
Learning in Complex Systems Spring 2011

Lecture Notes Nahum Shimkin

5 The Stochastic Approximation Algorithm

5.1 Stochastic Processes – Some Basic Concepts

5.1.1 Random Variables and Random Sequences

Let (Ω,F , P ) be a probability space, namely:

– Ω is the sample space.

– F is the event space. Its elements are subsets of Ω, and it is required to be a σ-

algebra (includes ∅ and Ω; includes all countable union of its members; includes all

complements of its members).

– P is the probability measure (assigns a probability in [0,1] to each element of F , with

the usual properties: P (Ω) = 1, countably additive).

A random variable (RV) X on (Ω,F) is a function X : Ω → R, with values X(ω). It is

required to be measurable on F , namely, all sets of the form {ω : X(ω) ≤ a} are events in

F .

A vector-valued RV is a vector of RVs. Equivalently, it is a function X : Ω → Rd, with

similar measurability requirement.

A random sequence, or a discrete-time stochastic process, is a sequence (Xn)n≥0 of Rd-valued

RVs, which are all defined on the same probability space.
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5.1.2 Convergence of Random Variables

A random sequence may converge to a random variable, say to X. There are several useful

notions of convergence:

1. Almost sure convergence (or: convergence with probability 1):

Xn
a.s.→ X if P{ lim

n→∞
Xn = X} = 1 .

2. Convergence in probability:

Xn
p→ X if lim

n→∞
P (|Xn −X| > ε) = 0 ,∀ε > 0 .

3. Mean-squares convergence (convergence in L2):

Xn
L2→ X if E|Xn −X∞|2 → 0 .

4. Convergence in Distribution:

Xn
Dist→ X (or Xn ⇒ X) if Ef(Xn) → Ef(X)

for every bounded and continuous function f .

The following relations hold:

a. Basic implications: (a.s. or L2) =⇒ p =⇒ Dist

b. Almost sure convergence is equivalent to

lim
n→∞

P{sup
k≥n

|Xk −X| > ε) = 0 , ∀ε > 0 .

c. A useful sufficient condition for a.s. convergence:

∞∑
n=0

P (|Xn −X| > ε) < ∞ .
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5.1.3 Sigma-algebras and information

Sigma algebras (or σ-algebras) are part of the mathematical structure of probability theory.

They also have a convenient interpretation as ”information sets”, which we shall find useful.

• Define FX , σ{X}, the σ-algebra generated by the RV X. This is the smallest

σ-algebra that contains all sets of the form {X ≤ a} ≡ {ω ∈ Ω : X(ω) ≤ a}.

• We can interpret σ{X} as carrying all the information in X. Accordingly, we identify

E(Z|X) ≡ E(Z|FX) .

Also, “Z is measurable on σ{X}” is equivalent to: Z = f(X) (with the additional

technical requirement that f is a Borel measurable function).

• We can similarly define Fn = σ{X1, . . . , Xn}, etc. Thus,

E(Z|X1, . . . , Xn) ≡ E(Z|Fn) .

• Note that Fn+1 ⊃ Fn: more RVs carry more information, leading Fn+1 to be finer,

or “more detailed”

5.1.4 Martingales

A sequence (Xk,Fk)k≥0 on a given probability space (Ω,F , P ) is a martingale if

a. (Fk) is a “filtration” – an increasing sequence of σ-algebras in F .

b. Each RV Xk is Fk-measurable.

c. E(Xk+1|Fk) = Xk (P–a.s.).

Note that

• (a) Property is roughly equivalent to:

Fk represents (the information in) some RVs (Y0, . . . , Yk),

and (b) then means: Xk is a function of (Y0, . . . , Yk).
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• A particular case is Fn = σ{X1, . . . , Xn} (a self-martingale).

• The central property is (c), which says that the conditional mean of Xk+1 equals Xk.

This is obviously stronger than E(Xk+1) = E(Xk).

• The definition sometimes requires also that E|Xn| < ∞, we shall assume that below.

• Replacing (c) by E(Xk+1|Fk) ≥ Xk gives a submartingale, while E(Xk+1|Fk) ≤ Xk

corresponds to a supermartingale.

Examples:

a. The simplest example of a martingale is

Xk =
k∑

`=0

ξ` ,

with {ξk} a sequence of 0-mean independent RVs, and Fk = σ(ξ0, . . . , ξk).

b. Xk = E(X|Fk), where (Fk) is a given filtration and X a fixed RV.

