ 0.

Proposition 3.1. Let Assumption 1 hold.
(i) Let G1 and G2 be two patience distributions, with

F1 and F2 the corresponding distributions of the offered
waiting time V , specified in �3	. Then �G1 ≤st �G2 implies
�F1 ≤st �F2.

570 Management Science/Vol. 48, No. 4, April 2002
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(ii) A similar implication holds for F0, the distribution
function corresponding to the conditional waiting times
�V 	V > 0	 as specified following �3	.

Proof. For each Gi, i = 1�2, denote:

Ji�t	=−
∫ t
0
�m�−��Gi�s		 ds� (7)

and let D�t	= �G2�t	−�G1�t	. By our assumption, D≥ 0.
Thus,

J2�t	= J1�t	+�
∫ t
0
D�s	ds ≥ J1�t	� (8)

The hazard rate functions Hi corresponding to these
waiting time distributions are given by

Hi�t	=
F ′
i �t	
�Fi�t	

= exp�Ji�t		∫�
t
exp�Ji�v		 dv

� t ≥ 0� (9)

To establish �F1 ≤st �F2, we shall in fact prove the
stronger property that �F1�t	/�F2�t	 is (weakly) decreas-
ing in t. The latter is equivalent to dominance in
the hazard rate order; see Shaked and Shanthikumar
(1994, Chapter 1). To establish that �F1/�F2 is a decreas-
ing function, it suffices to show that H1�t	≥H2�t	 for
all t ≥ 0, and that at the discontinuity point at t =
0, we have �F1�0	/�F2�0	 ≤ 1. By substituting (8) in the
expression for H1, we obtain:

H2�t	=
exp�J1�t		exp��

∫ t
0 D�s	ds	∫�

t

[
exp�J1�v		exp

(
�
∫ v
0 D�s	ds

)]
dv
� (10)

But by the assumed positivity of D, we have that
exp��

∫ v
0 D�s	ds	≥ exp��

∫ t
0 D�s	ds	 for all v≥ t, which

immediately implies

H2�t	≤
exp�J1�t		∫�

t
exp�J1�v		 dv

=H1�t	�

It remains only to show that �F1�0	/�F2�0	 ≤ 1, or
equivalently that F1�0	 ≥ F2�0	. This follows from
J1�t	≤ J2�t	 by noting from (3) that

Fi�0	=
Km
�

/[
Km
�

+
∫ �

0
exp�Ji�t		 dt

]
�

The proof of (ii) follows similarly to the first part of
the proof above, since V and �V 	V > 0	 have identi-
cal hazard rate functions for t ≥ 0, while �F0�0	= 1 by
definition. �

Uniqueness of the equilibrium follows easily from
the last result, as shown next. For existence, some
basic continuity and stability conditions are natu-
rally required. The parameterized family of distri-
butions G�x� ·	 is weakly continuous in x if g�x	 "=∫
#�t	dG�x� t	 is continuous in x for every bounded

continuous function #. Note that this allows the dis-
tributions G to contain point masses which depend
continuously on x.

Theorem 3.2. Let Assumption 1 hold. Assume further
that the patience distributions G�x� ·	 are weakly contin-
uous in x. Then for either one of the equilibrium equa-
tions (5) or (6), a solution exists and is unique.

Proof. Recall that X ≤st Y implies E�X	 ≤ E�Y 	.
From the last proposition, we therefore obtain that
both functions v1�x	 and v2�x	 are decreasing in x, and
uniqueness of the solution follows immediately. As
for existence, the assumed continuity condition is eas-
ily shown to imply the continuity of v1 and v2. Since
our model assumes that both functions are finite for
some x, existence follows. �

3.2. Increasing Patience
We shall now relax the decreasing-patience assump-
tion, and replace it by a bound on the growth rate
of the patience distribution (Assumption 2). The main
result here is Theorem 3.3, which extends the results
of the previous section while relying on them for the
proof.
Assumption 2 allows an increase in the customer’s

patience with the performance parameter x, but
essentially requires that the rate of increase of the
former does not exceed that of the latter. That is,
when x (the anticipated average wait) increases by
%, the patience (willingness to wait) of the customer
population will increase by % at the most. Some
growth condition of that nature is essential to guaran-
tee uniqueness, as demonstrated by the example that
closes this subsection.

Assumption 2. Let T�x	 be a random variable with
distribution G�x� ·	. Then the family of random variables
�T �x	−x� is decreasing in x, in stochastic order.

