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2 Dynamic Programming – Finite Horizon 
 

2.1 Introduction 
 
Dynamic Programming (DP) is a general approach for solving multi-stage optimization 
problems, or optimal planning problems. The underlying idea is to use backward 
recursion to reduce the computational complexity. 
 
DP has been widely applied to problems of optimal control, graph search, multistage 
planning, etc. This method was popularized in the 50's and 60's, mainly through the 
work of Richard Bellman. 
 
Our interest here is in optimal control problems that involve: 

- possibly stochastic systems 
- discrete time variable 
- a finite number of states and actions (choices) 
- additive cost structure  

The standard model for such problems is Markov Decision Processes (MDPs). 
 
We start in this chapter to describe the MDP model and DP for finite horizon problem. 
The next chapter deals with the infinite horizon case. 
 
References: 
Standard references on DP and MDPs are: 

    D. Bertsekas, Dynamic Programming and Optimal Control, Vol.1+2, 3rd. ed. 

    M.L. Puterman, Markov Decision Processes, 1994. 

The basic theory is also covered in Bertsekas & Tsistiklis (1996).  The books of Sutton 
and Barto (1998) and Powell (2007) present less rigorous introductions. 

. 
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2.2 A Simple Graph-Search Example 
 
The simplest demonstration of dynamic programming is probably finding longest (or 
shortest) paths in a graph. 
 
Suppose we wish to find the longest distance we can traverse from a given node in a 
given graph in N   steps. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The number of different paths is exponential in N, so trying them all is not feasible. 
Instead, we can use backward recursion to compute the maximal distance from each 
node to the end step, staring with T=N. 
 
Using this recursion, the longest distance is easily seen to be 14 (and the shortest is 0). 
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2.3 The MDP Model 
 
A Markov Decision Process defines an optimization problem with two ingredients: 
(1) a controlled dynamic system, and (2) a cost (or reward) structure. 
 
Controlled System Dynamics 
 
The dynamic system we consider is specified by: 

1. The time axis:   {0,1, , }N=T …   (a discrete-time, finite horizon problem). 

2. A finite state space S .  

3. A finite action set ( )A s  for each state s S∈ . 

4. State transition structure { ( ' | , ) : , ' , ( )}P p s s a s s S a A s= ∈ ∈  
 
The state transition matrix defines a controlled Markov chain over the given state and 
action sets. That is, 

1( ' | , ) ( ' | , )t t tprob s s s s a a p s s a+ = = = =  
and we also assume the Markov property: 

1 1 1 1 0, 0( ' | , ) ( ' | , , , , , )t t t t t t t tprob s s s a prob s s s a s a s a+ + − −= = = …  
It is naturally required that  

( ' | , ) 0p s s a ≥ , and ' ( ' | , ) 1s S p s s a∈ =∑  for all , ( )s S a A s∈ ∈ . 
 
Remarks:  
 
1. It is will be convenient in theoretical developments to suppress the dependence of 

( )A s  on s , and  assume a single actions set A  which applies to all states. This 
entails no loss of generality, since we can always take ( )sA A s= ∪ , with irrelevant 
actions at each states duplicating the effect of existing ones.  

  
2. The model defined above is stationary (or time invariant), as the dynamics does not 

depend on time. In general, the system dynamics (and also the state and action sets) 
can depend on the time index. That is, for each t∈T  we have 
                        1{ ( ' | , ) : , , ' }t t t t tP p s s a s S a A s S += ∈ ∈ ∈  
and 
                         1( ' | , ) ( ' | , )t t t tprob s s s s a a p s s a+ = = = = . 
In the present chapter we will proceed with the non-stationary model. 

 
3. The state dynamics can be equivalently defined via a state equation of the form 

1 ( , , )t t t t ts f s a n+ = , where each tn  is a random variable which is independent of the 
past (namely of ( , , )k k ks a n  for 1k t≤ − ).  
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Graphical Notation: 
 
Recall that a (stationary) Markov chain is defined by the state transition matrix 

{ ( ' | ) : , ' }P p s s s s S= ∈ . The state transition probabilities are often demonstrated via a 
state transition diagram, such as: 
 
 
 
 
 
 
 
 
A graphic description of a controlled Markov chain is a bit more complicated because 
of the additional action variable. We then obtain the following diagram (drawn for state 
s=1 only): 
 
 
 
 
 
 
 
 
 
 
This means that ( ' 2 | 1, 1) 1p s s a= = = = , ( ' 1| 1, 2) 0.3p s s a= = = = , etc.
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Reward Structure 
 
The reward structure for an MDP is specified by: 
 

5. An immediate reward function { ( , ) : , }t t t tr r s a s S a A= ∈ ∈  for each t∈T . The 
reward obtained at time t∈T  is therefore ( , )t t t tR r s a= . 