Martingales play an important role in the convergence analysis of stochastic processes. We

quote a few basic theorems (see, for example: A.N. Shiryaev, Probability, Springer, 1996).

Martingale Inequalities

Let(Xk,Fk)k≥0 be a martingale. Then for every λ > 0 and p ≥ 1

P

{
max
k≤n

|Xk| ≥ λ

}
≤ E|Xn|p

λp

and for p > 1

E[(max
k≤n

|Xk|)p] ≤ ( p
p−1

)pE(|Xn|p) .

Martingale Convergence Theorems

1. Convergence with Bounded-moments: Consider a martingale (Xk,Fk)k≥0. Assume

that:

E|Xk|q ≤ C for some C < ∞, q ≥ 1 and all k.

Then {Xk} converges (a.s.) to a RV X∞ (which is finite w.p. 1).
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2. Positive Martingale Convergence: If (Xk,Fk) is a positive martingale (namely Xn ≥
0), then Xk converges (a.s.) to some RV X∞.

Martingale Difference Convergence

The sequence (ξk,Fk) is a martingale difference sequence if property (c) is replaced by

E(ξk+1|Fk) = 0. In this case we have:

3. Suppose that for some 0 < q ≤ 2,
∑∞

k=1
1
kq E(|ξk|q|Fk−1) < ∞ (a.s.).

Then limn→∞ 1
n

∑n
k=1 ξk = 0 (a.s.).

For example, the conclusion holds if the sequence (ξk) is bounded, namely |ξk| ≤ C for

some C > 0 (independent of k).

Note:

• It is trivially seen that (ξn , Xn − Xn−1) is a martingale difference if (Xn) is a

martingale.

• More generally, for any sequence (Yk) and filtration (Fk), where Yk is measurable on

Fk, the following is a martingale difference:

ξk , Yk − E(Yk|Fk−1) .

The conditions of the last theorem hold for this ξk if either:

(i) |Yk| ≤ M ∀k for some constant M < ∞,

(ii) or, more generally, E(|Yk|q|Fk−1) ≤ M (a.s.) for some q > 1 and a finite RV M .

In that case we have

1

n

n∑

k=1

ξk ≡ 1

n

n∑

k=1

(Yk − E(Yk|Fk−1)) → 0 (a.s.)
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5.2 The Basic SA Algorithm

The stochastic approximations (SA) algorithm essentially solves a system of (nonlinear)

equations of the form

h(θ) = 0

based on noisy measurements of h(θ).

More specifically, we consider a (continuous) function h : Rd → Rd, with d ≥ 1, which

depends on a set of parameters θ ∈ Rd. Suppose that h is unknown. However, for each θ

we can measure Y = h(θ) + ω, where ω is some 0-mean noise. The classical SA algorithm

(Robbins-Monro, 1951) is of the form

θn+1 = θn + αnYn

= θn + αn[h(θn) + ωn], n ≥ 0 .

Here αn is the algorithm the step-size, or gain.

Obviously, with zero noise (ωn ≡ 0) the stationary points of the algorithm coincide with

the solutions of h(θ) = 0. Under appropriate conditions (on αn, h and ωn) the algorithm

indeed can be shown to converge to a solution of h(θ) = 0.

References:

H. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications, Springer,

1997.

V. Borkar, Stochastic Approximation: A Dynamic System Viewpoint, Hindustan, 2008.

J. Spall, Introduction to Stochastic Search and Optimization: Estimation, Simulation and

Control, Wiley, 2003.
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Some examples of the SA algorithm:

a. Average of an i.i.d. sequence: Let (Zn)≥0 be an i.i.d. sequence with mean µ = E(Z0)

and finite variance. We wish to estimate the mean.

The iterative algorithm

θn+1 = θn +
1

n + 1
[Zn − θn]

gives

θn =
1

n
θ0 +

1

n

n−1∑

k=0

Zk → µ (w.p. 1), by the SLLN.

This is a SA iteration, with αn = 1
n+1

, and Yn = Zn − θn. Writing Zn = µ + ωn (Zn

is considered a noisy measurement of µ, with zero-mean noise ωn), we can identify

h(θ) = µ− θ.

b. Function minimization: Suppose we wish to minimize a (convex) function f(θ). De-

noting h(θ) = −∇f(θ) ≡ −∂f
∂θ

, we need to solve h(θ) = 0.

The basic iteration here is

θn+1 = θn + αn[−∇f(θ) + ωn].