An equivalent statement of the last condition is
that T�x+ y	 ≤st T �x	+ y for every y ≥ 0. In terms
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of the distribution functions, it may be expressed as
�G�x+y� ·	≤st �G�x� ·+y	. It implies, in particular, that
E�T �x		−x is decreasing in x.
We establish below that under Assumption 2, the

functions vi�x	− x (i = 1�2) are strictly decreasing in
x. This immediately implies uniqueness of the corre-
sponding equilibria defined in (5) or in (6). To estab-
lish existence, it is further required to show that
vi�x	− x ≤ 0 for x large enough (note that vi�0	 > 0).
However, Assumption 2 alone may not suffice here
(as may be verified via a simple example, e.g., with a
deterministic T�x	= x). The existence claim will thus
require an additional condition, which is either a sys-
tem stability requirement or a slight strengthening of
Assumption 2, as specified below.

Theorem 3.3. Let Assumption 2 hold. Consider the
equilibrium defined in (5) or in (6).
(i) Uniqueness: The equilibrium point, if one exists, is

unique.
(ii) Existence: Assume, in addition, that the patience

distribution functions G�x� ·	 are weakly continuous in x,
and that either one of the following conditions hold:

a. � <m�, or
b. 'T �x	− �1−(	x) is decreasing in x in stochastic

order, for some ( > 0.
Then the equilibrium exists.

The proof proceeds through some lemmas. We start
by establishing the uniqueness of the equilibrium
defined through v2 in (6), which turns out to be sim-
pler, and follows directly from the next proposition.
In the following, W stands for the random variable
�V 	V > 0	 with distribution F0.

Lemma 3.4. Let Assumption 2 hold. Then �W�x	− x�
is strictly decreasing in stochastic order. In particular, the
function 'v2�x	−x) is strictly decreasing in x.

Proof. For any x and y > 0, we need to show that
W�x+y	≤st W �x	+y. Our basic Assumption 2 is that
T�x+ y	 ≤st T �x	+ y. Since W is increasing in T , as
established in Proposition 3.1(ii), it is clearly sufficient
to prove the lemma under the assumption that T�x+
y	= T�x	+y.
Assume, then, that the latter holds. In terms of

the distribution functions, our assumption is that
�G�x+ y� t	 = �G�x� t− y	, and we wish to show that

�F0�x+ y� t	 ≤ �F0�x� t− y	 for all t. As in the proof of
Proposition 3, it is convenient to work here with the
corresponding hazard rate functions. Since the distri-
butions F0 are absolutely continuous, namely the den-
sity F ′

0 exists at every point, it suffices to show that
for all t,

F ′
0�x+y� t	
�F0�x+y� t	

≥ F
′
0�x� t−y	
�F0�x� t−y	

� (11)

Now, from (1),

F ′
0�x� t−y	= C�x	exp

(∫ t−y
0

K�x� s	 ds

)
� t ≥ y�

where K�x� t	 "= ��G�x� t	−m�, and C�x	 is a normal-
ization constant. Note that F ′

0�x� t− y	 = 0 for t < y.
On the other hand,

F ′
0�x+y� t	= C�x+y	exp

(∫ t
0
K�x+y� s	 ds

)
� t ≥ 0�

But our assumption on G implies that K�x+ y� s	 =
K�x� s−y	. We thus obtain

F ′
0�x+y� t	 = C�x+y	exp

(∫ t−y
−y

K�x� s	 ds

)

= C�x+y	exp
(∫ 0

−y
K�x� s	 ds

)

× exp
(∫ t−y

0
K�x� s	 ds

)
�

Comparing the expressions above, it is apparent that
(11) holds with equality for t ≥ y. For t < y the right-
hand side of (11) is null, so that inequality holds triv-
ially. Moreover, since the left-hand side is nonzero for
0< t < y, then strict inequality holds on that interval.
This implies that �F0�x+y� t	 ≤ �F0�x� t−y	, with strict
inequality holding on some interval; hence �F0�x +
y� ·	 <st �F0�x� ·	. This establishes the main claim of this
lemma. Since v2�x	 = E�W�x		, the second claim fol-
lows immediately. �

We proceed to establish the uniqueness of the equi-
librium defined in (5), with v1�x	 = Ex�V 	. To relate
this case to the previous one, observe that v1�x	 =
p̄0�x	v2�x	, where p̄0�x	 = P�V > 0� is the probability
that an arriving customer does not find an available
server. It was shown above that v2�x+y	 ≤ v2�x	+y.
However, as G�x� ·	 increases so does p̄0�x	, and we
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ZOHAR, MANDELBAUM, AND SHIMKIN
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cannot infer from the above equality a similar rela-
tion for v1�x	. On the technical side, the distribution
FV �x� ·	 of V obviously contains a jump at t = 0 (with
magnitude p0�x	), and this prevents the application
of the hazard-rate comparison argument which was
used in Lemma 3.4. We therefore resort in the analysis
below to direct calculation of v1�x	 and its derivative.

