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Abstract: For the class of linear time-invariant single-input continuous systems we find conditions on the input under which the state 
is persistently exciting for adaptive identification purposes. These conditions are expressed through time-domain properties of the 
filtered input. They are both necessary and sufficient and no prior constraints are placed on the structure of the input wave or its 
boundedness. 
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1 . ~ u ~ o n  

Persistent excitation plays a key role in establishing parameter convergence in adaptive identification 
and control schemes. Early results for continuous-time systems specify conditions for (exponential) 
convergence through some 'persistence of excitation' conditions on the signal vector used in the 
identification algorithm. This vector contains both the system input and output signals (see e.g. [1]). Since 
output signals cannot be directly controlled, some effort was devoted recently to the characterization of 
persistently exciting (PE) inputs. Namely, inputs which cause the outputs of the system to be PE. The 
results in Boyd and Sastry [2,3], and Mareels and Gevers [7] are limited to stable systems. Results for 
unstable systems first appeared in Dasgupta, Anderson and Tsoi [1] assuming however that system output 
is bounded. This constraint was removed in Nordstr~Sm and Sastry [4], where sufficient conditions for PE 
inputs were given in the frequency and time domains for possibly unstable systems. There were, however, 
assumptions made on the input which include boundedness, piecewise uniform continuity and stationarity 
(for the frequency-domain condition) or differentiablility (for the time-domain condition). 

In the work reported here conditions for PE inputs were derived. These conditions complement existing 
results in three respects: (i) They are both necessary and sufficient. (ii) No prior assumptions on the input 
are made save for local integrability. (iii) It is shown that if an input is PE, a uniform excitation period for 
all systems aiways exists. We believe that this closes the gap which existed between the discrete-time results 
(e.g. [5,6]) and the continuous-time results. 

The basic approach taken here is inspired by Marcels [5]. We comment however that the conditions 
given there for the continuous case, though necessary, are not sufficient unless complemented by other 
assumptions as in [4]. 

We proceed as follows: After establishing notation in Section 2, we present and prove in Section 3 our 
main results. In Section 4 we derive a more general filtered version and, finally, in Section 5 we briefly 
consider systems with output equations. 

2. Notation 

The following notation will be used throughout. 
L~(C n) - the space of functions f :  R + --* C" which are Lebesgue integrable over any finite interval. 
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L~(C") - the space of functions as above which are also square-Lebesgue-integrable over any finite 
interval. 

II II r -  norm of a function in L~ restricted to [0, T]: 

[ I l f l l r =  f 0 r l f ( t ) l  2 dt 

1. [ - Euclidean norm of a vector in C" : I v l = [v'v] 1/2. 
M T, M, M*  - transposed, complex conjugate and Hermitian conjugate respectively of a matrix or 

vector M. 
The following abbreviations will also be used: ( l f ) ( t )  denotes the definite integral of function, 

(I f ) ( t )  = fgf('r) dr ;  and f~(t)  denotes translation of f along the real axis, f~(t) =f ( t  + .r). Hence, we 
have (lf ,)(t) = f~f(o + ~) do. 

3. Persistent  excitation of the state 

Consider the class SC, of linear time-invariant single-input controllable systems of order n: 

Yc( t )=Ax( t )+bu( t ) ,  x ( O ) - - x  0, A e C  nx", b ~ C " ,  u e L ~ ( C ) .  (1) 

The state x is assumed to be the signal vector used in identification. Hence, for parameter convergence, 
x is required to be PE in the following sense: 

Definition 1. The function x e L~(C n) is said to be persistently exciting (PE) iff there exist positive 
constants el, T such that for all ~- > 0, 

~ '+Tx( t )x ( t )*  dt>e11.. (2) 

T will be termed an 'excitation period' of x. 

Remark 1. For the system (1), u e Lie implies x e L~ so the integral in Definition 1 is always well-defined. 
Moreover, since the only property of u needed in the sequel is that fdu(o)do ~ L~, we can include 
impulse functions in u (provided that their total power is bounded over any finite interval). 

Definit ion 2. The input u e L~ is said to be persistently exciting for the class SC, ((PESC,) iff for any 
system in SC, it produces a PE state x, uniformly in x 0 (i.e. e 1 and T in Definition 1 are independent of 
the initial condition x0). 