 
6. A performance measure, or optimality criterion. The most common one for the 

finite-horizon problem is the expected total reward: 
 

                                          
0 0

( , )( ) ( )
N N

t t t t
t t

J E R E r s a
= =

= =∑ ∑  

 
Our goal is to maximize J , by an appropriate selection of actions. 
 
  
Remarks:  
 
1. Terminal rewards: At t N= , we often have ( , ) ( )N Nr s a r s= . We refer to ( )Nr s  as 

the terminal reward. We will henceforth assume that this is the case. 
 
2. Stationary models: For a stationary model, we have ( , ) ( , )tr s a r s a=   for every 

t∈T . 
 
3. Cost functions: In some case it is more natural to work with a cost function ( , )tc s a  

instead of a reward function. Our goal then is to minimize the total expected cost  

0( )N
ttJ E C== ∑ . 

The two formulations are of course equivalent: we can simply define t tr c= −  to 
transform the cost formulation into a reward formulation.  

 
4. More general reward functions: In some cases the obtained reward may depend on 

the next state as well: 1( , , )t t t t tR r s a s += .  For control purposes, when we only 
consider the expected value of the reward, we can reduce this reward function to the 
usual one by defining 

'( , ) ( ' | , ) ( , , ') ( | , )t t t t ts Sr s a p s s a r s a s E R s s a a∈ ≡ = =∑  
 

5. Random rewards:  The reward tR  may also be random, namely a random variable 
whose distribution depends on ( , )t ts a .  This can also be reduced to our model for 
control purposes by looking at the expected value of tR , namely 

( , ) ( | , )t t t tr s a E R s s a a= = = .  
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Control Policies 
 
• A general control policy π  is a mapping from each possible history 

0 0 1 1( , , , , , )t t t th s a s a s− −= …  to ( )t t ta hπ= .  
 
• A Markov control policy π  depends on the current state and time only: ( )t t ta sπ= . 
 
• A stationary control policy chooses the action depending on the current state alone: 

( )t ta sπ= . Such policies will play a major role in infinite-horizon problems. 
 
• We denote the sets of general / Markov / stationary policies by Π  / MΠ  / SΠ , 

respectively 
 
• We can also define randomized versions of the above. In a randomized control 

policy, the action ta  is chosen according to a probability distribution ( | )t ta hπ  over 

tA . Randomized policies will not be required for the time being (but will be used in 
the learning problem). 

 
Given a control policy π  and initial state 0s s= , together with the system description, 
we obtain a probability distribution over the state-action sequence 

0 0 1 1( , , , , , , )N N N N Nh s a s a s a− −= … . We denote this probability distribution by  
, ( )sPπ ⋅  or 0( | )P s sπ ⋅ = . The corresponding expectation operator is denoted as 
, ( )sEπ ⋅  or 0( | )E s sπ ⋅ =  

 
Remarks:  
 
1. For most (non-learning) problems, Markov policies suffice to achieve the optimum.  
 
2. Implicit in these definitions of control policies is the assumption that the current 

state ts  is fully observed. If this is not the case we consider the problem of a 
Partially Observed MDP (POMDP), which is more involved. 
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2.4 Finite-Horizon Dynamic Programming   
 
Recall that we consider the expected total reward criterion, which we denote as 
 

( )
( )

00

1
00

( , ) |

( , ) ( ) |

N
tt

N
t t t N Nt

J s E R s s

E r s a r s s s

π

π

π
=

−
=

= =

= + =

∑

∑
 

 
Here π  is the control policy used, and s  is a given initial state. We wish to maximize 

( , )J sπ  over all control policies, and find an optimal policy *π  that achieves the 

maximal reward *( )J s . Thus,  
 

* *( ) ( , ) max ( , )J s J s J s
π

π π
∈Π

=  

 
 
 
A. The Principle of Optimality 
 
The celebrated "principle of optimality" applies to a large class of multi-stage 
optimization problems, and is at the heart of DP. As a general principle, it states that 
 

The tail of an optimal policy is optimal for the "tail" problem. 
 