Lemma 3.5. Let Assumption 2 hold. Then 'v1�x	− x)
is strictly decreasing in x.

Proof. It is required to establish the assertion
under Assumption 2, namely �G�x+y� t	≤ �G�x� t−y	
for y > 0. By the monotonicity result in Proposi-
tion 3.1, it is sufficient to consider the extreme case
where �G�x+ y� t	 = �G�x� t− y	, which we henceforth
enforce.
We introduce some further notations. From (3), we

have that v1�x	= A�x	
B�x	

, with

A�x	 =
∫ �

0
t exp'J �x� t	) dt�

B�x	 = km+
∫ �

0
exp'J �x� t	) dt

J �x� t	 =
∫ t
0
K�x� s	 ds�

K�x� s	 = ��G�x� s	−m��

and km = Km/�. Note that our assumption concerning
G implies that K�x+y� t	= K�x� t−y	. We proceed to
evaluate v1�x+y	 for y > 0. First,

J �x+y� t	 =
∫ t
0
K�x� s−y	ds

=
∫ 0

−y
K�x� s	 ds+

∫ t−y
0

K�x� s	 ds

= by+ J �x� t−y	� t > y�

since K�x� s	= b for s < 0, with b = �−m�. Similarly,
J �x+y� t	= bt for 0≤ t ≤ y. Thus,

A�x+y	 =
∫ �

0
t exp'J �x+y� t	) dt

=
∫ y
0
tebt dt+ eby

∫ �

0
�t+y	exp'J �x� t	) dt

= g�y	+ eby'A�x	+y�B�x	−km	)�

where g�y	 stands for the first integral. Note that
limy→0 g�y	/y = 0, which we denote by g�y	 = o�y	.
Similarly,

B�x+y	 = km+
∫ y
0
ebt dt+ eby

∫ �

0
exp'J �x� t	) dt

= km+yeby+o�y	+ eby'B�x	−km)
= eby'B�x	+ �1− bkm	y)+o�y	�

It follows that

v1�x+y	−v1�x	
= A�x+y	
B�x+y	 −

A�x	

B�x	

= A�x	+y'B�x	−km)+o�y	
B�x	+ �1− bkm	y+o�y	

− A�x	
B�x	

= y

(
1− kmB�x	+ �1− bkm	A�x	

B�x	2

)
+o�y	�

which implies

d

dx
'v1�x	−x)=−kmB�x	+ �1− bkm	A�x	

B�x	2
�

Obviously, the proof may be concluded if we show
that the latter is negative. Since A�x	, B�x	, and km are
all positive, we need only verify that �1− bkm	 ≥ 0.
Using the definition of km and b, this inequality is
equivalent to �1−m�/�	Km ≤ 1. This obviously holds
when m�/�≥ 1. Otherwise, we have from (4),

Km ≤
m−1∑
j=0
mm−1−j

(
�

�

)j−m+1

=
m−1∑
j=0

(m�
�

)m−1−j
<

(
1− m�

�

)−1
� (12)

which again implies the required inequality. �

Proof of Theorem 3.3. Uniqueness of the equilib-
rium under either definition follows from the last two
lemmas. As for existence of the equilibrium defined
in (6), since v2�0	 > 0 and v2�x	 is continuous by the
Theorem’s continuity assumption, it suffices to show
that v2�x	−x < 0 for x large enough. If (a) holds then
the system is stable even without abandonments so
that v2�·	 is bounded. If (b) holds, then by rescaling in
x it follows from Proposition (3.4) that v2�x	− �1−(	x
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ZOHAR, MANDELBAUM, AND SHIMKIN
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is decreasing in x, hence v2�x	− x ≤ C− (x for some
finite constant C, which clearly implies the required
inequality. Existence of the equilibrium (5) follows
similarly since v1�x	≤ v2�x	. �

We conclude this section with a simple example
that shows that multiple equilibria are feasible when
Assumption 2 is violated.
Example 1. Multiple Equilibria. Consider anM/

M/1 queue with � = 1, � = 1, and a deterministic
abandonment time T�x	 which is the same for all cus-
tomers. Thus �G�x� t	 = 1 for t ≤ T�x	 and �G�x� t	 = 0
for t > T�x	. By (3) we have

v2�x	 "= Ex'V 	V > 0)=
∫�
0 t exp�J �t		∫�
0 exp�J �t		 dt

�

Substituting �G and m = � = � = 1 gives by explicit
calculation

v2�x	=
T 2/2+T +1

T +1
= 1

2

(
T +1+ 1

T +1

)
� (13)

where T = T�x	. It is now simple to verify that the
choice T�x	 = x− 1+√

x2−1 gives v2�x	 = x for all
x ≥ 1. According to the definition of the equilibrium
in (6), this implies that every value x ≥ 1 corresponds
to equilibrium point, hence there is a continuum of
equilibria. It may be seen that by slightly perturbing
the above expression for T�x	, we can also induce any
discrete number of equilibria.
Remark. So far we have assumed a constant arrival

rate �. It stands to reason that the arrival rate would
also depend on the system performance. In our
model, we may assume that � depends on the system
performance parameter x, and is naturally decreasing
as x increases. It may be verified that the offered wait-
ing time V (possibly conditioned on V > 0) is stochas-
tically decreasing in �, so that the previous results
hold in this case as well.