This is a “noisy” gradient descent algorithm.

When ∇f is not computable, it may be approximated by finite differences of the form

∂f(θ)

∂θi

≈ f(θ + eiδi)− f(θ − eiδi)

2δi

.

where ei is the i-th unit vector. This scheme is known as the “Kiefer-Wolfowitz

Procedure”.
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Some variants of the SA algorithm

• A fixed-point formulation: Let h(θ) = H(θ) − θ. Then h(θ) = 0 is equivalent to the

fixed-point equation H(θ) = θ, and the algorithm is

θn+1 = θn + αn[H(θn)− θn + ωn] = (1− αn)θn + αn[H(θn) + ωn] .

This is the form used in the Bertsekas & Tsitsiklis (1996) monograph.

Note that in the average estimation problem (example a. above) we get H(θ) = µ,

hence Zn = H(θn) + ωn.

• Asynchronous updates: Different components of θ may be updated at different times

and rates. A general form of the algorithm is:

θn+1(i) = θn(i) + αn(i)Yn(i), i = 1, · · · , d

where each component of θ is updated with a different gain sequence {αn(i)}. These

gain sequences are typically required to be of comparable magnitude.

Moreover, the gain sequences may be allowed to be stochastic, namely depend on the

entire history of the process up to the time of update. For example, in the TD(0)

algorithm θ corresponds to the estimated value function V̂ = (V̂ (s), s ∈ S), and we

can define αn(s) = 1/Nn(s), where Nn(s) is the number of visits to state s up to time

n.

• Projections: If is often known that the required parameter θ lies in some set B ⊂ Rd.

In that case we could use the projected iterates:

θn+1 = ProjB[θn + αnYn]

where ProjB is some projection onto B.

The simplest case is of course when B is a box, so that the components of θ are

simply truncated at their minimal and maximal values.

If B is a bounded set then the estimated sequence {θn} is guaranteed to be bounded

in this algorithm. This is very helpful for convergence analysis.
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5.3 Assumptions

Gain assumptions

To obtain convergence, the gain sequence needs to decrease to zero. The following assump-

tion is standard.

Assumption G1: αn ≥ 0, and

(i)
∞∑

n=1

αn = ∞

(ii)
∞∑

n=1

α2
n < ∞ .

A common example is αn =
1

na
, with 1

2
< a ≤ 1.

Noise Assumptions

In general the noise sequence {ωn} is required to be “zero-mean”, so that it will average

out.

Since we want to allow dependence of ωn on θn, the sequence {ωn} cannot be assumed

independent. The assumption below allows {ωn} to be a martingale difference sequence.

Let

Fn−1 = σ{θ0, α0, ω0, · · · , ωn−1; θn, αn}
denote the ( σ-algebra generated by) the history sequence up to step n. Note that ωn is

measurable on Fn by definition of the latter.

Assumption N1

(a) The noise sequence {ωn} is a martingale difference sequence relative to the filtration

{Fn}, namely

E(ωn|Fn−1) = 0 (a.s.).

(b) For some finite constants A,B and some norm ‖ · ‖ on Rd,

E(‖ωn‖2|Fn−1) ≤ A + B‖θn‖2 (a.s.), ∀n ≥ 1 .
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Example: Let ωn ∼ N(0, σn), where σn may depend on θn, namely σn = f(θn). Formally,

E(ωn|Fn) = 0

E(ω2
n|Fn) = f(θn)2,

and we require that f(θ)2 ≤ A + Bθ2.

Note: When {θn} is known to be bounded, then (b) reduces to

E(‖ωn‖2|Fn−1) ≤ C (a.s.) ∀n

for some C < ∞. It then follows by the martingale difference convergence theorem that

lim
n→∞

1

n

n∑

k=1

ωk = 0 (a.s.).

However, it is often the case that θ is not known to be bounded a-priori.

Markov Noise: The SA algorithm may converge under more general noise assumptions,

which are sometimes useful. For example, for each fixed θ, ωn may be a Markov chain

such that its long-term average is zero (but E(ωn|Fn−1) 6= 0). We shall not go into that

generality here.
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5.4 The ODE Method

The asymptotic behavior of the SA algorithm is closely related to the solutions of a certain

ODE (Ordinary Differential Equation), namely

d

dt
θ(t) = h(θ(t))

or θ̇ = h(θ).

Given {θn, αn}, we define a continuous-time process θ(t) as follows. Let

tn =
n−1∑

k=0

αk .