For a more precise statement which applies to our model, let *

0 1( , , )Nπ π π −= …  denote 
an optimal Markov policy. Take any state 'ks s=  which has a positive probability 

under *π , namely , ( ') 0s
kP s sπ = > . Then the tail policy 1( , , )k Nπ π −…  is optimal for 

the "tail" cost ( )( , ') | 'N
k t kt kJ s E R s sππ == =∑ . 
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B. Dynamic Programming for Policy Evaluation 
 
As a "warmup", let us evaluate the reward of a given policy. 
 
Let 1 1( , , )Nπ π π −= …  be a given Markov policy. Define the following reward-to-go 
function, or value function: 
 

( )( ) |N
k t kt kV s E R s sπ π

== =∑  

Observe that 0 ( ) ( , )V s J sπ π= . 
 
Lemma 1  ( )kV sπ  may be computed by the backward recursion: 

{ }
1

1' ( )
( ) ( , ) ( ' | , ) ( ')

k
k

k k k ks S a s
V s r s a p s s a V sπ π

π+
+∈ =

= +∑ ,    1, ,0k N= − …   

starting with  ( ) ( )N NV s r sπ = .  
 
Proof: Observe that: 
 

( )
( )( )

( )
1

1

11

1 1

1'

( ) , ( )

, ( ), , ( )

( , ) ( ) , ( )

( , ( )) ( ' | , ( )) ( ')

|

| |
|

k

N
k k t k k kt k

N
k t k k k k k k kt k

k k k k k k k

k k k k ks S

V s E R R s s a s

E E R R s s a s s s s a s

E r s a V s s s a s

r s s p s s s V s

π π

π π

π π

π

π

π π

π

π π
+

= +

+= +

+ +

+∈

= + = =

= + = = = =

= + = =

= +

∑

∑

∑

 

 
 
 
Remark: With the more general reward function ( , , ')tr s a s , the recursion takes the 
form 

{ }
1

1' ( )
( ) ( ' | , )[ ( , , ') ( ')]

k
k

k k k ks S a s
V s p s s a r s a s V sπ π

π+
+∈ =

= +∑  

A similar observation applies to all Dynamic Programming equations below.



2.9 

C. The Dynamic Programming Algorithm 
 
We next define the optimal value function: 
 

( )*( ) max |N
k t kt kV s E R s sπ

π =
= =∑  

 
Note that the maximum should be taken over "tail" policies  1( , , )k

k Nπ π π −= …  that 

start from time k . Obviously, * *
0V J= . 

 
Theorem 2 (Finite-horizon Dynamic Programming)  
(i) Backward recursion:  * ( ) ( )N NV s r s= , and  

{ }
1

* *
1'( ) max ( , ) ( ' | , ) ( ')

kk
k k k ks Sa A

V s r s a p s s a V s
+

+∈∈
= +∑ ,     1, ,0k N= − …  

 
(ii) Optimal policy: Any Markov policy *π  that satisfies  

{ }
1

* *
1'( ) arg max ( , ) ( ' | , ) ( ')

k
k

k k k ks S
a A

s r s a p s s a V sπ
+

+∈
∈

∈ +∑ ,      0, , 1k N= −…  

      is an optimal control policy. Furthermore, *π  maximizes 0 ( )V sπ simultaneously  
      for every initial state 0s s= .  
 
Proof : 
(i) * ( ) ( )N NV s r s=  follows from the definition. We proceed by backward induction. 
Assume that the required equality holds for ' 1k k≥ + . We need to show that 

*( ) ( )k kV s Z s= , where { }
1

*
1'( ) max ( , ) ( ' | , ) ( ')

k k
k a A k k ks SZ s r s a p s s a V s

+
∈ +∈+∑ .  

To establish *( ) ( )k kV s Z s≤ , it is enough to show that ( ) ( )
k

k kV s Z sπ ≤  for any (general, 

randomize) "tail" policy kπ . Consider then any "tail" policy 1( , )k
k Nπ π π −= … .  Note 

that ( | )k k ka a sπ∼ , 1 1 1( | , , )k k k k ka a s a sπ+ + +∼ , etc.  For each ks S∈  and ka A∈ , let  

( | , )k s aπ  denote the policy from time 1k +  onwards  which is obtained from kπ  when 
,k ks s a a= = .  Proceeding as in page 2.9 (value iteration for a fixed policy), it follows 

that 

{ }
1

( | , )
1'( ) ( | ) ( , ) ( ' | , ) ( ')
kk

k k

s a
k k k k ka A s SV s a s r s a p s s a V sππ π

+
+∈ ∈= +∑ ∑  

But since *
1kV +  is optimal we have that ( | , )*

1 1( ') ( ')
k s a

k kV s V sπ
+ +≥ , so that   

{ }
1

*
1'( ) ( | ) ( , ) ( ' | , ) ( ') ( )

k

k k
k k k k k ka A s SV s a s r s a p s s a V s Z sπ π

+
+∈ ∈

≤ + ≤∑ ∑ . 