3.3. Maintaining a Constant Abandonment
Fraction

We shall briefly examine here certain aspects of
system performance using the adaptive patience
model and the related equilibrium framework. As
has been observed in §4, one possible effect of cus-
tomer adaptation is to keep the abandonment fraction

approximately constant, even under varying conges-
tion conditions. It may thus be of interest to find the
precise patience variation that would keep the aban-
donment fraction constant. A reasonable conjecture in
this regard, which we verify below, is that patience
should be approximately proportional to the offered
waiting time in order to keep the abandonment frac-
tion fixed. This indeed conforms well with the empiri-
cal relation that will be observed between these quan-
tities in Figure 4.
We shall consider as before an M/M/m+G queue,

with m� fixed (normalized to 1), and let the arrival
rate � serve as a parameter that controls the system
load. We require Pab = 4, with 4 a specified constant
(taken as 0.3 below), and Pab is the fraction of aban-
doning customers out of those that are not immedi-
ately admitted to service. The patience distribution G
depends on a system performance parameter x, taken
as x = v2 "= E�V 	V > 0	. We are thus considering the
system equilibrium defined in Equation (6). We spec-
ify G as a member of some parametric family �G��,
where the parameter � is also the mean of G�, and
depends on x according to some relation � = ��x	,
which is determined below. We shall consider two
parametric families:
1. Deterministic: G��t	= 1�t ≥ ��. Thus, T ≡ �.
2. Exponential: G��t	= 1−exp�−t/�	.
We now wish to compute the required dependence

of � on x so that the abandonment fraction is fixed at
Pab = 4, for all feasible �. This is done as follows. For
each fixed �, Pab is a function of �, and one may solve
(possibly numerically) for the value of � that gives
Pab =4. Given �, namely G�, we can now compute the
corresponding x = E�V 	V > 0	. This procedure yields
x and �, parameterized by �, and hence obtains the
required function ��x	.
For concreteness, let us outline the computation of

�. We have

Pab "= P�abandon	V > 0�= P�T ≤ V 	V > 0�

=
∫ �

v=0
F ′
0�v	G�v	dv�

where F ′
0 is the density of �V 	V > 0	 obtained from (1).

In the deterministic case, substituting G�t	 = 1�t ≥ ��
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and using (1) gives, after some calculations,

Pab =
∫ �

v=�
F ′
0�v	dv =

∫�
�
eJ�t	 dt∫�

0 e
J�t	 dt

=
1
m�
e−��m�−�	

1
m�−� �1− e−��m�−�		+ 1

m�
e−��m�−�	

�

Solving Pab = 4 for � gives

� = 1
m�−� log

[
1+ 1−4

4

(
1− �

m�

)]
�

In the exponential case a numeric computation is
required.
The results obtained for m� = 1 and 4 = 0�3 for

deterministic and exponential patience, respectively,
are shown in Figure 2. It depicts both � "= E�T 	, x "=
E�V 	V > 0	 and their ratio �/x as a function of �.
(Observe that � beyond m�/�1−4	 = 1�43 is not fea-
sible since it implies a service rate which is higher
than the server capacity.) It may be seen that the ratio
is approximately constant over the entire range of �,
which means that indeed � should be approximately

Figure 2 Patience Profiles That Keep Pab = 0�3, with Patience That Is Deterministic (Left) and Exponentially Distributed (Right)
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4
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6

arrival rate

Exponential Patience.

η  / x  
η=E(T) 
x=E(V|V>0)

proportional to x to obtain a fixed abandonment rate.
It is interesting to note that the required ratio of � to
x is significantly lower for the deterministic case.