We proceed now to define a richness property of the input that will characterize the class of PESC, 
inputs. Using the notation 

¢,.u.)¢,)-- K ' 
we define 

and 

V~(t)& [lu . . . . . .  I"u,]T(t)  

W¢(M, t) & V¢(t) + MO(t). 

where M ~  C "x" is some constant matrix and 

(4) 

(s) 

O(t) & [1, t, t 2 . . . .  , t"-l] x. (6) 
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Also define 

J~(M, T ) =  forW,(M, t )W,*(M, t) dt. 

227 

(7) 

Definition 3. The function u ~ L~(C) is said to be rich of order n iff there exist positive constants e2, T 
such that for all ~ >_ 0, 

J,(M~, T) = for[V,(t) + M,O(t)][V~(t) + M~O(t)]* dt>e21 (8) 

where 3,/, is defined by 

and 

M, = - ( forV~ ( t ) o'r ( t ) d t ) No 1 (9) 

~= --JorO(t)O(t) T dt. No 

Note that [N0]i, j = Ti+J-1/(i +j  - 1). 

Remark 2. Definition 3 has a simple interpretation if we view our functions (for every constant ~-) as 
vectors in the Hilbert space L 2 of functions f :  [0, T] ~ C. Lemma I below shows that the term M~O(t) in 
fact removes from the entries of V~ (the functions Iu . . . . .  , I"u~) all components which lie in the subspace 
S spanned by (1, t . . . . .  t " - l ) .  Hence, Definition 3 is roughly equivalent to requiring that the projections of 
the functions I~u~ onto S ±, the orthogonal complement of S, are (uniformly) linearly independent. 

The following lemma summarizes some of the properties of M~. 

Lemma 1. For any positioe ~, T the matrix M~ (as defined in (9)) satisfies 
(a) J~(M,, T)<J~(M, T ) f o r a l l M ~ C " x " ;  
(b) fortkW~(M~, t) dt = O, k = O, 1 . . . . .  n - 1; 
(c) (IkW,(M,,  .))(T) = 0, k = 1, 2 . . . . .  n. 

Proof. Direct substitution of (5) and (9) confirms that 

forW~(M~, t)Or(t) dt = 0 (I0) 

and (b) follows directly. (a) can now be established since 

J~(M, T ) - J ~ ( M ~ ,  T ) = f o r [ M - M ~ ] ~ ( t ) O ( t ) T [ M - M , ]  * d t > 0 .  (11) 

Finally, (c) follows from (b) by successive integration by parts. [] 

Definition 3 is now motivated by our main result. 

Theorem 1. An input u ~ L~(C) is persistently exciting for the class SC,(PESC,)  iff it is rich of order n. 

Proof. Let 

p ( s ) - - p ~ s "  + p , _ l s  "-x + . . -  +P0, P , - -  1, (12) 
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be the characteristic polynomial of A. We form now the matrix Q ~ C"X": 

Q =  [b, Ab .... ,A"-lblPA, PA = "" " , (13) 
0 p, 

which is nonsinguiar for a controllable pair (A, b). 
The state x(t) of system (1) satisfies for all r > 0 the following integral equation: 

1 
t 

t 2 
n 

Z Pi( I " - Ix , ) ( t )  = QV,(t) + 0~- 2 , (14) 
imO 

tn-1 

( n - l ) !  

where Q, is defined similarly to Q in (13) with b replaced by the initial condition x( r ) .  Eqn. (14) is in fact 
an integral form of the equation 

~p,x(i)(t)=Q| u°) / (15) 
i - 0  

I_ U .1 

used in [5]. 
To prove sufficiency we note that the richness assumption is equivalent to: 3 T >  0, e 2 > 0 such that 

W'~O,  d ~ C " ,  

T T 2 IIdTW,(M,, t)lit2-- fo d W,(M,, t)W,*(M,, t)ddt>e2ld I (16) 

Let o E C" be an arbitrary vector and take any system (A, b) in SC,,. For simplicity we denote 

W(t) a= W,(M,,  t) ,  d T = oTQ. 