We next show that *( ) ( )k kV s Z s≥ . For that purpose, it is enough to find a policy kπ  so 

that ( ) ( )
k

k kV s Z sπ ≥ . Define kπ  as follows: Choose ka a=  so that 

{ }
1

*
1'arg max ( , ) ( ' | , ) ( ')

k
k

k k ks S
a A

a r s a p s s a V s
+

+∈
∈

∈ +∑  
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and then after observing  1 'ks s+ =  proceed with the policy 1kπ π +=  which maximizes 

1( ')kV sπ
+ . For this policy we obtain:  

1

1

1

1'

*
1'

( ) ( , ) ( ' | , ) ( ')

( , ) ( ' | , ) ( ')

k k

k

k

k k ks S

k ks S

V s r s a p s s a V s

r s a p s s a V s Z

π π +

+

+

+∈

+∈

= +

+

∑
= =∑

 

This completes the proof of (i). 

(ii) (Outline – exercise). Let *π  be the (Markov) policy defined in (ii). Using value 
iteration for this policy, prove by backward induction that  

* *
k kV Vπ = .                            

 
 
Note that optimal control policy obtained as above is a deterministic Markov policy.   
 
 
To summarize: 

• The optimal value function can be computed by backward recursion. This recursive 
equation is known as the Dynamic Programming Equation, Optimality Equation, 
or Bellman's Equation.  

• Computation of the value function in this way is known as the value iteration 
algorithm, or just value iteration. 

• The value function is computed for all states at each stage. 

• An optimal policy is easily derived from the optimal value. 

• The optimization in each stage is performed in the action space.  The total number 
of minimization operations needed is | |N S×  – each over | |A  choices. This 
replaces "brute force" optimization in policy space, with tremendous computational 
savings as the number of Markov policies is | || |N SA . 
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D. Some Operator Notation 
 
 Define the operator *

kT  over the space of functions : kV S → R  (equivalently: the 

space of vectors | |kSV ∈R ), 

{ }*
'( )( ) max ( , ) ( ' | , ) ( ')

kk
k k ks Sa A

T V s r s a p s s a V s∈∈
= +∑  

Similarly, for a given decision function :k k kS Aπ → , 

'( )( ) ( , ( )) ( ' | , ( )) ( ')k

k
k k k kk s ST V s r s s p s s s V sπ π π∈= +∑  

Note that *( )( ) max { ( )}k
kk kT V s T V sπ

π= .  
 
We will now use the shorthand vector notation * max k

kk kT V T Vπ
π= , and rewrite the 

Dynamic Programming equations in this notation. This gives: 
 
 Policy evaluation:   

1

1
k k

k
k kkV T Vππ π +

+= .  
 
 Optimality equation:  * * *

1k k kV T V +=  . 
 
 Optimal policy:     * *

1arg max k

k

k kkT Vπ

π
π +∈  

 
E. The Q function 
 
Define 

*
'( , ) ( , ) ( ' | , ) ( ')

k
k k k ks SQ s a r s a p s s a V s∈= +∑  

This is known as the (optimal) state-action value function, or simply as the Q-function. 
( , )kQ s a  is the expected total reward from stage k  onward, if we choose ka a=   and 

then proceed optimally.  
 
It is easily seen that  

*( ) max ( , )
k

k k
a A

V s Q s a
∈

=  

and 
*( ) arg max ( , )

k

k k
a A

s Q s aπ
∈

∈  

Furthermore, in terms of Q the optimality equation reads: 
*

1
''

( , ) ( , ) ( ' | , ) max ( ', ')
k

k k k k
a As S

Q s a r s a p s s a Q s a+
∈∈

= + ∑  

 
The Q function allows an immediate computation of the optimal actions at each stage. It 
will form the basis for Q-learning algorithm, which is one of the basic Reinforcement 
Learning algorithms.  

 
 