4. Empirical Support
Traditional queueing theory has been naive in its
modeling of abandonment. To wit, from the classi-
cal Palm (1953), Riordan (1962), Daley (1965) to the
state-of-the-art Baccelli and Hebuterne (1981), Garnett
et al. (1999), Brandt and Brandt (2000), it has always
been assumed that patience is assigned to customers
only upon arrival to the system, independently and
identically distributed among customers, and unre-
lated to experiences of the past or anticipation of the
future. In practical applications of the theory, further-
more, the distribution of patience, if at all acknowl-
edged, has been assumed exponential; see, e.g., Gar-
nett et al. (1999). (The papers Palm 1953 and Roberts
1979 are notable, but perhaps outdated, exceptions.)
This is despite the fact that theory has actually accom-
modated general patience (Daley 1965, Baccelli and
Hebuterne 1981). A main reason for that, one deduces,
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is the lack of empirical evidence that either sup-
ports or refutes exponentiality. More fundamentally,
we believe that there is simply sufficient understand-
ing of human patience in general, and of the distri-
bution of the time to abandon while waiting in tele-
queues in particular.
A comprehensive empirical analysis of a telephone

call center has been recently documented in Man-
delbaum et al. (2000). This center provides bank-
ing teleservices of various types, for example balance
inquiries, information to prospective customers, tech-
nical Internet support, stock management, and more.
The event history of each individual call during 1999
was recorded, starting at the Voice Response Unit
(VRU) and culminating in either a service by an agent
or an abandonment from the tele-queue.
Part of the analysis in Mandelbaum et al. (2000)

focuses on customer patience while waiting, and
among its relevant findings we single out the follow-
ing three observations:
(1) Patience definitely need not be exponential, and

it varies significantly with service type, customer pri-
ority, and information provided during waiting; see
§6.2 in Mandelbaum et al. (2000). We note that the het-
erogeneity of patience among customers has already
been confirmed convincingly; for example, in Thierry
(1994), Friedman and Friedman (1997), Diekmann
et al. (1996) it is shown that patience, or value of time
as its proxy, is affected by factors such as goal (ser-
vice) motivation, mood, social status, and others.
(2) The waiting time distribution, over customers

who actually got served, is found to be remarkably
exponential (Mandelbaum et al. 2000, Figure 11). Note
that this result is theoretically exact for the M/M/m
queue in steady state only when there are no aban-
donments (cf. (1)).
(3) Experienced callers seem to adapt their patience

to system performance (congestion), as exhibited
in Figure 1. Patience of novice callers, on the other
hand, is less sensitive to system performance.
For the rest of the section, we substantiate this last

observation with further empirical evidence, first for
novice and then for experienced callers.
Calls by novice customers are denoted in Mandel-

baum et al. (2000) by type NW (for New). An exam-
ple of such calls is inquiries by potential customers

on marketing campaigns. In analogy to Figure 1, the
scatterplot in Figure 3 relates the fraction of NW aban-
donment to their actual wait (restricted to delayed
customers). As in Figure 1 and throughout the figures
below, each scatterpoint corresponds to 15-minute
periods of a day (Sunday to Thursday), starting at
7:00 a.m., ending at midnight, and averaged over the
whole year of 1999.
The plotted relation in Figure 3 seems linearly

increasing, with a positive intercept through the y-
axis. (The line in the figure, as well as those below, are
standard least-square fits.) We take this linearity as
supporting the independence between patience and
system performance. Indeed, for the G/G/m queue in
steady state, with abandonment times that are i.i.d.
exponential (6), the relation is exactly linear through
the origin:

P�abandon	wait> 0�= 6×E'wait	wait> 0)� (14)

For a verification, start with the fact that the
abandonment rate equals either � × P�abandon� or
E'queue-length)× 6. Equating these last two expres-
sions, using Little’s law E'queue-length) = �×E'wait),
and dividing by P�wait > 0�, yields the above lin-
earity. (For nonexponential patience, linearity holds
asymptotically, as demonstrated in Theorem 4.2 of
Brandt and Brandt 2000). To allow for a positive y-
intercept, assume further that, among the abandoning
customers, some abandon immediately upon arrival
if forced to wait—which is commonly referred to
as “balking.” We then have P�abandon� = P�balk�+
6× E'wait). Letting V denote the offered wait, one
deduces the relation

P�abandon	V > 0�

= P�balk	V > 0�+6×E'wait	V > 0)� (15)

(Note that here we condition on V > 0 rather than
wait > 0 since balking is inconsistent with the latter.)
One can now interpret Figure 2 as portraying cus-
tomers whose patience seems unaffected by varying
conditions of congestion. For example, an increase in
E'Wait	Wait> 0) from 80 to 120 seconds has the same
effect as an increase from 120 to 160 seconds: Both
accompany an increase of about 12.5% in abandon-
ment, out of those delayed.
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Figure 3 Novice (NW) Customers

Note. P�abandon	wait> 0� vs. E�wait	wait> 0�.