Then, using (5), (14) and Lemma 1 Co) we get 

IId'rWIIr2= pi(l'-'x,)(t) • W*(t)d dt. (17) 

Integrating by parts and using Lemma 1 (c) yields 

II d r W  lit 2 -- for°Tx,(t)f(t) dt (18) 

where 
n 

f(t) ~ E (-1)'p,(l"-'W)*(t)d. 
i-O 

Since for every function g ~ L~ we have from the Schwarz inequality 

fo fo d~ 2 foT[fo t ][fotlg(r) ldr]dt<fotllgll' dr< II g i l t  2 , ii/gllr2__ r ,g(+) d t <  d r  2 r - T  2 
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it follows that 

Applying the Cauchy-Schwarz inequality to (18) results in 

v T [ f o r X , ( t ) x * ( t  ) dt]5--I I  oTx+II~> IIdTWII~ > ItdTWtlr2 

On the other hand, since d T= oTQ we have from assumption (16), 

I I d T W l l ] > _ e a l d l 2 > _ e z h ~ ( Q Q  * ) Iol 2 

Combining (20) and (21) clearly establishes that x is PE according to Definition 1, with 

--  2X o(QQ*)/ Ip ,  l r  • 
i=O 

(19) 

(20) 

(21) 

(22) 

To prove necessity let us assume that the input is PESC n. 
Let C n c SCn be a set of n systems such that the characteristic polynomials of their A's are mutually 

coprime. Clearly, by our assumption, each system in C, has an e~ and T~ so that (2) is satisfied for that 
system. Define ~1 = minc.(~) and T = maxc.(T/); then clearly 

f ~ + ~ x ( t ) x ( t ) *  dt  > eaI (23) 

for every system in C,, all ~- > 0 and all initial states x(0). 
Now for any ~'>0 and d e C "  with [ d [ - - 1  there exists a system (A ,  b ) E C n  such that the 

characteristic polynomial of A is coprime with the polynomial [1, s . . . .  , s " - t ] d .  (This is clearly true since 
[1, s . . . .  , s n - t ] d  can have common factors with at most n - 1 of the A's in C,.) This is equivalent (see [5]) 
to the pair (o T, A) being an observable pair, where 

o T = aTQ -1. (24) 

Since (see the definition of Q following Eqn. (14)) 

oTQr=x('r)T[o, ATo . . . . .  (AT)n-IO]PA, 

the above-mentioned observability implies that by choice of x(z)  the left-hand side can be assigned any 
desired value. In particular, there exists an x( r )  (hence an x(0)) for which 

/I  

oT E pi( l n - i x , ) (  t ) -~ dTvg'T( Mr, t ). (25)  
i=0 

This follows from (14), (24) and (5) by choosing x(~') such that 

[ t+,]+ 
orQ, 1, t . . . . .  ( n ~ 7 ) ~  " = dTM+O(t).  

By solving (25) for oTx+(t) (most easily accomplished by writing (25) in state-variable form with the state 
vector 
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and noting that z(0) = 0), it can be directly shown that (25) implies 

II vTx~ II T < alI dTw¢( M,, t ) l i t  (26) 

where a depends on A and T only. 
On the other hand, from (23) and (24) we have 

11 v Tx ,  l i t  2 > t l  I v II z > el lQ -x I 2. (27) 

(The matrix norm used here is I MI 2 = hmax(M*M).) Defining 

e2 = el rain I Q-a 12 (28) 
C. a 2 

and using (26) and (27) we can conclude that 

II dTW~( M .  t) l i t  2 > e2 

where we note that e2 is independent of both d and ~" so that 'richness of order n '  by Definition 3 is 
established. D 

Remark 3. The sufficiency part of the theorem can be viewed locally as well as globally. Namely, if the 
input u satisfies the richness condition (8) over any finite interval, the state x will satisfy the PE 
requirement (2) over that same interval. 

The following corollary is a direct consequence of Theorem 1. 

Corollary 1. Let C n c SC~ be any set of n systems such that the characteristic polynomials of their A ' s  are 
mutually coprime. 

(i) I f  the input u ~ L~(C) is persistently exciting for every system in C n it is PESC n. 
(ii) For every PESCn input a uniform (over all systems in SC~) excitation period T o exists. Furthermore, 

T o can be chosen as the maximal excitation period over the n systems in C,. 