Define

θ(tn) = θn ,

and use linear interpolation in-between the tn’s.

Thus, the time-axis t is rescaled according to the gains {αn}.
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Note that over a fixed ∆t, the “total gain” is approximately constant:

∑

k∈K(t,∆t)

αk ' ∆t ,
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where K(t, ∆t) = {k : t ≤ tk < t + ∆t}.

Now:

θ(t + ∆t) = θ(t) +
∑

k∈k(t,∆t)

αk[h(θn) + ωn] .

• For t large, αk becomes small and the summation is over many terms; thus the noise

term is approximately “averaged out”:
∑

αkωk → 0.

• For ∆t small, θk is approximately constant over K(t, ∆t) : h(θk) ' h(θ(t)).

We thus obtain:

θ(t + ∆t) ' θ(t) + ∆t · h(θ(t)) .

For ∆t → 0, this reduces to the ODE:

θ̇(t) = h(θ(t)) .

To conclude:

• As n →∞, we “expect” that the estimates {θn} will follow a trajectory of the ODE

θ̇ = h(θ) (under the above time normalization).

• Note that the stationary point(s) of the ODE are given by θ∗ : h(θ∗) = 0.

• An obvious requirement for θn → θ∗ is θ(t) → θ∗ (for any θ(0)). That is: θ∗ is a

globally asymptotically stable equilibrium of the ODE.

This may this be viewed as a necessary condition for convergence of θn. It is also suf-

ficient under additional assumptions on h (continuity, smoothness), and boundedness

of {θn}.
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5.5 Some Convergence Results

A typical convergence result for the (synchronous) SA algorithm is the following:

Theorem 1 Assume G1, N1, and furthermore:

(i) h is Lipschitz continuous.

(ii) The ODE θ̇ = h(θ) has a unique equilibrium point θ∗, which is globally asymptotically

stable.

(iii) The sequence (θn) is bounded (with probability 1).

Then θn → θ∗ (w.p. 1), for any initial conditions θ0.

Remarks:

1. More generally, even if the ODE is not globally stable, θn can be shown to converge

to an invariant set of the ODE (e.g., a limit cycle).

2. Corresponding results exist for the asynchronous versions, under suitable assumptions

on the relative gains.

3. A major assumption in the last result in the boundedness of (θn). In general this

assumption has to be verified independently. However, there exist several results

that rely on further properties of h to deduce boundedness, and hence convergence.

The following convergence result from B. &T. (1996) relies on on contraction properties

of H, and applies to the asynchronous case. It will directly apply to some of our learning

algorithms. We start with a few definitions.

• Let H(θ) = h(θ) + θ, so that h(θ) = H(θ)− θ.

• Recall that H(θ) is a contraction operator w.r.t. a norm ‖ · ‖ if

‖H(θ1)−H(θ2)‖ ≤ α‖θ1 − θ2‖

for some α < 1 and all θ1, θ2.

• H(θ) is a pseudo-contraction if the same holds for a fixed θ2 = θ∗. It easily follows

then that θ∗ is a unique fixed point of H.
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• Recall that the max-norm is given by ‖θ‖∞ = maxi |θ(i)|. The weighted max-norm,

with a weight vector w, w(i) > 0, is given by

‖θ‖w = max
i
{|θ(i)|

w(i)
} .

Theorem 2 (Prop. 4.4. in B.&T). Let

θn+1(i) = θn(i) + αn(i)[H(θn)− θn + ωn]i , i = 1, · · · , d .

Assume N1, and:

(a) Gain assumption: αn(i) ≥ 0, measurable on the “past”, and satisfy

∑
n

αn(i) = ∞,
∑

n

αn(i)2 < ∞ (w.p. 1) .

(b) H is a pseudo-contraction w.r.t. some weighted max-norm.

Then θn → θ∗ (w.p. 1), where θ∗ is the unique fixed point of H.

Remark on “Constant Gain” Algorithms

As noted before, in practice it is often desirable to keep a non-diminishing gain. A typical

case is αn(i) ∈ [α, ᾱ].

Here we can no longer expect “w.p. 1” convergence results. What can be expected is a

statement of the form:

• For ᾱ small enough, we have for all ε > 0

lim sup
n→∞

P (‖θn − θ∗‖ > ε) ≤ b(ε) · ᾱ ,

with b(ε) < ∞.

This is related to “convergence in probability”, or “weak convergence”. We shall not give

a detailed account here.
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