We now turn to experienced callers, denoted IN
(technical INternet support) in Mandelbaum et al.
(2000). As already demonstrated in the Introduction
(Figure 1), the patience of experienced callers may
exhibit remarkable adaptivity to system performance.
The difference between NW customers (Figure 3) and
IN customers (Figure 1) is clearly manifested (note the
different time scales is the two figures).
Finally, we examine the relation between patience

and perceived system performance. To this end,
Patience will be represented by E'time-to-abandon),
while system performance will be measured by
E'offered-wait	wait > 0). For experienced callers, we
expect that actual performance, represented by this
measure, coincides with anticipated performance, the
latter being forged through previous experience. In
other words, with enough service (sampling) experi-
ence, the distribution of the offered wait would be
unraveled to experienced customers; they summarize
this distribution via its mean, which in turn approxi-
mates their anticipation.
Figure 4 covers IN (experienced) customers. Each

point corresponds to a pair (patience, anticipation),
during a 15-minute period of a day. We see that y
(patience) increases with x (anticipation). The slope
of the least-square line fit is somewhat over unity.
We take this as a confirmation for the adaptivity of

patience to variations in anticipated system perfor-
mance.
Remark. On Censoring: The data in Figures 1 and 3

are directly observable. In Figure 4, on the other hand,
both coordinates have to be “uncensored,” since what
is actually observed for each customer i is the actual
wait Wi =min�Vi�Ti�, which equals Ti (the patience,
or time-to-abandon) only when i abandons, and Vi
(the offered wait) only if i survives to be served. We
use for this purpose the classical Kaplan-Meier esti-
mator (Kaplan and Meier 1958), for specific details see
Zohar et al. (2001).
Remark. An analogue of Figure 4 for NW (novice)

customers is not displayed. The reason is a lack of
statistical confidence which is associated with data
censoring. Some comments on the issue of robustness
in censored estimation may be found in Zohar et al.
(2001).

5. Modeling Patience
Abandonments of waiting customers are a common
and important factor in service systems, and most
people personally experience potential abandonment
situations on a daily basis. Still, there appears to be
little work concerning the modeling of the abandon-
ment decision process and its contributing factors. We
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Figure 4 IN Customers

Note. E[patience] vs. E[Offered wait 	wait > 0]; E	·
 stands for the mean of the Kaplan-Meier estimator for the corresponding distribution.

present here a brief discussion of some of the litera-
ture that seems relevant to abandonment modeling.
Abandonment decisions are predominantly a psy-

chological process, which is triggered by negative
feelings that build up while waiting. These are cou-
pled with various factors such as the service util-
ity and urgency, observed queue status, time percep-
tion, and exogenous circumstances. The exact trigger
for abandonment remains largely unexplored. In an
early work, Palm (1953) assumed that the abandon-
ment rate is proportional to the momentary dissat-
isfaction, or annoyance, of the customers. An alter-
native model could specify an abandonment when
annoyance (or another measure of negative feelings)
reaches a certain threshold. A central ingredient in
either case is the subjective disutility (or cost) of wait-
ing, that has been addressed in a number of papers.
A distinction can be made between the economical
(opportunity) component of that cost and the psy-
chological cost. The latter relies on both the sense
of waste of invested time, and the stress caused by
the remaining waiting time and associated uncer-
tainty. Major factors that affect the waiting experience
and its effect on service evaluation have been dis-
cussed in Maister (1985) and Larson (1987). A math-
ematical model for stress that has been introduced
in Osuna (1985), and further developed in several

papers, for example, Suck and Holling (1997), explic-
itly models the dependence of stress on the distri-
bution of the remaining waiting time. However, this
model does not directly address the effect of customer
service expectations. Empirical studies include Tay-
lor (1994), Leclerc et al. (1995), Hui and Tse (1996),
and Carmon and Kahneman (1998). The latter, in
particular, studies the evolution of the momentary
affect in a queue and its relation to (observed) queue
length.
The dependence of the subjective waiting cost on

service expectations, and particularly on the expected
waiting time, has been addressed qualitatively from
several perspectives. The “first law of service” in Lar-
son (1987) postulates that “satisfaction equals percep-
tion minus expectation.” A reasonable consequence
is that stress picks up when the expected wait
has been surpassed. Hueter and Swart (1998) point
out that customer perception of waiting time in a
fast-food establishment increases steeply beyond an
actual wait of several minutes (with a correspond-
ing increase in the likelihood of abandonment). The
effect of expectations and their disconfirmation on the
momentary affective response is discussed and indi-
cated empirically in Carmon and Kahneman (1998).
A normative, utility-maximizing model for aban-

donments has been considered in several recent
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papers (Hassin and Haviv 1995, Mandelbaum and
Shimkin 2000, Haviv and Ritov 2001). The abandon-
ment time of each customer is chosen to maximize a
personal utility function, which balances the service
utility and the expected cost of waiting. We note that
in the basic form of these models, the customer choice
relies on the entire distribution of the offered wait-
ing time, rather than just on its average (x) as was
assumed in the present paper. Still, the model may
be appropriately reduced by allowing the customers
to assume an exponentially distributed waiting time.
The reduced model is presented in Zohar et al. (2001),
and related there to the Assumptions of §3.
Further work is required to establish analytical

abandonment models that are based on the integra-
tion of a psychological framework with experimental
and empirical data.