Proof. (i) Recall that in the proof of Theorem 1 we have shown that if u is persistently exciting for Cn it is 
rich of order n. Hence, by Theorem 1, it is PESC~. 

(ii) In the proof of Theorem 1 it was shown that To can be taken as the T which is used in the definition 
of richness of order n, as well as the maximal excitation period over the systems in C,. [] 

Two important consequences of the foregoing discussion are summarized in the following two remarks. 

Remark 4. Corollary 1 implies that any PE result which is limited to stable systems (a number of which 
appear in the literature) does in fact apply to the whole class SC n. 

Remark 5. For identification algorithms such as the 'least squares with covariance resetting', the resetting 
period must be larger than the excitation period of the state to ensure (exponential) parameter convergence 
(see e.g. [4]). Corollary 1 (ii) verifies that this period can be chosen independently of the (unknown) system 
parameters and is therefore of immediate practical importance in parameter identification. 

4. A filtered version of the basic result 

The results of Section 3 can now be generalized into a filtered version which complements the results in 
i l l .  
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Define D=d/d t ,  and let d(D)/n(D) denote a zero-initial-conditions filter which can also be 
interpreted as an operator from L~ to L 2. We also assume throughout most of this section that the interval 
[% ~ + T] is fixed. 

We rewrite now W in (8) as 

W,(M, t) = V,(t) + MO(t) -- " + " (29) 

LD-'%J t " " - '  " 

Note that V~ can be considered as the state vector of the filter l /D"  when realized in controller form 
and 0(t)  is associated with the modes of this filter. 

Replace now the above filter with a general filter of the form 1/q(D), where 

n 

q(D) = I-I (D - q,). (30) 
i=1 

Assuming (for demonstrative purposes only) that the qi's are distinct, the analogue of (29) will be 

D . - 1  q-~I~U~ e qlt 

14/(M, ~) = 17"(t) + Mff(t) = + M : (31) 

1 
q - ~ f f  U r e q"t 

The following lemma now shows that W can replace W in the characterization of rich inputs, and thus 
proves Theorem 3 below. 

Lemma 2. For any u ~ L~ the following are equivalent: 
(i) 3 e 1 > 0 such that VM E C" x., 

J (M)  = forW,(M, t)W,*(M, t) dt>elI .  

(ii) 3~ 1 > 0 such that VM~ C "x", 

f ( M ) =  f r  ff',(M, t)l~t*(M, t )d t>~l I .  
¢0 

Proof. Direct calculation shows that 

D n  
q(D----) W~(M, t )= IY/~(M, t) VM. 

Consider now the filter D"/q(D) as a linear operator H over the Hilbert space L 2 of functions 
f : [0 ,  T] ~ C. H is bounded and has an inverse H -1 - -  q(D)/D" which is also a bounded operator. 
Therefore 3a > 0 such that V f ~  L 2, II nf  II >- all f II. 

Let S and ff be the subspaces spanned by 8 and 0 respectively. By direct calculation H (  S } c f f  and 
H - l ( f f }  c S which means that H { S } =  ft. The matrix M~ which 'minimizes' (i) removes from We all 
components which he in S. Similarly, My which 'minimizes' (ii)removes from ff'~ all components which lie 
in S (see Lemma 1 and Remark 2). Therefore HW~(M~, .) = Wt(M~, .) so that V d ~  C", 

which gives (i) =, (ii). The opposite direction can be established similarly. [] 
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T h e o r e m  2. Let q(D) be any monic polynomial of degree n. Then the input u ~ L~(C) 
3e > O, t > O such that VT > O, 

forl'V~(.~t~, t ) f f '~(J~ ,  t)* dt> eI, 

where 1~', is defined by (31) and iVI, by (9) (with 0 and Iz replaced by 0 and 17" respectioely). 

is PESC, i f f  

The proof of this theorem follows directly from Theorem 1 and Lemma 2. 
An interesting result can be established if we constrain the input to belong to a class E(C) of inputs 

which when applied to an asymptotically stable system in SC, results in a bounded state. This class 
includes bounded inputs as well as stationary inputs (see [4]). 