6. Modeling the Learning Process
Our equilibrium model assumes that customers know
the average waiting time in the system. The model is
thus static with respect to the customer’s knowledge.
In practice, however, the customer assessment of the
waiting may be evolve through experience.
In this section, we consider a simple model for such

a learning process, where each customer estimates
the average waiting time based on personal experi-
ence, namely his own waiting times in previous vis-
its. He then goes own to modify his abandonment
decision according to the current estimate. Of prime
interest to us here is the long-term or steady-state
behavior of this learning process, which serves to val-
idate our equilibrium analysis and examine some of
its hypotheses. The transient behavior of the process
may also be of considerable importance, for example
to assess the time it takes to reach the steady oper-
ating point after the system is considerably modified,
but we shall not address this aspect here.
Learning processes of similar nature have been con-

sidered in Altman and Shimkin (1998), Ben-Shachar
et al. (2000) in the context of bulking decisions. In
our case, abandonments complicate the estimation
process, since the observations of the offered waiting
time are censored by abandonment; that is, a customer
who abandons the queue before being admitted to

service does not observe the required wait but rather
a lower bound on it. We are thus faced again, as in §4,
with the need to estimate the mean of a distribution
based on censored data.
We first employ a standard nonparametric estima-

tor for censored data, namely the Kaplan-Meier (KM)
estimator mentioned before, which provides a consis-
tent estimator of the mean. It will be demonstrated
that when each simulated customer uses KM, the sys-
tem does indeed converge to its unique equilibrium
point.
The KM estimator relies on complex computations,

and in practice the customers’ estimates are likely to
be formed by much simpler procedures. It is therefore
of interest to examine the consequences of using sim-
pler estimators. The estimator we consider here is a
(parametric) maximum likelihood estimator, which is
derived based on the assumption that the estimated
quantity (the virtual waiting time in our case) is expo-
nentially distributed (or equivalently that the hazard
rate of entering service is constant). This assumption,
while false in the presence of abandonments, is a rea-
sonable starting point from the customer’s viewpoint,
and leads to a simple estimator. It is given by (Miller
1981, p. 22):

Ê�T 	= 1
Ns

N∑
i=1
Wi� (16)

where �W1�W2� � � � �WN � are the collection of all the
perceived waiting times, both from abandoned trials
and successful ones, and Ns is the number successful
trials, namely those that ended up with a service and
were not censored by abandonment. We shall refer to
this estimator as the Censored MLE. If T is not expo-
nential, the estimator is biased enough to be incon-
sistent. Since the exponential assumption is false in
our system, the Censored MLE turns out to be biased,
and thus leads to a steady state of the learning sys-
tem that differs from the previously postulated equilib-
rium. Our simulations will demonstrate convergence
to this alternative steady state.
The online learning model that we propose is based

on the following scenario. Each customer initially pos-
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sesses some estimate x of the average waiting time,
and his abandonment time (or distribution) is given
by a function T�x	. The queueing system is that of §2,
with the specific customer to enter the queue at each
arrival is chosen randomly from a finite population.
When the customer leaves the queue, either through
service completion or abandonment, he updates his
estimate x, and returns to the pool of idle customers.

6.1. Simulation Results
We describe here the results of two simulation exper-
iments: The first employs the KM-based estimator,
while the second employs the simpler Censored MLE.
In both, the system is a single-server �M/M/1	 queue,
with � = � = 1. Each customer maintains a personal
estimate x of the average waiting time, and deter-
mines his abandonment time in the next trial as
T�x	 = 0�8 · x. The estimated waiting time is taken
here as v2 = E�V 	V > 0	 (see (6)). Note that the cus-
tomer population is homogeneous in terms of the
patience function. Simulation results for heteroge-
neous customer populations may be found in Zohar
(2000), and lead to similar conclusions. This refer-
ence also contains a more complete description of the
present simulations.
The specific customer who enters the queue is ran-

domly and uniformly selected out of a pool of idle
customers. If the pool is empty, a new customer is cre-
ated. The initial knowledge base of a new customer is
“inherited” from one of the existing customers, cho-
sen at random. The first customer who initializes the
simulation is arbitrarily initialized with ten “observa-
tions” of waiting times with duration w0 = 1�5 each.
For reference, let us first calculate the equilibrium

point for this system as per the analysis of §3. Note
that the specified patience function T�x	 satisfies the
requirements of Theorem 3.3, and hence the equi-
librium is unique. The equilibrium condition (6) is
v2�x	= x. An expression for v2�x	 is terms of T�x	 has
been obtained in (13) for this system, which gives:

T�x	2/2+T�x	+1
T�x	+1

= x�

With T�x	 = 0�8 · x, this equation indeed has a single
positive solution at x = 1�25, which is the equilibrium
value.

A slight modification was implemented in these
simulations regarding the choice of abandonment
times. Every once in a while (on each 30th trial),
each customer was allowed to stay in the queue until
admitted to service, instead of abandoning at T�x	.
This allowed customers with low patience to sample
the actual waiting time more fully, and turned out
to be important for a reasonable convergence of the
estimators.
Simulation 1: Kaplan-Meier Estimator. The

system was simulated with the KM-based estimator.
Recall that this estimator calculates an estimate of
the entire waiting-time distribution (from which the
mean is extracted). The results of the simulation are
shown in Figures 5 and 6. The number of customers
created in this example was 8; this is just the number
that was required in this run to prevent starvation
in the arrival process. The simulation was run for
over 40,000 arrivals, which amounted to about 5,200
arrivals for each customers. Figure 5 shows the esti-
mates of Customers 1 and 8 for the distribution of
�V 	V > 0	, as obtained at the end of the simulation.
The graphs also depict for reference the theoretical
distribution at the equilibrium point according to (1),
and an exponential distribution with the same mean.
The results for the other customers were similar
(Zohar 2000). Figure 6 shows the estimated mean
v2 = E�V 	V > 0	 of the offered waiting time for these
two customers, as a function of their “iteration num-
ber” (the number of times they visited the queue).
We can see that the estimates tend to converge. At
the end of the simulation the mean estimate of the
waiting time across the eight customers was 1.2007,
with a standard deviation of 0.0672. This agrees well
with the theoretical equilibrium value of x = 1�25 as
calculated above.
Simulation 2: Censored MLE. The same system

was simulated with the Censored MLE estimator (16).
The number of customers created in this simulation
was 11. The results are depicted in Figure 7. We can
see that the estimated waiting time converges. The
simulation yields a much higher mean waiting time of
1.6452 across 11 customers with standard deviation of
0.0218. This deviation may be attributed to the bias of
this estimator, as discussed in the previous subsection,
since the waiting time distribution here is not expo-
nential.

580 Management Science/Vol. 48, No. 4, April 2002

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
2.

68
.5

6.
7]

 o
n 

18
 J

an
ua

ry
 2

01
7,

 a
t 0

7:
12

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



ZOHAR, MANDELBAUM, AND SHIMKIN
Adaptive Behavior of Impatient Customers in Tele-Queues

Figure 5 Simulation 1: Estimates of the Waiting Time Distribution for Customers 1 and 8 Using the Kaplan-Meier Estimator
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Figure 6 Simulation 1: Estimates of the Mean Waiting Time E�V 	V > 0
 for Customers 1 and 8
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Figure 7 Simulation 2: Estimates of the Mean Waiting Time E�V 	V > 0
 for Customers 1 and 8

0 500 1000 1500 2000 2500 3000 3500 4000 4500
1.2

1.3

1.4

1.5

1.6

1.7

customer 1,11  estimated mean

iteration

M
ea

n

customer 1
customer 11

mean: 1.64
std:0.02  

mean: 1.67
std:0.02  

The theoretical value of the equilibrium in the last
example can in fact be recalculated with an appro-
priate consideration of the Censored MLE. As shown
in Zohar et al. (2001), this calculation gives x = 5/3�
1�66. This is in close agreement with the estimated
value that was obtained in the simulation.

7. Conclusion
This paper focused on certain adaptive aspects of cus-
tomer behavior, namely the dependence of the cus-
tomers’ patience on the anticipated waiting time, and
its effect on the performance of queues with invisible
state. We have shown how the steady-state operat-
ing point (or equilibrium) can be characterized and
computed, and demonstrated the applicability of the
proposed model for performance analysis. We have
shown how the static equilibrium concept can be
interpreted as the steady state of a dynamic learning
process; while highly idealized, this lends in our opin-
ion considerable credibility to the proposed equilib-
rium solution. At the same time, the learning process
examples demonstrate how the way that customers
evaluate their experience can have a significant effect
on the resulting equilibrium.

Our model allows considerable freedom in the spe-
cific dependence of patience on system performance
(i.e., the dependence of G on x). To extend its use-
fulness in queueing practice, further characterization
of this dependence is required, specifying both trends
and quantitative relations that hold in given classes
of systems. This calls for further research into the
abandonment process. Such research must combine
empirical analysis, as in Mandelbaum et al. (2000),
with further understanding of the triggers of aban-
donment, as in Zakay and Hornik (1996).
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