Corollary 2. Let u ~ E(C) c L~(C). Then u is PESC, i f f  it generates a PE state in some asymptotically stable 
system in SC, with some fixed initial conditions. 

Proof. Necessity follows from the fact that the system belongs to SC,. To prove sufficiency let (A, b) be 
the system for which u generates PE state and denote q(s) = char.poly.(A). W.l.o.g. assume (A, b) to be 
in controller canonical form, hence its state is given by 

D, -1  
t ) 

x ( t + r ) =  : +e'4 'x(r)  = g + N ( ~ ' ) f ( t )  Vt>_O, (32) 

q- D) u,(t) 
where if(t) contains the modes of q(D) in a way similar to (31) (repeated modes may induce powers of t 
which will not change basic desired properties), and NO') ~ C "x" is bounded since the system is stable 
and the state is bounded. It can also be shown that 3~r, defined by (9) (with the replacement of 8 and V~ 
by # and 17), is uniformly bounded for every ~- and T >  8 > 0. 

Now since it is assumed that the input u is persistently exciting for the given system we have for its 
state 

T . 
fo x , ( t ) x ¢ ( t )  d t > e I  V~'>0 (33) 

for some e > 0 and T > 0. 
On the other hand, combining (31) and (32) leads to 

ff'~(M, t)-- rT~(t)+ 1Cl,#(t)=x~(t)+ [~r,- N(,r)] #(t) (34) 
where 0(t) --* 0 exponentially as t ~ oo. Hence, there exists a T 1 > T such that x 

fo W,(M,,t)I ,P' ,( .hTI, , t)* dt f 7'_ dt>__½ frT'_rx,(t)x,(t )* dt 

so that using (33) we can conclude 

7 "  I - - f0 t)* dt> d. (35) 
Thus, u is rich of order n and by Theorem 1 it is PESC,. [] 

1 W e  note that T 1 depends  on the choice of initial state for, the system but all we  are concerned with is the existence of a T1 as 
required. 
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5. Persistent excitation of the output 

Here we generalize the results to the case where the signal vector of interest is the output of a system 
rather than its state. Thus, consider the class SOR(n, m) of output-reachable systems, specified by 

2 ( t ) = A x ( t ) + b u ( t ) ,  x (0 )=x0 ,  y ( t ) = C x ( t ) ,  A ~ C  "x", b ~ C " ,  C ~ C  rex". (36) 

Definitions of PE for this class are the same as Definitions 1 and 2 with y(t)  replacing x(t). 
It can be readily observed that by substituting Qc = CQ for Q in the sufficiency proof for Theorem 1 

the following can be established. (Note that Qc has a full rank for an output-reachable system.) 

Corollary 3. An input u ~ L~(C) is persistently exciting for the class SOR(n, m) if it is rich of order n. 

To argue that the above condition is not necessary, consider the class SOR(n, 1) and choose in this class 
a controllable system. Assume now that for a particular input the state of the system is not sufficiently rich 
in a 'weak' sense. Namely, h~,(Xr(~')) ---> 0 as ~" ~ oo for every finite T, where Xr(~" ) = f~x~(t)x¢(t)* dt. 
It is, however, still possible if Xr(~" ) is not bounded that this 'near singularity' of Xr(z ) will not be 
reflected in any fixed direction C. Hence, hminCXr('r)C*~ 0 is not implied. Thus the following 
adjustment is required: 

Theorem 3. The input u ~ Lie(c) is persistently exciting for the class SOR(n, m) iff VC ~ C mxn, ~1~'3 > O, T 
> 0 such that 

CJ, r(m,r, T)C*>~E3Xmin(CC*)_[ V'r'>~O. 

The proof of this theorem is similar to the proof of Theorem 1. 

6. Conclusions 

Necessary and sufficient conditions for an input, not necessarily bounded, to be persistently exciting for 
continuous systems are provided. Hence, the class of persistently exciting inputs is completely char- 
acterized. These conditions, while not always easy to apply directly, provide a basis for some fundamental 
results and insights for the problem. 

The results presented here for a single-input system could probably be extended to the multi-input case 
using similar methods but that is the subject of further research. 
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